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The low-temperature properties of the spin-S quantum spin chain are studied representing a

spin-S operator as the sum of 2S spin- z operators. The resulting system of 2S-coupled spin- 2 sys-

tems is studied in the weak-coupling limit„using a continuum representation. It is shown that under

scaling, the coupling becomes strong. Under the additional hypothesis (which is shown to be true

for S=1) that strong coupling represents correctly the properties of the spin-S system, the following

results are obtained: (i) there are„ in general, two types of planar (massless) phases XF1 and XY2,
separated by an Ising-like transition; (ii) for half-odd-integer S the exponent g governing the asymp-

totic power-law decay of transverse spin correlations takes the universal value g =1 at the boundary

between XF1 and the adjacent unIaxial antiferromagnetic phase; (iii) for integer S there is an addi-

tional singlet phase between XF1 and the antiferromagnetic state, with g= 4 at the limit of XI'1;

(iv) a spin-Peierls instability only exists for half-odd-integer S; (v) a magnetic field along the z direc-

tion may lead to a transition from the singlet or antiferromagnetic state to a planar phase. Univer-

sal scaling relations between exponents for transverse and longitudinal correlations in the phases

XF1 and XF2 and an explicit asymptotic expression for correlation functions are derived. Finally,

implications of the present results for some generalizations of the spin chain problem are briefIy dis-

cussed. The above points (ii} and (iii} confirm predictions by Haldane, which were derived using

quite different methods.

solvable. For S g —,
' no exact solution exists. Accord-

ing to Haldane ' the properties of the model depend
drastically on the spin quantum number: for half-odd-
integer S the excitation spectrum at the isotropic antifer-
romagnetic point is gapless ("massless" ), and spin-spin
correlations decay algebraically at large distances, with a
universal exponent g = 1 [cf. Eq. (2.11) below]; on the oth-
er hand, for integer S there is a gap in the excitation spec-
trum, snd spin-spin correlations decay exponentially.
Though initially controversial, there is by now a consider-
able amount of numerical evidence that this prediction is
indeed correct, at least for small S (S=—,', 1). " &cry
recent experiments also seem to confirm Haldane's predic-
tion for S =1.'

For general spin quantum number S no exact solution
of the model (1.1) exists. However, for S= 1, consider-
able progress in understanding the properties of the model
(1.1) has been made representing the spin-1 chain as two
coupled spin- —, chains and analyzing the resulting field-

theoretical problem. ' ' Here I generalize this method
to arbitrary spin quantum number. However, before do-
ing so, in Sec. II I shall describe and extend the method
used by Timonen and Luther (TL). ' This will help to
clarify the subsequent derivation for 5 ~1. Moreover,
correcting some errors in TI., it is actually possible to ob-
tain considerably more information about the phase dia-
gram, correlation functions, etc. , than obtained previously.
In Sec. III the general 5 case is treated. It will be seen
that the present results largely agree with those of Hal-
dane, though the method used here is quite different, and

I. INTRODUCTION

(1.1)

where S; =S(S+1), and the index i labels consecutive
lattice sites. D=0, J,=l is the isotropic ferromagnet,
D =0, J,= —1 is the isotropic antiferromagnet (after a
unitary transformation S"~—S",S»—+ —S» on every
second site), and in general there is both exchange aniso-
tropy (

~
J,

~
&1) and single-ion anisotropy (D&0), but

the model is isotropic in the xy plane. For 5=—, the
single-ion term is a constant, and the model is exactly

A theoretical understanding of the properties of quan-
tum spin chains is important for a number of reasons: on
the one hand, there is a large number of quasi-one-
dimensional magnetic systems' like CswiF3. Their prop-
erties are often one-dimensional over a considerable range
of temperatures. On the other hand, spin-chain models
pose interesting theoretical problems. For example, Hal-
dane has argued that the physical properties are vastly
different depending on whether the spin quantum number
S is an integer or a half-odd integer. Moreover, a number
of theoretical problems can be described in terms of spin-
chain models. An interesting recent example is the rela-
tion between spin chains and their SU(n) generalizations
and the theory of the integer quantum Hall effect.

In the present paper I consider the anisotropic Heisen-
berg spin chain, described by the Hamiltonian

0= —g [(S"S;"+)+SfS»+,)+JgSS,'+) D(S ) j, —
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considerably more information can be obtained. In Sec.
IV, expressions for the asymptotic behavior of correlation
functions in different massless phases are derived. Section
V is devoted to a discussion of the results.

P,~X,. Using the continuum representation

i —1

in g a„a„=ibex/2 i—[1((((x)+1(z(x)]/v 2, (2.6)

II. THE CASE S =1

To represent the spin-1 operators, one writes
S;=o;+r;, where o and w are spin- —,

' operators. The
ground-state properties of the original spin-1 model are
the same as those of the resulting system of two coupled
spin- —,

' chains. ' One now uses a Jordan-W'gner transfor-
mation' from spin- —,

' to fermion operators a;,a;,
1

Ui =~zai 2

an analogous relation for the b fermions, and the boson
representation of single-fermion operators, ' H decom-
poses into separate and commuting parts for g& and (tiz

H =H1+H2,
with

2

H1= x —1x + 1+2 D —3J,
1

2 2m x

i —1

cT( =0'( +lo~(=a( exp /K g a((a((
+ r

n=1
(2.1) + 2 dxP1cos 8 1 x1

(ma)
(2.7}

and analogously for the r's with fermion operators b;,b,
TL then go to the continuum hmit by using the boson
representation of fermion operators. Doing this carefully,
I find

H =Hg+H',

where Hb is bilinear in fermion density operators,

Hz = f dx —Xz(x)+ [1—2(D +J, )/n ]
,

2 2m

+ z J dx[((bzcos[V 8(t/z(x)]
1

(ma)

+p, ,cos[v 2rz(x)]],

'2
4z
x

(2.8)

Hb ———g g [v, [p~, (k}p+,( —k)
k (~0) s =1,2

+p, ,(k)p, , ( —k)]

+2k,,p+, (k)p, ( —k) I . (2.2}

Here p~ i
——(p+, +p+b }/v 2,p+, z=(p+, —p+, b)/v 2, and

p+ „p+ b are the standard density operators for right-
(+ ) and left-moving ( —) fermions of types a and b,
respectively. The coefficients in (2.2) are

vi ——1 —(3J, D)/m', —

vz ——1 —(J,+D)/m, (2.3)

s =&s

TL calculate slightly different coefficients which in my
notation are v, =1—(J,—D)/n. , vz ——1+(J, D)/x, —
((, i (D 3J, )/n, A———

z
—A, &. Th——e difference is due to TL's

neglect of Hartree-Fock-like corrections to the Fermi velo-
city' (gq processes in standard "g-ology" notation' ' )
and an additional sign error in their calculation of ((,z.
The operators obey bosonlike commutation rela-
tions. It is now convenient to introduce the boson
phase fields

with pi =pz D+J„p——z
———1. In the fermion descrip-

tion the p1 and p2 operators represent urnklapp and back-
ward scattering between a and Iz fermions (g& and g, j
processes), which come from the cr'r' coupling between
the spin- —,

'
systems. The pz operator comes from the

o+r coup'ling and does not have a simple representation
in terms of local fermion operators. In going to the con-
tinuum limit, lattice-renormalization effects on the coeffi-
cients in Hi and Hz are neglected, so that the coefficients
given in Eqs. (2.7) and (2.8} are strictly valid only to
lowest order in D and J,. Moreover, only the most
relevant operators [in a renormalization group sense, see
the scaling equations (3.13)—(3.19) below) have been kept.

In a way similar to Eqs. (2.7) and (2.8) the spin opera-
tors are found as

+ 1 —iX
&
(r)/~2S+(x)= e

'fTCX

)& I cos[Xz(x)/v 2]

+e' "cos[v 2gz(x)+Xz(x)/V2]

f,(x)=— g [p+,(p)+p, (p—)]e
p(+0) ~

(2.4)

—i~2/&(r)Xe (2.9)

X,(x)= g [p+,(p)—p, (p)]—e
p(+0) ~ + e' "cos[v 21(iz(x)]cos[v 2$((x)] .iver (2.10)

(2.5)

where a is a short-range cutoff which may be identified
with a lattice constant. X, is related to the momentum
density conjugate to g, via BX,/Bx =mX, (x). The canoni-
cal transformation p+, ~—p+, leads to the interchange

%'e are now in a position to discuss the phase diagram
of the model described by Eqs. (2.7) and (2.8). First con-
sider Hz. Apart from the Gaussian (bilinear} part, there
are two operators with coefficients pz and p, &. Their scal-
ing dimensions x2,x3 can be obtained from correlation



H. J. SCHULZ 34

functions, as briefly outlined in Sec. IV. One finds

x2 ——2[1—2(D+J, )/~] ' ', xi ——1/x2, so that there is
always at least one relevant operator (x; &2). As argued

by den Nijs, ' H2 can be considered as the transfer matrix
of the two-dimensional XY model with a twofold aniso-

tropy field p2 and order parameter exp[i' 2/2(x)]. That
model is expected to have properties similar to those of
the two-dimensional Ising model. Consequently, there are
two possible phases for H2.

(1) A disordered phase, where correlation functions con-
taining exp(i~2/i) decay exponentially. On the other
hand, cos(v 2X2) is a disorder (or vortex) operator,
and consequently correlation functions involving X2 go to
a nonzero constant at large distances. In the disordered
state cos(v2Xi) is the dominant (i.e., most relevant)
operator, and therefore this state is realized for not too
negative D+J, (where x& &xz).

(2) An ordered phase with long-range order in the Pz
correlations and ex onentially decaying X2 correlations.
In this state cos( 8/2) is most relevant, and it exists for
sufficiently negative D+ J, (where x2&x&). From the
scaling equations (3.13)—(3.19) below, taken for S =1, the
boundary between the two phases is expected to be
D +J, = —3m/2 for small p2, pi. This is line 4 in Fig. l.

We now turn to Hi. For 3J, D«m/2 —(line 1 in Fig.
1) the coefficients of (Bgi/Bx) is negative, indicating a
breakdown of the continuum limit. For spin- —, this corre-
sponds to the onset of ferromagnetic long-range order in
the lattice model, ' ' and it can reasonably be assumed
that this also occurs for S=1. For 3J, D&n/2 t—he
only potentially relevant operator in Hi is cos(v Sgi),
with scaling dimension x

~

——2[1+2(D 3J, )/n ]-
This operator is relevant for xi &2, i.e., D —3J, p0 (line
2 in Fig. 1). To the left of line 2 there is a mass gap in the
excitation spectrum of Hi, corresponding to a long-
range-ordered Pi field and exponentially decaying Xi
correlations. On the other hand, for x»2 (D —3J', &0)
cos(v 8$, ) is an irrelevant operator, there is no mass gap,
and both fi and X, correlations decay algebraically at
large distances. In addition, there is a special line

+Diie' '(x +U t )
i
x U t—

i

', (2.12)

G,{x,t) = (S,(x,t)S,(0,0) )

+D er~xx +ut . —gl2
(x U i—)

(2.13)

Here the alternating (0:e' ") and slowly varying pieces
come from the corresponding pieces in the operator repre-
sentation, Eqs. (2.9) and (2.10). Equations (2.11), (2.12),
and (2.13) define the exponents governing the asymptotic
behavior in the massless phases, v is the spin-wave veloci-
ty (determined by Hi ),

u =[1+2(D—3J, )/m]'

and in G&2 only the leading asymptotic behavior is re-
tained.

In the region JF1 12 is long-range ordered and there-
fore contributes a constant to the prefactors Ci, CJ'7 etc.
A standard calculation' ' " (see also Sec. IV, this type of
result will be used repeatedly) then results in

ri= 1/2xi, rip ——4ri . (2.14)

From the condition x i ~ 2 one finds 0 & g & —,', with i) = —,
'

at the boundary to the region S. On the other hand, fi
correlations, and therefore the alternating parts of Gi and
G„decay exponentially (formally g'=ri, = ao). In sum-
mary, there are power-law in-plane correlations, whereas
the alternating part of the out-of-plane correlations is
short ranged. XF1 and its boundary towards S are the
only parts of the phase diagram considered by TL, and, of
course, their result for g agrees with the one given here.

In the XY2 region the roles of $2 and X2 are inter-
changed. X2 correlations and therefore Gi decay ex-
ponentially (g=ri'=oo). However, in (S+) there is a
contribution not containing Xz at all, and consequently
G&2 obeys power laws,

D+J,=0 (line 3 in Fig. 1) where the cos(U 8g, ) operator
does not exist (p, =0). Here again H, is massless.

Apart from the ferromagnetic region there are four dif-
ferent phases in Fig. 1. In order to discuss their physical
properties, I consider the following three spin-spin corre-
lation functions:

Gi(x, t)= (S+(x,t)S (0,0) )

=C, (x' —U'r'~

+D e' "(x +U t ) ~x2 —U2t2~ ' 'i'~', (2.11)

Gj 2(x, r) = ([S+(x,t)]2[S (0,0)]2)

2 2 2
—92t2

n'2. =2~XI nz=n2+1~12 ~ (2.15)

FIG. 1. Phase diagram for 5 =1, with ferromagnetic (F), an-
tiferromagnetic (AF), planar (XF1,XF2), and singlet (S) phases.
The different lines are explained in the text. Line 3 is shifted
upwards for convenience.

qz ——1/qq . (2.16)

The XY2 phase is thus quite different from XFl; no

one has 0 ~ q2 (1,with q2 ——1 at the boundary to the AF
region. Because $2 is long-range ordered, there are now
also power-law contributions to the alternating part of G„
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power-laws in Gz, but additional power-law contributions
in the alternating parts of both Gi2 and G, . The situa-
tion is reminiscent of the spin- —, case, where one also has

both in-plane and out-of-plane power laws. The analogy
is easily understood from the original Hamiltonian, Eq.
(1.1); for large negative D, the dominating states are those
with S'=+ 1, whereas S'=0 has a very high energy and
therefore is nearly frozen out. Working with basis states
containing only S'=+1, it is possible to derive an effec-
tive spin- —, problem. To pass from S'= —1 to S'=1,
two applications of S+ are needed, leading to power laws
in Gi2 instead of Gi. From the known exponents for
S = —,

' (Refs. 29 and 30) one then finds the scahng rela-

tions (2.15) and (2.16). Nevertheless, it is quite rewarding
to obtain these results directly from the continuum repre-
sentation. From the above discussion of the properties of
H2 the transition between XY1 and XY2 is expected to
be Ising-like. This is analogous to the transition between
two different planar phases found in a generalized two-
dimensional XFmodel. '

To the left of line 2 there is a mass gap in Hi, and fi is
long-range ordered. In the region marked AF, g2 is also
long-range ordered, and from Eq. (2.10) one then sees that
there is long-range antiferromagnetic order along the z
axis, i.e., a uniaxial Keel State. On the other hand, X;
correlations and therefore Gi and Gii decay exponential-
ly. Finally, crossing line 3 (via an Ising transition} one
finds long-range order in g, and X2, whereas fz and X~
correlations decay exponentially. Inspection of Eqs. (2.9)
and (2.10) then shows that all of the correlation functions
discussed above decay exponentially, i.e., the system is in
a nonmagnetic singlet state. %ithin this phase there is
line 3, along which the mass-generating operator vanishes.
Here correlations are similar to the XY1 phase (r)i ——4',
r), =g'=ri2 ——oo), however, now i) ~ —,'. A classical two-

dimensional analogue of this phase is the low-temperature
critical line of an XY model with sixfold anisotropy.
The whole line 2 is characterized by a single operator
( oc p i ) becoming relevant, and therefore is of the
Kosterlitz- Thouless type.

The above perturbative analysis is valid for small coef-
ficients p, ; of the nonlinear operators. On the other hand,
in the continuum representation of the original model,
Eqs. (2.7) and (2.8), these parameters are quite large, espe-
cially pi. If our discussion is to apply to the spin-chain
model, Eq. (1.1), there must be a continuous
renormalization-group connection between the small pa-
rameter region discussed here and the parameters ap-
propriate for the spin-1 chain. Such a connection exists in
many related problems. For example, the strong-
repulsion behavior of the one-dimensional Hubbard model
is continuous1y connected to the weakly interacting con-
tinuum model. ' ' In the present case, numerical work
shows that the topology of the phase diagram of the spin-
1 chain is the same as that of Fig. I. '" Of course, the
precise shape of the phase boundaries is different, prob-
ably due both to the large values of the parameters p; and
to the neglect of all lattice renormalization effects in Fig.
1. For small D, J, (pi, )ti, z small) even these differences
are small; for D=0 the present model predicts the
S-XF1 boundary at 7, =0, whereas the numerical result

is J,= —0.1. Moreover, the scaling relations q2
——4q

(XY1}and ri, =1/F12 (XY2) have been verified numeri-
cally. " It thus seems fairly clear that the weak-coupling
continuum theory indeed describes correctly the qualita-
tive features of the spin-1 chain model. The main
discrepancy is that in the spin-1 chain lines 1 and 2 (and
similarly 3 and 4) coalesce into a single line at some finite
but quite large value of D and J,. At such large coupling,
however, it is quite likely that more than just the opera-
tors kept in Eqs. (2.7) and (2.8) are necessary for a correct
description. In this context it is interesting to remark that
preliminary numerical results indicate that the multicrit-
ical point where lines 3 and 4 meet is in the same univer-
sality class as a special, exactly solvable spin-1 model.
Approaching the multicritical point along line 4 ri tends
towards —,

' (ri2~2, r), =ri'= oo ), whereas along line 3 one

has the Ising value q, = 4. Precisely at the multicritical
point one has ri=ri, = —, (Refs. 4 and 37), i.e., the ex-

ponents jump discontinuously. It may be noticed that this
last value ( —, ) is just the sum of the two limits along lines

3 and 4 ( —,
' + —, ). Finally, we remark that it seems unlike-

ly that lines 2 and 3 cross without any effect on each oth-
er (decoupled Ising and Kosterlitz-Thouless behavior). It
is rather likely that some higher-order operator coupling

and gi changes this situation, even though at the
present stage no precise prediction can be made.

III. GENERAL SPIN QUANTUM NUMBER

Encouraged by the correct qualitative results for S = 1 I
now use an analogous method for arbitrary S: spin-S
operators are represented as a sum of 2S distinct spin- —,

'

operators a„

(3.1)

(i is the site index) and this is inserted into Eq. (1.1). By
arguments similar to those of Luther and Scalapino' the
ground-state properties of the new model are expected to
be the same as those of the original one. Via a Jordan-
Wigner transformation 2S fermion fields are introduced,
one for each cr„Ithen .go to the continuum limit and use
the boson representation of fermion operators. Introduc-
ing the phase fields

(3.2)

(3.3)

[cf. Eqs. (2.4) and (2.5)] the Hamiltonian becomes [with
the same approxiinations as in Eqs. (2.7) and (2.8)]
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r

H = f dx —II (x)+ [1—2(D+J, )/m] + (D —J, ) May
'

1 ay'-ay
2 2K Bx ~ Bx Bx

L

+ g f dx(pi cosI2[P;(x)+PJ(x)]I+p2cosI2[P;(x) —PJ(x)]I+p3cos[8;(x)—8~(x)]),1

(ma)

(3.4)

where, as before, IJ, i p2
——D+——J„p3———1, and the operators with coefficients p„p,q, p, 3 are of the same origin as in Sec.

II. A vector notation has been introduced: P=(Pi, . . . , $2s), M is a matrix with all elements equal to unity, and II is
the momentum density conjugate to P. The spin operators are

S+(x)= g exp[ ie—„(x)][1+e'""e " ],
2&6K

2s QP 1
2s

S'(x)= ——g + g e' "cos[2$„(x)].
1T „ i Bx 1Ta

The bilinear part of (3.4) is diagonalized by a unitary transformation

y=Uy, II=Uy, e=UX,

(3.6)

(3.7)

which defines the transformed fields P,X. Clearly, the scalar products in (3.4) are unaffected by the transformation. The
matrix M has one eigenvalue 2S and 2S —1 zero eigenvalues. Due to this degeneracy, there is some freedom in the

determination of U. In all cases the first column is

U i ——1/&2S (1&m &2S) .

A possible (but not unique) choice for n & 2 is

U „=1/&(n —1)n (n &m),

U„„=—&(n —1)/n,
U~„=O (n gm) .

From Eq. (3.8) one has

(3.8)

(3.9)

2S

gati(x)= g P„(x),
n=1

(3.10)

i.e., gi is the "average" value of the P„. On the other hand, for n & 2 the g„are invariant under the global transforma-
tion p„(x)~p„(x)+4(x), with 4 independent of n, i.e., the 1(„with n & 2 depend only on relative displacements of the
P„with respect to each other.

After the unitary transformation the Hamiltonian becomes

'2 '2

H = f dx —g (x)+ [1—2(D+J, )/m] + (D —J, )
1 8 2S

2 2K Bx ~ Bx
J

1+,y f dx IVi cos[2(Uk+ Ujk Wk(x)]+V2cos[2(Ua —Uk Wk(x)]+V~ cos[(Uk —Up )&k(x)] I,(na). (3.11)

where summation over repeated indices is implied. Be-
cause U ~

is independent of m, the terms in p2, p3 involve
only the "relative" fields with k &2. However, the pi
operator couples Pi to gk's with k&2. Only for S=l
this term involves |t i only, and then (3.11) is identical to
(2.7), (2.8).

I now proceed as in Sec. II and first discuss the region
of small parameters p),p2,p3. The corresponding scaling
dj.IIlenslons are

xi ——2%i /5+2(1 —1/S)Ez,

x2 ——2K2,

x 3 ——1/x2,

with

Ki ——
I 1 —2[2J,—(2S —1)(D —Jg )]/~I

K, = [1—2(D +J, )/m]

(3.12)
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The constants K determine the long-distance behavior of
the average (Ki) and relative (Kz) fields. From the
lowest-order corrections in p; to the E; I obtain in a way
similar to Jose et al. 2 the scaling equations under a
change of length scale a~ac',

G,„(x,t)=([S+(x,t)]"[S (0,0)]"}

=C i„ I
xi —u t'I

I

elwx(x2+u2t2)
I
x2 u2t2

I

I (3.21)

U)= —K)o,+]
U2

(3.13)
G, (x, t) = (S,(x,t)S,(0,0)}

2 2 2 /2+D"-I '-"'I= z 2 222 g
(x —ut)

(3.22)

r

P2 +5 "'
27TV2

'2

(3.14)

p]
I

= I 2 —2[K' +(S—1)Ki]/S Ip»

dP2

dl
=[2—2K&]) z

P3
I

=[2—1/(2K2 }]p.3,

dV) U]
K]u

(3.15)

(3.16)

(3.17)

(3.18)

V2 V)= (S —1)K2tx
I U2

'2
p] (3.19)

a+i(x) = f d8[1 —(1+x~)sin28]
2m'

where the initial values of the velocities of the average
( u, ) and relative ( v2) excitations are

ui ——I 1 —2[2J, —(2S —l)(D —J, )]/m I
'i

vz ——[1—2(D +J,}/n ]'~

and I hive introduced the abbreviations

I first treat the case of sufficiently small Kz (D+J,
sufficiently negative), so that p, z increases more quickly
than p, q. Then, from Eq. (3.14) K2 will further decrease,
and so on, i.e., p2 is the most relevant operator in this
case. In analogy to the discussion in Sec. II one has long-
range order in the 1(k fields (k )2), whereas Xk correla-
tions decay exponentially. Due to the long-range order of
the relative f's, only 1(& contributes to the renormalization
of pi, and instead of Eq. (3.15) one has

p)
dl

=(2—2Ki/S))M i . (3.23)

There are now two regions, separated by line 2 in Figs.
2 and 3. For p, i~0 it is given by Ki ——S. On the left of
this line pi is a relevant operator, and thus in addition to
the relative P's also gi is long-range ordered Fro.m Eqs.
(3.6) and (3.22) one sees that this corresponds to a uniaxi-
ally ordered antiferromagnetic phase. All Xk correlations
and therefore all correlation functions containing S+ or
S decay exponentially at large distances.

On the right of line 2 (Figs. 2 and 3) pi renormalizes to
zero [cf. Eq. (3.23)], and therefore the 1(i field remains
massless. The fluctuations of the relative P's are frozen
out, so that from Eq. (3.6) one finds

S'(x) = — + e' "cos[v'2/S P&(x)] .
v'2S ~Pi 2S

m Bx ma

X [1—(1—x )sin 8]

2n'

u+z(x) = f d8[1 —(1+1}sin8]
2m'

The exponent in G, follows as

(3.24)

X [1—(1—x )sin 8]

Equations (3.18) and (3.19) for the renormalization of ui
and u2 arise because in general ui and uz are different,
but the corresponding excitations are coupled by the p&
term. For the following discussion these two equations
are unimportant, and they are included here only for com-
pleteness.

To discuss the physical properties in different parts of
the D —J, plane, I consider, as in Sec. II, the correlation
functions

Gi(x, t) = (S+(x,t)S (0,0) }
=C, Ix' —'t'I -&"

+D ~x( 2+ zt ) I

2 2t2
I

——'fi j2 (3.20}

FIG. 2. Schematic phase diagram for integer spin S, with the
same phases as in Fig. 1, obtained for small parameters p;. The
axes are in arbitrary units.
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FIG. 3. Same schematic phase diagram as Fig. 2, but for
half-odd-integer spin S.

ri, =K ) /S, 3), ) 1, (3.25)

[S+(x)] = s exP[ —i v'2SX) (x)]
(2ma)

i v 2/5 —P((n)X(1+e' "e (3.26)

This leads to

with g, =l on the boundary to the AF region. One
should note that here, as well as in similar formulas
below, K) contains the renormalization effects from the

p s, i.e., I(')(()()) from Eqs. (3.13)—(3.19) is used. The
operator S+ always contains some contribution from rela-
tive X's, and therefore Gi (and Gi„ for n &2S) decays
exponentially. On the other hand, in (S+) there is a
contribution containing only X& „

Eqs. (2.15) and (2.16)], and can be explained in the same
way; for large negative D the ground state is built essen-
tially out of states with S,'=+S, and one has an effective
spin- —, problem. To pass from S'=S to S'= —S 2S ap-
plications of S+ are needed, and therefore the massless
excitations show up in 6&2&. From the spin- —, analogy
one does indeed obtain the same scaling relations as Eq.
(3.27}, and it is quite satisfying to observe that the small-

p; approach used here does indeed reproduce correctly,
for all S, these relations.

To its right, the XF2 region (Figs. 2 and 3) is limited
by line 1, which is determined by v& ——0. As in the case
S =1 this is identified as the transition to the fully or-
dered ferromagnetic state.

Now consider the opposite case: E2 sufficiently large,
so that the )M3 operator is the most relevant one [i.e., in-
creases most quickly, see Eqs. (3.16) and (3.17)]. Equation
(3.14) then leads to a further increase of E2, and so on.
The p3 operator tends to order the relative X fields, and
therefore this region is characterized by long-range order
in the Xk's with k )2, whereas )teak correlations decay ex-
ponentially (k &2). This is the region above line 4 in
Figs. 2 and 3. The only potentially massless modes are
those associated with the P) field. The only cos operator
containing g) in the Hamiltonian (3.11) is the one with
coefficient p). However, apart from the special case S = 1

this operator always contains also some of the relative g's,
which lead to an exponential decay of the correlation
functions appearing in a perturbation expansion [cf. Eq.
(3.29)]. One would thus be tempted to conclude that the

p) operator gives only finite corrections and is therefore
always irrelevant. The g) excitations should remain mass-
less in the whole region above line 4. This conclusion is
however somewhat hasty; consider the correlation func-
tion

in/((n, r) in/—((0,0)
(3.28)

ri2s = lip, =S&K( 0&3)2s &1

125 /2S+ li I2S (3.27)

This result is analogous to the XF2 phase for S =1 [see

where v is the imaginary time and T, is the time-ordering
symbol. A typical nth order contribution from p) to D„
is proportional to

p)(T,(e ' '
e ' '

cos{2[()I(;(x),r))+(t)J,(x),r))]I

x cos[2[());,(X2,r2)+(I}J,(X2,r2)]] cosI2[p; (X„,r„)+(()J (X„,r„)]I ) ) . (3.29)

Here a bar indicates integration over the corresponding variable, and for convenience we have used the untransformed P
fields instead of the P s. In most cases, the correlation function in Eq. (3.29) decays exponentially as a function of the
variable differences x —x„, ~ —r„, and consequently (3.29) gives a finite and irrelevant correction to D„. However,
there are some very important exceptions. As an example, consider the fourth-order contribution for S=2 with
i) =i3=1, i2 i4 ——3, j——i

——j3 ——2, j2 ——j4 ——4. Due to the exponential decay, only the regions (x),r)) {x2,s2),
( x 3 r3 ) (x4, 74) and ( x 1, r) ) = (x4, r4), ( x3,r3 ) = (x2, r2 } are important. Up to higher-order corrections, one then can set
(x),r) ) =(x2, r2), (x3,r3) =(x4,r4), and obtains from {3.29)

( T {e e cosI 2[(( 1(x( r). )+((2(x( r) )] jcos[2[4'3 1 ))+({'4(x) r) )] I

X cos[2[()}1(x2~%2)+()2(x2~72)]jcosI2[43(x2~%2)+() 4(x2~%2)] } ) }
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cos[2&2S Pi], (3.31)

which has scaling dimension 2SE, and therefore gen-
erates a mass for the gi excitations for Ei &1/S. This is

and after transforming products of cosines at the same

point into a sum of cosines

{T,(e ' 'e ' '
cos[4$i(xi, r, )]cos[4$i(xz,r2)]) ) .

(3.30)

Here all additional terms containing relative g's have been

neglected. Expression (3.30) now contains only Pi, and
therefore has a power-law dependence on its variables. It
looks exactly like a second-order term in a perturbation
expansion with perturbation proportional to

cos(4/i ),
which has scaling dimension 4E, and therefore drives the

Pi excitations massive for Ei & —,.
Obviously, the above argument can be applied to arbi-

trary values of the spin quantum number S; one takes a
product of cos[2($;+PJ)] operators, so as to obtain one
cosine term which contains only gi as an argument. In
this process, an important difference between integer and
half-odd-integer values of S arises. Consider S = —', . To
fourth order in p, i one Ands the term

cos[2(P i +P2) ]cos[2((()2+ tI('q ) ]

and cyclic permutations of the indices. Each of these
terms contains a relative g and therefore is always ir-
relevant. However, at the sixth order one obtains

cos[2(ki+4i)]cos[2(4»+ 03)1«s[2(A+ A)]
= cos(4W3$i ),

which has scaling dimension 12E] and thus generates a
mass for E, & —,'. It should now be obvious how to gen-

eralize this construction to arbitrary S. For integer S a
product of Scos[2(P;+PJ )] operators at (nearly} identical
points is needed to produce

S+(x)= —iX
&
(x)/~2S

Se (3.33)

From this expression I obtain the exponents

7)=1/(4SEi), q„=n rl . (3.34)

From the above discussion one has for integer S E, & 1/S
and therefore

0&g& 4 (3.35)

with the universal, S independent value g= 4 at the tran-

sition to the massive region. In contrast, for half-odd-

integer S Ei & 1/4S, and therefore

(3.36)

with another universal value rl =1 at the transition (line
2').

The nonalternating part of S' contains only |(,, and this
gives rise to the first term in Eq. (3.22). The alternating
part of S* always contains some of the relative f's, and
one thus naively would expect exponential decay. Howev-
er, an argument as given above for the pi operator shows
that this is not always true. An nth order (in pi) term in
the perturbation expansion for the alternating part of G,
1S

line 2' in Fig. 2.
On the other hand, for half-odd-integer S a product of

2S cos[2(P;+P~ )] operators is needed and results in

cos[4v'2S g, ] (3.32)

which has scaling dimension 8SEi and therefore gen-
erates a mass for the fi excitations for E, & 1/4S. This is
the line 2' in Fig. 3.

I now discuss the physical properties of the different
phases above line 4 (Figs. 2 and 3) in terms of the correla-
tion functions defined in Eqs. (3.20)—(3.22). First consid-
er the case where the fi excitations are massless (XY1 in
Figs. 2 and 3). All the relative X's are long-range ordered,
and thus from Eq. (3.5) the effective (nonalternating) S+
operator is

& T,(cos[2y, (x,r)]cos[2((),(0,0)]cosI2[y, (x„r,)+y, (x, ,~, )] j

X cosI2[P; (x2,vz)+(tj (x2, r2)]j cosI2[P; (x„,r„)+P~ (x„,r„)]j)) . (3.37)

Via the same mechanism as discussed above, this can give rise to a function containing only Pi. Consider a second order
term for S= —,'. Due to the exponential decay of the correlation function, only the regions (xi,r, ) =(x,~},(xz, r2) =(0,0)
and ( xz, r2) =(x,r), (x i,r i ) =(0,0) give appreciable contributions to the integrals, and, taking for example
i i i2 ——2,J i

——jz ————3, (3.37) transforms into

( T,(cos[2$i(x, r)]cos[2$i(0,0)]cosI 2[/A(x, ~)+$3(x,r)] j cos I 2[$2(0,0)+Pi(0 0)] j ) )

= (T, tcos[2v 3/i(x, r)]cos[2W3$i(0, 0)] j ) . (3.38)

Even though this is a perturbative "correction, " it decays
as a power law at large distances, contrary to the zeroth-
order term which decays exponentially. Consequently, the
term (3.38) dominates the asymptotic properties of 6,.

This reasoning is straightforwardly generalized to all
half-odd-integer S, where one has to go to order (S——,

'
)

to produce a term like (3.38). One obtains for the effec-
tive (alternating) S' operator, governing the long-range



H. J. SCHULZ

behavior of 6',
S'(x)=e' cos[2&2S gi(x)],

and this leads to the exponent

(3.39)

i), =4SKi ——1/i), rl, & 1, (3.40)

with g, =1 at the transition to the AF region. A similar
argument can be given for the alternating part of Gi and
leads to

fl'=9+% (3 41)
The relations (3.36), (3.40), and (3.41) are the same as
those of the well-known case S = —,

' (Refs. 29 and 30) and
one concludes that spin correlations are generally equal
for all half-odd-integer S in our description. Similar rela-
tions hold also in the XI'2 phase, see Eq. (3.27). Howev-
er, one has to note that in XF1 all transverse correlation
functions have power-law decay, whereas for XY2 there is
a power law only in Gzs. Consequently, there has to be
phase transition between XF1 and XF2.

In contrast to the half-odd-integer case, for integer S
one sees that it is not possible to obtain a cos(Pi } operator
from contractions of integration variables in (3.37); f, is
the sum of an even number of P's, whereas from (3.37)
one can only obtain a sum of an odd number of P's. Thus
one is always left with some relative f's, and the alternat-
ing part of 6*decays exponentially (i), = ao ) in the region
XF1 for integer spin. This is a generalization of the XI'1
phase discussed in Sec. II for S= 1.

Finally, in the region on the left of line 2 in Figs. 2 and

3 the operators (3.31) and (3.32) are relevant and lead to
long-range order of the fi field. Consequently, all corre-
lation functions containing X] such as 6& and G&„decay
exponentially at large distances (i)=i)„=oo ). For integer
S, due to the presence of some relative P's in 6„ this
function decays exponentially, too. Thus, all the magnetic
correlations are short ranged, one has a nonmagnetic sing-
let ground state. In contrast to this situation, for half-
odd-integer S the effective S' operator (3.39) contains Pi
only, and one therefore has antiferromagnetic long-range
order.

Within the region where fi is massive there is the spe-
cial line 3 (Fig. 2) along which the mass-generating term
vanishes; pi D+J——,=O. For integer S one then has the
same type of correlations as in the XI'1 phase, but with
r) & —,'. On the other hand, for half-odd-integer S this line
can only exist for rl & 1, and at these values other opera-
tors, e.g., the umklapp operator of the individual S = —,

'

systems, ' ' become relevant and are likely to generate
a mass for the gi excitations. Thus the massless line 3
probably only exists for integer S.

The phase transition along the lines 2 and 2' is charac-
terized by a single operator becoming relevant. This is
typical for transitions of the Kosterlitz-Thouless type,
and therefore the transitions along 2 and 2' are of that
type. The transition along the line 4 is governed by the

competition between the pz and p3. operators and is more
complicated to analyze. In the case S=—,

' these two
terms become

p2I cos[v 8A]+ cos[~2(&2+@ 3A)]+ cos[~2(&2—~3'({'i}]I

+@3[cos[~2Xi ]+ cos[(Xp +~3Xi )/~2] + cos[(Xi —~3Xi )/~2] j . (3.42)

If the quadratic part of the Hamiltonian (3.11) is con-
sidered as the transfer matrix of a two-dimensional elastic
solid with displacement components gz and gi, the pz
term represents an underlying periodic potential with cen-
tered rectangular symmetry. Extending arguments given
in Refs. (14) and (40) the pi operators represent thermally
excited dislocations with Burgers vectors of length v 2m.
Consequently the state with long-range ordered (fz, gi) is
twofold degenerate: either (f2, gi) =(0,0) or (gz, gi)
=(m, n/v 3). The Hamiltonian can then be considered as
the continuum transfer matrix of an antiferromagnetic Is-
ing model on a centered rectangular lattice, and the transi-
tion along line 4 thus should be of the two-dimensional Is-
ing type. This type of argument can be applied to all
values of S, and one always finds a twofold-degenerate or-
dered state and therefore an Ising transition along line 4.
Taking this reasoning literally, for half-odd-integer S this
transition would also occur between two antiferromagnet-
ic phases. It seems more likely that in this region the
transition either disappears completely, due to some
operator neglected here (e.g., the umklapp operator men-
tioned above for line 3), or becomes of first order. A
first-order transition between two antiferromagnetic
phases with different amplitudes of the order parameter
has actually been proposed for S = —', . We finally re-

mark that, as already discussed in Sec. II, our analysis
most likely becomes inapplicable in the close vicinity of
the points of contact between lines 2, 2', and 4. Especial-
ly, it seems rather unlikely that there should be, for in-

teger S, a direct transition between the XF1 and the anti-
ferromagnetic phase.

Up to here our analysis has been perturbative, assuming
small parameters p;. In order to be applicable to the orig-
inal spin-chain model, Eq. (1.1), a continuous connection
to the region of relatively large couplings has to exist. I
defer the discussion of this possibility and its conse-
quences to Sec. V and rather extend the present treatment
by a brief study of the effects of some syinmetry-breaking
terms.

First, consider the effect of an external magnetic field h

applied along the z direction. Using Eq. (3.6) this leads to
a new term in the Hamiltonian,

(3.43)

Away from the critical hne 4 (Figs. 2 and 3), apart from
the terms bilinear in f„there are only the cos terms (3.31)
or (3.32}. The effects of the additional gradient term
(3.43) has been studied extensively in the context of
commensurate-incommensurate transitions. ' Using
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in Eq. (1.1). The most important effect is the alternation
of the S+S interaction, ' which in the continuum
form gives an additional term in the Hamiltonian,

H„=PI dx cos(mx)S+(x)S (x) . (3.44)

Inserting (3.5), the most relevant terms are those with
n =n' in the double sum, giving

H„= g J dx cos[2$„(x)] .p 2S

VO'
(3.45)

From this form a number of conclusions can be drawn. It
is obvious that in general two cos(2$„) terms coming
from H„can replace one cos[2(P +P„)] terms in Eq.
(3.29). This leads to the replacement p, ,~p, +pi. For in-

teger 8, and below line 3, where pi is negative, this
reduces the amplitude of the mass-generating term, and
consequently I expect the XY1 region to be increased at
the expense of region S. Especially, for finite p the mass-
less region should extend further along the line D =0.
Above line 3 pi is positive, so that the massless region
shrinks.

this analogy, the following conclusions can be drawn.
(1) In the massless phases the field leads to a finite

magnetization (a nonzero gradient of gi) for arbitrary
small fields, i.e., there is a finite susceptibility. In addi-
tion the correlation exponents depend continuously on
h 43,44

(2) In the massive regions S and AF a field smaller than
some critical value h, (which is proportional to the gap in
the gi excitations) does not change the ground-state prop-
erties at all. This corresponds to the commensurate phase.
When

~

h
~

exceeds h„ there is a transition into a mass-
less region, which corresponds to the incommensurate
state. The correlation exponents obey the same relations
as in the h =0 massless phases, however, one now has

(XY1, S integer), rl ) 1 (XY1, S half-odd-integer),
or rl2s ) 1 (XY2). In general, the exponents are continu-
ous functions of the parameters D, J„and h. However,
for h close to h„ following Ref. (43), one finds rl= —,

'

(XYI, S integer), i)=2 (XYI, S half-odd-integer), or
rlis 2(X——Y2). For the special case S=—,', where only

the XY1 and AF phases exist, this is indeed the observed
behavior.

A second interesting question is the effect of an addi-
tional staggered interaction, i.e., introducing a factor

IV. CORRELATION FUNCTIONS
IN THE MASSLESS PHASES

In the planar phases XY1 and XY2 discussed in the
preceding two chapters, the massless excitations are only
associated with the gi field. The long-distance power
laws of different correlation functions are entirely deter-
mined by the dynamics of P, . As in the massless regions
none of the cos operators in the Hamiltonian (3.11) are
relevant, the leading asymptotic properties of correlation
functions can be correctly obtained from the effective
Hamiltonian

X i X +
iT

(4.1)

where the coefficients Ei,u, include all renormalization
effects from the irrelevant operators, and to lowest order
are given by the solution of the scaling equations
(3.13)—(3.19) for l~oo. A standard calculation'
then gives the correlation functions at temperature T,

& exp[i e1(,(x, t)]exp[ t eq, (0—,0')] ) =F(x, t;e'E, /4, T)

(4.2)

(exp[i', (x, t)]exp[ i eXi (0,0—)]) =F(x,t;ail(4Ki ), T),

where e is an arbitrary parameter, and

For half-odd-integer S the situation is quite different; it
is now possible to form terms like (for S = —,

'
)

cos[2((()i+$2)]cos(2$&)= cos(2W3$, ),
and more generally a term like (3.31), which for p=o
could only exist for integer S. This term thus will gen-
erate a mass for Ki & 1/S, e.g. , for rt ) —,

' [cf. Eq. (3.34)].
A staggered interaction thus largely reduces the region of
the massless XY1 phase for half-odd-integer spin.

The discussion can be extended to the possibility of the
spin-Peierls transition, ' i.e., the spontaneous dimeriza-
tion of a spin chain on an elastic lattice. In order to have
a net energy gain the operator in Eq. (3.44) has to have di-
mension less or equal to unity. " This requires q & —,', and
therefore the spin-Peierls transition occurs for half-odd-
integer S, but not for integer S [cf. Eqs. (3.36) and (3.35)].

E(x,t;g, T)= 1 X —U]f

(~+juit)2+x2 sinh[m T(x/ui —t)]sinh[n T(x/ui+t)]

=tt [(tx+luit) +x ] ~ (T=0) . (4.4)

A short-distance cutoff u has been introduced as in Eqs. (2.4) and (2.5), and g is the scaling dimension of the operators in
Eqs. (4.2) and (4.3).i '

These results can now be used to calculate the retarded correlation functions which determine, e.g. , scattering cross
sections. For integer S in the XF1 phase only the transverse correlations are massless and determined by the operator
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—iX& {x)/~2$S+(x)=cue

where ci is the proportionality factor omitted in Eq. (3.33), which is determined by the contribution from the relative 1( s

and cannot be obtained by the methods used here. The transverse correlation function now is

Si (x, t) = i —8(t) ( [S+(x,t),S (0,0)] )

=2c&8(t)Im[F(x, t;ri/2, T)],

jsinh[n T(x u, —t+ia)lu, ]sinh[n T(x+u, t ia—)lu, ] IF(x,t;g, T)=

with rt & —,
' [cf. Eq. (3.35)]. I now make the approximation

' 2g'

KQT

(4.6}

(4.7)

which introduces only errors of order a/x, a/(uit), has the correct behavior both for large and small arguments, and
moreover has the correct singularity structure at the origin. Then the Fourier transform of Eq. (4.6) can be calculated as

Si(q, co) = f f dx dt e'"' «"~Si(x, t)

2 ll —2
2 a 2+a T= —ci sin(n. ri/2)

U) U)

X 8(rt/4 i (co+—u iq)/(4' T), 1 g/2—)8(rt/4 i (a& —u iq)/(—4m T), 1 —i)/2), (4.8)

where 8 (x,y) = I (x)l (y)/I (x +y). To obtain this result, I have used the integral

2q/2 —1

s slnh 7TT$ ~ 8' B(rtl4 izl(2n T—), 1 —ril2)
7rT

(4.9)

and all corrections of order aq, ac/u, u, aT/ui are neglected. An accurate calculation of these corrections is in any case
beyond the scope of the present approach. However, Eq. (4.8) is uniformly valid irrespective of the ratios co/T, u, «/T.
For co, uiq && T, and in particular for T =0, Eq. (4.8}becomes

2

Si(q, co) = — sin(m. v]/2)I (1—ri/2) [u iq —(cu+i5)z j"~2
Uj U)

At any nonzero temperature the form (4.8) has a discrete series of poles in the complex cu plane. In contrast, the ap-
proximate form of Si (q, cu) proposed by TL (Ref. 15) has a cut in the complex cu plane. In principle, Eq. (4.8) provides a
more suitable form for fitting experimental results than the form proposed by TL, but in practice the differences may
well be minor.

For the other massless phases a completely analogous calculation can be done. For half-odd-integer S one finds in the
XY'I phase exactly the same form for Si as Eq. (4.8), but now with the restriction 0 & ri & 1. For the longitudinal corre-
lation function a similar result holds; froin Eqs. (3.39) and (4.3) one obtains

S~~(q, co)= i f f dx—dt e' ' «"'8(t)([S'(x,t),S'(0,0)])
2 'n. —2

= —c
~~

sin(art, /2)
A 2~CtT

B(ri, /4 i (co+uiq')/(4r—rT), 1 —rt, /2)
UI U)

Il
C {X&

)&8(rt, l4 i (co u, q')l(4n —T), 1 ——rt, /2)+
ui(1 —rt, /2)

(4.10)

where q'=q —m, g, =l/q& l, and the last term comes
from a careful treatment of the short-range cutoff and is
important for g, =2 in order to cancel a spurious diver-
gence. Note that only the alternating part of the correla-
tion function has been taken into account. In general one
has ib&il, and therefore S~~ is less divergent than Si.
Only on the transition line to the antiferromagnetic region
both functions have equal singularities. One should also
note that a real antiferromagnet is correctly described by
the Hamiltonian (1.1) only after the unitary transforma-
tion 5,". —+ —S;,Si~~ —5," on every second site. Singular

behavior then appears in Si for q=~, i.e., one has to
make the replacement q~q —m. in Eq. (4.8). Analogous
results can also be obtained for the XY'2 phase.

The effective Hamiltonian (4.1) only describes correctly
the asymptotic behavior of correlation functions. Correc-
tions to the asymptotic power laws, which arise from the
finite strength of various perturbations (i.e., pi, Ici,p, 3) at
finite-length scale are not present. These corrections may
be of some importance on the transition lines, where they
are logarithmic.
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V. DISCUSSION AND CONCLUSION

In the present paper I have derived a description of the
spin-S quantum spin chain in terms of 2S appropriately
coupled spin- —,

' chains, and have analyzed the properties
of the resulting model for weak coupling between the indi-
vidual spin- —, systems. Specifically, in Sec. II the spin-1

problem, previously treated by the same method by
Timonen and Luther, ' has been reanalyzed. I find good
qualitative agreement with numerical results, especially
concerning the correlation properties of different planar
(massless) phases and the transitions to massive regimes.
The analysis has subsequently been generalized to arbi-
trary S, where higher-order terms in the coupling are im-

portant to treat the transition between the planar phase
XF1 and an adjacent massive phase. The most important
feature of the model is that its properties do not depend
dramatically on the value of the spin quantum number S,
but only on whether S is integer or half-odd-integer. For
example, on the border of the XY1 phase one has r) = —,

'

for all integer S, whereas for half-odd-integer S the result
is r)=1. This remarkable fact is in obvious agreement
with Haldane's conclusions. ' In Sec. IV explicit expres-
sions for the spin-spin correlation functions in the dif-
ferent massless phases have been derived, which are valid
uniformly for small energy, wave number, and tempera-
ture.

In the present treatment the low-energy properties of
the model are essentially determined by the excitation of
the average field fi. In addition, however, there are also
the usually massive relative excitations associated with g»
fields with k & 2. Even though these excitations have not
been studied here in detail, one can tentatively associate
them with states where locally the 2S individual cr„'s do
not align to form a multiplet with maximum spin S, but
rather form a state with lower spin. This interpretation
has been proposed previously for S = 1.'

Up to this point the analysis has been perturbative as-
suming small parameters p, ;. If the analysis is to be valid
for the finite values appropriate for the original spin-
chain model, Eq. (1.1), the scaling trajectories of the re-
normalization equations (3.13)—(3.19) have to continue up
to fairly strong couplings without going to some inter-
mediate fixed point. Even though it is not easy to see
which physical situation such a fixed point might
represent, its existence cannot be a priori ruled out. In
this context it is interesting to note that a Hamiltonian
identical to (3.4) can be obtained coupling 2S spin- —, sys-
tems in a different way. Consider

2Sa= ga„—wgs, ', (5.1)
a=1 i=1

where H„ is one of the individual spin- —, Hamiltonians
and s; is the total spin at site i [cf. Eq. (3.1)],

2S

In the continuum hmit one obtains the form (3.4), with

p1 ——p2 ——p3 ———8". On the other hand, it is obvious that
for large W the low-energy properties of (5.1) are dom-
inated by states with S;=S(S+1), and therefore are

identical to those of a spin-S chain. Under the above hy-
pothesis on the scaling trajectories one then is led again to
the conclusion that the Hamiltonian (3.4) represents
correctly the spin-S chain.

Independent evidence that there is indeed a continuous
connection between weak and strong coupling exists for
S =1 (from a comparison with numerical results, see Sec.
II) and for S = —,

' (Refs. 26, 38, and 30) where an exact
solution is available. If one assumes the existence of
such a connection for all values of S one finds radically
different properties for the spin-chain according to wheth-
er the spin quantum number S is integer or half-odd-
mteger.

(1) For integer S one has a (massless) planar phase XY1
where only the transverse spin correlation functions show
power-law decay, whereas the alternating longitudinal (z)
correlations decay exponentially. Thus this phase can in
no way include the isotropic antiferromagnetic point,
where transverse and longitudinal correlations have to be
identical. The massive phase adjacent to XY1 is nonmag-
netic (singlet type). On the transition line to the singlet
phase one has the universal value r) = —„' for all S.

(2) For half-odd-integer S the XY1 phase has power-
law decay both in the transverse and in the longitudinal
correlations, with q=g, =l along the transition line to
the adjacent antiferromagnetic state, and in general
r) = I/r), . As at the isotropic antiferromagnetic point one
has to have g=g„ it seems almost certain that this point
lies on the transition line (as is known to be true for
S=—)

1

(3) In addition to the XYI phase there is another planar
phase XY2„both for integer and half-odd-integer S. The
in-plane massless modes appear in correlation functions of
the operator (S+),but not for S+ itself, and one has the
scaling relation r), =1/r)is. Consequently, there has to be
a phase transition where S+ correlations change from
algebraic to exponential.

(4) From the present analysis, both the singlet-
antiferromagnetic (S integer) and the XY1-XY2 transi-
tions are of Ising type. This is quite natural for the AF-S
transition, but may seem somewhat surprising for the
XF1-XF2 transition. Nevertheless, a similar situation
has recently been found in a two-dimensional classical XY
model. "

(5) For integer S within the singlet phase there exists a
special line along which the mass-generating operator
vanishes, so that one has XY1-type correlations, but with

(6) The effect of a staggered interaction is quite dif-
ferent according to whether S is integer or half-odd-
integer. For half-odd-integer S staggering generates an
excitation gap in a large portion of the XY1 phase (for
q & —,

'
), and thus greatly decreases the XY1 region. In ad-

dition, there is an instability against spontaneous dimeri-
zation for g& —, (spin-Peierls instability). On the other
hand, for integer S staggering increases the region of ex-
istence of the XF1 phase in certain directions, especially
along the line D =0, and there is no spin-Peierls transi-
tion. These points are in agreement with semiclassical ar-
guments.
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(7) A magnetic field along the z direction leads to a
transition from the massive (S or AF) to a massless phase
at a nonzero critical field. The critical field is of the or-

der of the excitation gap in the massive phase. In the
massless phase correlations are similar to XY1, but now
with i) & —,

' (S integer) or g & 1 (S half-odd-integer). Be-

cause now g & —,, a spin-Peierls instability (which requires

g & —, } is now possible also for integer S. This instability

occurs, however, with a field-dependent, and in general in-

commensurate, wave number, due to the finite gradient of
] ~

(8) In the massless phases, the asymptotic form of
spin-spin correlation functions for low temperature, fre-

quency, and wave number is given by the formulas de-

rived in Sec. IV, where fully renormalized parameters
have to be used.

The above points 1 and 2 are in complete agreement with
Haldane's predictions, 3' even though derived by a quite
different method. Nevertheless, the underlying physical
mechanism is identical; from Eq. (3.33), Xi/v'2S can be
interpreted as the azimuthal angle in the xy plane. Then,
following arguments given in Refs. 14 and 40, the opera-
tor [cf. Eq. (3.31)] cos[2v'2Sgi(x, t)] generates, for in-

teger S, a "phase slip" of +2m at point x and time t. In
the S region this operator becomes strong, indicating a
large number of phase slips, which leads to exponential

decay of the transverse correlations. For half-odd-integer

S, the analysis of Sec. II shows that only cos(4&2S t(i)
exists, which generates +4m phase slips and is much less
relevant. The crucial point is that the +2m phase slips do
not appear for half-odd-integer S because, as argued by
Haldane, the corresponding states have time-reversal
symmetry different from the ground state and therefore
the matrix element of the Hamiltonian (which is time-
reversal invariant) between the two types of states is zero
(see also Ref. 48}.

The present method is perturbative, assuming small

pi, p2, p&, and therefore cannot make precise predictions
on the detailed shape of the phase diagram of model (1.1)
or on the dependence of correlation exponents on the pa-
rameters. These problems need numerical calcula-
tions. " On the other hand, if the above hypothesis on
the scaling trajectories is correct, scaling relations between
different exponents [(3.34) and (3.35) for XF1, S integer;
(3.40) and (3,41) for X1'1, S half-odd-integer; (3.27) for
XF2] and the values of the exponents on the critical lines
are given correctly. Similarly, the global topology of the
phase diagrams (excluding possibly the vicinity of the
crossing between lines 2 and 4) is expo:ted to hold for the
spin-chain model, as verified explicitly for S = l.

At first sight the present result that correlation ex-
ponents are qualitatively independent of the value of the
spin quantum number S, and in particular that ri =1 for
the isotropic antiferromagnet for all half-odd-integer S,
seems to be in contradiction with spin-wave theory,
which predicts q=1/S. One should, however, notice that
spin-wave theory runs into problems in the vicinity of the
isotropic antiferromagnet. A possible scenario, strongly
suggested by recent expansions up to order 1/S, is that
in most of the massless region g is indeed of order 1/S.

The critical values (1 or —,
'

) then are approached only in

the close vicinity, of width decreasing with increasing S,
of the critical lines. In addition, or alternatively, the
length scale beyond which the asymptotic power laws are
valid (the parameter a of Sec. IV) might diverge for
S~ao, and at shorter distances the spin-wave results
would be valid.

The present calculation predicts g= 1 for all half-odd-
integer-S isotropic antiferromagnets. On the other hand,
there is a class of SU(2}-symmetric Wess-Zumino field
theories for which one finds the S-dependent value
ri=3/(2S+2). These field theories have been identi-
fied as the continuum representation of the exactly solv-
able (massless) spin-S antiferromagnet, i5 6 with a Hamil-
tonian which is a 2$-degree polynomial of exchange
operators and therefore cannot be represented by Eq. (1.1).
Thus there seems to be two different universality classes
for the isotropic antiferromagnet, one with ri = 1, the oth-
er with i)=3/(2S+2). A possible way out is suggested
by the case S=1 (see the discussion at the end of Sec. II),
where the exactly solvable model seems to represent a spe-
cial multicritical point in the phase diagram and does not
have the same properties as the standard quadratic-
exchange antiferromagnet. Generalized to arbitrary S this
would imply that the quadratic-exchange antiferromagnet
has (for half-odd-integer S) ri=l, whereas the exactly
solvable models [r1=3/(2S+2)] represent special mul-
ticritica1 points. An alternative, more complicated
scenario would be that the SU(2)-symmetric Wess-Zumino
models represent multicritical points for integer S only,
whereas for half-odd-integer S they would represent
indeed the isotropic antiferromagnetic point of model
(1.1). Then i) has to be discontinuous at J, = —1, D =0.
This possibility certainly cannot be ruled out by the
present calculation; the planar anisotropic state

~
J,

~
& 1

has U(1) symmetry, and therefore the conformal anomaly
has to be c =1. ' This is the typical situation of a single
free-boson field, gi in our case. On the other hand, for a
SU(2)-symmetric point c &1, characteristic of the Wess-
Zumino models, is possible, ' ' and this would lead to a
discontinuous exponent g in the limit J,~—1, where the
symmetry changes from U(1) to SU(2). The present result
ri =1 then would be the limiting value for J,=—1+(}+,
whereas at J,= —1 one would have i) =3/(2+2S). This
questio~ certainly deserves more (numerical) investigation.
One may further wonder whether different universality
classes also exist for the SU(n) generalization of spin
chains T»s possibility then might have consequences for
the determination of critical properties of the integer
quantum Hall effect.

In conclusion, a new method for treating the properties
of the spin-5 quantum spin chain has been developed,
based on a perturbative treatment of 2S coupled spin- —,

'

chains. Due to uncontrollable (by the present method)
lattice-renormalization effects no precise predictions on
detailed phase diagrams and similar properties can be
made. However, under the additional plausible assump-
tion that the strong-coupling regime reached under renor-
malization represents correctly the physical properties of
the spin-S system, a number of predictions concerning
possible phases, the topology of phase diagrams, scaling
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relations between correIation exponents, and critical prop-
erties can be made. Moreover, the effect of some
symmetry-breaking pertnrbations like a magnetic field or
staggered interactions has been studied.
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