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We show that the interfacial surface tension, for two phases of the same substance, can be ex-
pressed exactly in terms of bulk correlation functions in the two phases. This is accomplished by an
examination of area corrections to stress tensor averages for hard-wall boundary conditions, together
with an examination of the equilibrium between the two phases and the hard wall. There is also an
examination of critical behavior, together with a simple model exploration to illustrate the method.

I. INTRODUCTION

Previous work on interfacial surface tension, either
classically or for quantum systems, concentrates on a lo-
cal analysis.!~!? (See particularly the review papers, Refs.
11 and 12.) By this we mean that the microscopic expli-
cation of surface properties appears to require detailed in-
formation about correlation functions in the neighborhood
of the interface. In particular, one may either introduce
very complicated two-phase local correlation functions,
which can be related to the familiar bulk correlation func-
tions only by approximations which are difficult to
analyze or justify, or one may invoke classical arguments
to make plausible assumptions about the nature of local
density and pressure in the interfacial region. In this pa-
per, we avoid the local description by calculating correc-
tions to the average stress tensor with hard-wall boundary
conditions. These corrections can then be directly related
to interfacial surface tension by examining the equilibri-
um between two phases and the hard wall.

In the introductory remarks below, we first describe
briefly some of the earlier work, and describe in more de-
tail the motivation for this paper.

Suppose we have translational invariance in the (x,y)
plane, and that the thermodynamic Gibbs dividing surface
between two phases occurs at z=0. In the early classical
work of Kirkwood and Buff,’ the interfacial surface ten-
sion is then given by

y=["_[P—p2)dz,

where P is the macroscopic uniform pressure in either
phase, and p'(z) is a function which approaches this pres-
sure far in the interior of either phase (large |z |), but is
in general a function of the local particle density and pair
correlation function in the interfacial region. The
Kirkwood-Buff analysis for p’(z) involves several approx-
imations and classical caveats, but the exact results of
Toda can be put in the same form. Toda’s formulation®
requires a knowledge of the local one- and two-particle
distribution functions in the interfacial region, but it is
not limited to classical systems. The work of Brout and
Nauenberg! is similar in spirit, also requires local distribu-
tion functions, but defines surface tension in such a way
that an exact correspondence with the usual definition is

(1.1)
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possible only at zero temperature. For comparison with
the results of this paper, and to emphasize the local nature
of the required correlation functions in earlier work, we
note that Toda’s result® for ¥ can be written:
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where p(x,x’) is a density matrix for states with a definite
liquid film of area 4 perpendicular to the z axis, and p, is
a pair distribution function in the inhomogeneous two-
phase system. In this form, the theory is not classical and
can be shown to exhibit certain correct limiting behavior.
However, because of its complexity, the theory has not
been widely applied.

Still another approach, which again requires local prop-
erties, is the density functional analysis.7 This method be-
gins with the notion of local thermodynamic equilibrium
and a local free-energy functional, modeled in terms of a
density gradient expansion, usually truncated after a few
terms. This approach is particularly useful in the critical
region, and has been applied to “He near the A point.
There are other formulations specially designed for super-
fluid helium.3— 1

The classical Kirkwood-Buff analysis® is based on the
mechanical definition of surface tension in terms of the
stress transmitted across a strip of unit width normal to
the Gibbs dividing surface. In many respects, this is simi-
lar to the analysis of the pressure itself in terms of normal
forces of containing walls in a large volume. That is, if
the system Hamiltonian contains a “wall” potential
U, (r), which confines the particles to a fixed volume V,
then the pressure is given by

py(ry,1)dr d3ry

1
P==5 J @*rip(r),r-VU,(r), (1.2)
where {p(r)),, is the local density in the confined system.
If we make the system translationally invariant in (x,y),
and suppose the confining walls to be at z==*L /2, then
the pressure is
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L/2 dU,(z)
_1 dz{p(2)),z % z ,

L J-Ln

where again {p(z)), is the local density, calculated in a
finite slab. U,(z) becomes large and {p(z)), becomes
small in the neighborhood of the wall. The integral of
this very complicated product indeed gives the pressure.
In fact, Eq. (1.3) is exact in the limit of large L. Howev-
er, (1.2) or (1.3) require a knowledge of local quantities,
and we know perfectly well that the pressure in a bulk
thermodynamic system can be obtained in a much simpler
manner. Equations (1.2) and (1.3) emphasize the
equivalence between thermodynamic pressure and force
per unit area on the walls, but one does not generally re-
gard these expressions as a useful starting point for the
calculation of pressure in a many-body system.

To obtain the familiar alternative to (1.2) or (1.3), con-
sider the thermodynamic potential ) and the grand parti-
tion function Z,

e PY—Z7 —Tre F¥,

(1.3)

together with the averages of operators with respect to the
density matrix (1/Z)e ~8%,

(O)wE—Zl:—Tre—B’VO , (1.5)

where ( ), refers to the situation where the Hamiltonian
contains an explicit “wall” potential U, (r) If this poten-

tial confines the system to volume LOLI8 L, then

—€

H,= f d’rp(r)U,(xe” “Uye 2ze ) (1.6)
confines that system to volume L L,L,, with L,~=L,-°e€
Variation with respect to volume (or to L, L,, and L,
separately) can be accomplished by variation of the ¢; pa-
rameters, usually setting €;=0 at the end of the calcula-
tion.!'® Since Q= —(1/B)In(Z), we see that

30 1 _ |3
% | = In(Z) _< 36 )w : (1.7)

B.u B ae, B.u

but we recognize that any unitary transformation can be
applied to the density matrix before taking the trace to ob-
tain In( Z). Thus, we have

it} =<G* G) , (1.8)
E w

66,-
where G is any unitary transformation. If we apply (1.7)
directly, noting that €; appears only in the wall term of
the full Hamiltonian, we find

20
d€;

3 ewch
aEi

=— [ d* (p(r)ux; VU, . (1.9)

Now, in the large-volume thermodynamic limit, we
know that the grand potential ) is — PV. Hence, in that
limit 3Q/3¢; | g, = — PV, and we obtain

1
=7 f d3r{p(r))wx;V;U,

In this limit, any €; could have been chosen, and we can

take + the sum over i. The result is Eq. (1.2). As ob-
served previously, this expression establishes the familiar
force per area and pressure equivalence, but presents an
awkward nonlocal form for the calculation of P.

If, however, we employ a simple scale transformation
on the fields

—€ —€3

Gl//(r)GT=exp T ye " %ze ), (1.10)

% 2 € |Y(xe

then the wall parameters ¢; are shifted from H, to the
internal part of the Hamiltonian, and the application of
Eq. (1.8) results in

30
aei

= < T}i >w ’
B
where the T; is the diagonal element of the integrated

stress tensor operator.” This diagonal element has the
form

(1.11)

ﬁZ
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) dVi(ry,)
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rp dry,

X 9'(r)p(ry)iry) (1.12)
with I p=r;—r;.
The simplest application of (1.11) and (1.12) is to the
large-volume limit, where Q= —PV. In this case, we have
='1V<Tii)w=LV2(T"i>w as V— oo y (1.13)
13
and we may, to lowest order in this large-volume limit,
now replace the average ( ), with the average in the
translationally invariant system, where the wall term in H
is omitted. This is permissible only in the usual thermo-
dynamic limit, in which all but the volume part of system
thermodynamic averages is neglected. Much of the
analysis in Sec. IV is devoted to a calculation of correc-
tions to this limit.
In this V— o limit, Eqgs. (1.12) and (1.13) yield the
familiar Virial theorem

_ 2 (Eyn)

T3 v
where (E,;,)/V is the average kinetic energy per unit
volume

2r e ,
—T’T fo drr3Vi(rp’g(r),  (1.14)

Ein
<;):fd3k 1 #k? n(k),

1.15
(2m)® 2m ( )

and g (r) is the radial distribution function. In contrast to
(1.2), Eq. (1.14) now permits determination of P from
only bulk correlation functions [n(k) and g(r)]. Of
course, in this familiar large-volume limit, other thermo-
dynamic functions can be calculated from the same corre-
lation functions, and P can then be deduced from simple
thermodynamic relations. In practice, the virial theorem
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can be used as a self-consistency requirement on approxi-
mation schemes which produce the equation of state by
other methods.

Since Eq. (1.11) is correct even before the large-volume
limit is taken, we would like to use it in the case where
surface contributions have been included explicitly in the
analysis of Q. In Sec. II, we discuss these surface terms
and show how they are related to a single-phase surface
tension, for a single phase of arbitrary density in contact
with a hard wall. This highly artificial mathematical
problem, which is seemingly unrelated to any physical sit-
uation, is shown in Sec. III to allow direct calculation of
the interfacial surface tension of two phases of the same
substance in thermodynamic equilibrium with a hard
wall. At the same time, we are able to make a connection
between the interface location, the quantum-mechanical
depletion of particles at the hard-wall surface, and the in-
terfacial surface tension. We also explore the question of
interfacial surface-tension critical behavior. With this in-
formation, we return in Sec. IV to explicit calculation of
the single-phase surface tension, using the integrated
stress tensor operator above. We also obtain then the final
form for the interfacial tension. In Sec. V, in order to
show more clearly how our theoretical framework can be
applied, we explore a simple classical model, using the
familiar van der Waals model of the gas-liquid transition
for this purpose. Section VI contains concluding remarks.

II. THERMODYNAMICS AND STATISTICAL
MECHANICS: SURFACE TERMS

We would like to introduce area terms in the usual ther-
modynamic analysis, for a one-component single-phase
system. The ‘“thermodynamic limit” now assumes that
we keep both terms of order volume V and of order area
A, but ignore smaller terms. We begin by including the
work done by the system on its surroundings in a

volume-independent change of area. That is,
8% =PdV —adA . (2.1)

The inclusion of this area term then leads, by familiar
analysis, to the following thermodynamic equations:

pwdN =dE —TdS +PdV —adA ,

(2.2)
uUN=E—-TS+PV —ad ,
from which the Gibbs-Duhem relation,
Ndyp=—SdT +VdP — Ada , (2.3)

follows.

These equations show that the appropriate grand poten-
tial Q, which will appear naturally in the statistical
mechanics, is

E—TS —uN=Q=—PV+ad,
dQ=—SdT —Ndp—PdV +adA .

(2.4)

The “nonintensive” variables, those which depend on the
size of the system, will contain both volume and area con-
tributions:

O0=0y+0,4, O=N,E,S, ..., (2.5
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where Oy is proportional to volume and O, is propor-
tional to area. We regard this as (O ), in an explicit ex-
pansion for large volume and area. Higher-order terms,
for example those proportional to some circumferential
length, are to be neglected. Consequently, the volume and
area thermodynamics can be uniquely separated (Eqs. 2.2)
to yield

[.lNV=EV—TSV+PV, [LNA=EA-TSA —aAd y
(2.6)

ﬂdNy=dEV—TdSV+PdV, ,udNA :dEA - TdSA —adA .

Equation (2.1) identifies a as the thermodynamic surface
tension, while Eq. (2.4) relates it to the surface contribu-
tion in the thermodynamic potential 2.
The volume thermodynamics is the usual one. From
the area contributions, we then have
S4 N4
4 "7y
The intensive variables u and T link the volume and area
terms, since the usual Gibbs-Duhem relation is
dP =sydT +pyd Sy Ny
=syal +pyau, sy= vy Pv=Ty
From the areal thermodynamics, we find immediately
the following relations:

da=—s5,4dT —n, du, s,= (2.7)

(2.8)

n.—_ 9
A a# T,
da
SA——— aT #, (2.9)
e —q_rla| o) __E4
4 ar |, Hou |, T4

so that, in principle, the function a(T,u) determines the
other areal thermodynamic quantities. In fact, if a is
known as a function of T and py, we see that

n4 =P%/Krgai =—PV‘ai /“a—P— ,
Pv |1 dpy T dpy T 2.10)
da N4 ap '
=T ﬁ Py P—V SV-E ’

where K is the bulk isothermal compressibility and ap is
the bulk thermal-expansion coefficient.
From Eq. (2.4), we have

Q=—PL,LL,+2a(L,L,+L,L,+L,L,)  (2.11)

for a large box with side lengths L,,L,,L,. If L; =L,
we obtain

20

ae, | = PLeLyL:+2aLi(L;+Li)=—(TiJuox

Bnu
(2.12)

where the indices (7,j,k) are cyclic, and we have used Eq.
(1.11) to identify this derivative with the average of T}; in
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the “wall” or “box” system. The leading term is in accord
with the familiar discussion in Sec. I [see Eq. (1.13)]. It is
clear that we can extract a from Eq. (2.12) by subtraction
of any two distinct {(T}; ) components. That is,

a= (Txx‘—Tyy>box _ <Txx"’Tzz>box
~ 2L,(L,—L,)  2L,(L,—L,)
Ty — T Yoox
=i—£——’i>—"°—, (2.13)
2L, (L,—L,)

where we suppose a large L limit and retain only the
lowest-order (in this case area) contribution to the aver-
ages on the right-hand side. In this limit, a is the proper
(intensive) thermodynamic quantity, and we return to its
explicit evaluation in Sec. IV. We also may note here that
the full particle number is given by

N=NV+NA y (214)

where N 4 (proportional to area) will be a negative quanti-
ty for hard-wall boundary conditions, representing the
fact that the system wave function goes to zero at the
walls.

III. EQUILIBRIUM:
TWO PHASES AND CONFINING WALLS

We want to relate the surface quantity a, discussed in
Sec. II, to the physical quantity ¥, the interfacial surface
tension of a two-phase, one-component system. For sim-
plicity, imagine a liquid phase and a gas phase. To estab-
lish such a relation, we first introduce a solid wall in addi-
tion to the two phases. In equilibrium, the contact angle
0 is defined as the angle between the surface of the liquid
and the plane surface of the solid. It is given by the
“contact-angle formula”!®1°

ag,w —QLw

cosf = ———"— | (3.1
ag,l

where ag ,,, a;,, and ag; are surface-tension coefficients
for the gas-wall, the liquid-wall, and the gas-liquid,
respectively. a,, and a;, depend on the nature of the
wall, whereas ag; is the interfacial surface tension y and
is independent of the nature of the wall.

For an infinitely hard wall, we want to argue that the
contact angle is known, and that therefore @, ; =y can be
determined from this known angle together with the
hard-wall a’s for the two phases. The argument is as fol-
lows.

Consider a liquid and vapor in equilibrium with a wall
whose long-range, attractive component is much smaller
than the interparticle forces in the liquid and is small
compared to the interparticle forces in the vapor. Under
these conditions, the vapor will be more strongly attracted
to the wall than will the liquid, since the counterbalancing
interparticle force is stronger in the liquid than in the va-
por. Thus, one would have an obtuse contact angle, as
shown in Fig. 1.

If the attractive component of wall potential is in-
creased in strength, it will begin to overcome the interpar-
ticle attractions in the liquid. At some point, the effective

7
- wall
“
vapor [/
%
4
liquid %
61
.
“
“
Z

FIG. 1. Contact angle.

wall potential (attractive plus hard core) will be the same
for liquid and vapor, so that the contact angle becomes
m/2.

If the attractive wall component is increased still fur-
ther, the effective wall potential for the vapor becomes
repulsive. The hard core dominates; a single particle
“overshoots” the equilibrium position of the attractive
well and is repulsed by the hard core at the wall. For
moderate well strengths, this effect is stronger in the va-
por than in the liquid, and the result is an acute contact
angle.

The above physical picture illustrates how the contact
angle ranges from obtuse, through 7/2 to acute, as the at-
tractive part of the fluid-wall interaction becomes larger.
For absolutely zero attractive component (pure hard wall)
the most obtuse angle possible will be attained. That is,
6=m. Consequently, the appropriate expression for 7 is

‘)/( T)=al,hw(p1(T),T)—-ag'hw(Pg(T),T) ’ (3.2)

where a;p,, and ag p,, are the values of the hard-wall sur-
face tensions for the liquid and gas phases, respectively.
This means that in a;, (@ hw) One sets p equal to its
liquid (gas) value on the phase coexistence curve. Thus y
is a function of T only.

In addition to the contact-angle formula (3.1), the con-
ditions for equilibrium require a small pressure difference
between the two phases, given by the Laplace formula®

1

R, TR, | (3.3)

Plp)(T),T]1—P[pg(T),T]=y(T)

where R, and R, are the principal radii of curvature for
the interfacial surface. (The radii are taken as positive
when drawn into the more dense medium; the pressure in
the liquid is greater than that in the gas when the liquid
has a convex surface.)

Now, consider our equilibrium hard-wall situation,
where we have observed that the contact angle is 7. In
this case, the vapor is in contact with the wall everywhere.
We can visualize this condition in a large spherical
volume. The liquid forms a smaller sphere, radius R;, in
contact with the spherical hard wall (radius R,,) at one
point. The contact angle is m, so that Eq. (3.2) holds.
Equilibrium then requires
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2}:( )
R,

Plp(T), T]—P[py(T), T]=

(3.4)
wlp(T), T1—plp (1), T]1=0,

where we have included the additional requirement of
equality in the chemical potentials for the two phases.
The usual phase boundary m the infinite system, described
by the functions pJ(T) and pg( T), are then given by

P[p}(T),T]1—P[pg(T),T]=0,
plpi(T), T1—plpg(T), T]=0,

and the corrections 8p;z =p;4(T)—pj(T) are then ob-

(3.5)

tained from (3.4) and (3.5). We find
2y(T)
Ridp =ptKn—5 L5 .
pI(T)—pg(T) 3.6)
Ribp, =p2K; 2¢(T) , '
-4 4 g 0( T) _pg( T

where K7 is the isothermal compressibility.

Thus, the densities of both liquid and gas are increased
over the values they would have had in the infinite,
translationally invariant, system. R; is the radius of the
liquid “bubble” in contact with the wall. This radius
clearly depends on both the total number of particles in
the fixed total volume V as well as the temperature. In
fact, if we do not concern ourselves with area corrections,
we have N=p?V1°+pg V:, with V=V + Vg, so that the
“lever rule”

3
R/

R,

v p—pi(T)

3 (3.7)
pAT)—pX(T) x

gives the ratio of 11qu1d -occupied volume to total volume,
when p)(T) > p>pg(T) R, is the (fixed) radius of the
containing volume The radius R} can be used in (3.6).
Note that both R} and dp; ¢ depend on the average densi-
ty, while their product depends only on the temperature.

To make a simple picture, we can detach the liquid
bubble from the wall. That is, having understood that the
equilibrium conditions (3.2) and (3.6) are met, the actual
location of the liquid sphere is irrelevant. If the liquid
sphere and the confining spherical volume are taken to
have a common center, then a profile of the local density
looks something like Fig. 2.

The dashed vertical line is at R;, the radius of the
liquid sphere. About this radius is an interfacial region.
Both the interfacial thickness and R; location are impre-
cisely defined at this point. We know that both p; and p,
are slightly increased over p, and Px’ respectively, and that
there is a depletion in the gas phase at the hard wall. We
also expect that R, differs from R/, the location previous-
ly defined by the lever rule. The total number of particles
is given by

N =pV+pVy +(Nf—N})+N2, (3.8)

where the interface contributions are given by integrals

FIG. 2. Local-density profile.

representing the regions 1 and 2 in the diagram. They
clearly depend on details of the local density in the inter-
face region. That is,

Nf= [ lp(n—pyld’r ,

(3.9)

N,IE fz[p,—p(r)]d3r
The sizes of the integration regions are not precisely de-
fined, since we have not specified a “thickness” for the in-
terface. We do require that N =p; V?-}-ng and that the
total volume remains fixed. Therefore, Eq. (3.8) demands

0=p]8V, +pgdV, +8p; ¥y +8p, Vo +(NF—N[)+ N .
(3.10)

Each of the terms in (3.10) is proportional to area. For
example, in the notation of Sec. II, Ny'=A,,n *(p,(T),T),
where A4,, is the hard-wall area. The quantmes 8V, re-
sult from the difference between R; and R}, while the
8p;, are given by Eq. (3.6). We divide Eq. (3.10) by the
total wall area and collect terms to obtain

{[pX(T)—p2T)IAR +(nf—nf)+ +(RPSp;— R 8p, )} x>

1
+§R,°6pg;—+ng=0 .

(3.11)

Here, nf¥=N}%/A;, AR =R, —R/, R{8p,, are given by
Eq. (3.6), ng.-n"’(pg T),T), and the ratio x is defined in
the lever-rule expression (3.7).

In order to make use of Eq. (3.11), we note that only the
interface location shift (i.e., AR) and the ratio x depend
on the average density p. Other quantities in (3.11) de-
pend on temperature alone. If we differentiate Eq. (3.11)
with respect to density and solve the resulting differential
equation for AR, we can determine the density depen-
dence of AR. Such an equatlon requlres one boundary
condition in density. Since p{(T)>p> pg( T), we take the
boundary density to be the critical densxty P Pe is the
one density which always satisfies pj(T) > p >pg( T) for all
T <T,. If we define the parameter x.=x(p.) [see Eq.
(3.7)], the solution for AR (p,T) can be written as
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x | 1—x/ %
—x/x X
AR(p,T)= —”-l AR (o D+~ % | 1 2 | (nfmn])+ H(RO8p —R¥8p )1+ + S1%Pe | Xe |1 5 4)
X Pl —pPg Xe¢ c x

and the substitution of this expression into Eq. (3.11) then
gives

LRP8p, +(p{—p)AR (p,, T)x} = —x.n, (3.13)
or, from Eq. (3.6) and the definition of x., we have
303Ky o+ AR (o, Dl —p5(T))
pi(T)—p,(T)
1/3
—pg(T)
=— nT) | ——————— , (3.14)
n(pg(T),T) PI(T)_Pg(T) (

where the densities p; , refer now to the usual bulk values
PI

g[‘he presence of the hard wall has produced two effects.
First, the density in each phase has increased, and there is
a compensating wall depletlon n(p (T),T) m the gas
phase. Second, there is a shift AR =R;—R; from the
lever-rule position of the liquid-gas interface, which de-
pends explicitly on the average density p=N/V. The
density dependence of AR is determined by the require-
ment that the interfacial densities nf and n; are indepen-
dent of AR; that is, independent of the average density.

There is a conventional approach to the treatment of
nf—n , In this approach, no mention is made of the hard
wall or its depletion effect, and nf—n 1’ is taken to be zero.
The argument is made that the division into gas and
liquid parts (location of R;) is not unique, and that the
number of particles in each phase is uncertain, the in-
determinacy being of the same order of magnitude as the
surface effects under consideration.!® The location of a
Gibbs dividing surface such that the surface excess densi-
ty nf—n} is zero then simplifies the thermodynamics
when no wall terms are considered; for example, the
entropy associated with the interface is just
— A[dy(T)/dT]. We do not mean to imply that this is
incorrect; ¥(7T) still determines all the thermodynamic in-
terfacial properties of interest, when the wall terms have
been properly subtracted. Although it would seem that
our specific location of R, precludes an a551gnment of
zero to the “surface excess” density nf— n}, this appears
to have no effect on the familiar thermodynamics. Thus,
the interfacial expressions

dy(T)
I—_ 4 ay\i)
S I dT »
F'=A4;7(T) (Helmholtz free energy) , (3.15)
E'=F'4+TS'=4' y(T)—~Tdd(TT) )

still apply. The interface excess density nf——n,’ appears
explicitly only in the density dependence of AR exhibited
by Eq. (3.12). We argue that Eq. (3.12) is perhaps an in-
teresting curiosity, but is not very useful in view of the

fact that a detailed theory of the local-density profile is
needed to calculate nf—n !, Furthermore, the manner in
which the interface location shifts with changes in aver-
age density is not of great significance or interest. It is,
instead, Eq. (3.14) which is most interesting.

Recall that n and y are both determined by a. The mi-
croscopic calculation in Sec. IV will give a. Consequent-
ly, Eq. (3.14) determines AR (p.,T) when a is known.
AR (p,,T) is the shift in interface position (at critical den-
sity) from the lever-rule position (at critical density), and
is known fully if a is known. Conversely, we can connect
the behavior of AR (p.,T) as T— T, from below with the
corresponding critical behavior of y. Therefore, we con-
sider Eq. (3.14) when T is close to T..

First, it is difficult to imagine that n(p,,T) goes to ei-
ther zero or infinity as T—T7,. The wall depletion is
caused by the fact that the wave function goes to zero at
the hard wall, and this effect should be independent of the
nature of the transition in the medium. Since AR (p,,T)
and n(pg(T),T) are not familiar objects, we may suppose
the following notation for their critical behavior as
8§=1—-T/T,—0%. Here

ng~8§ ,

- (3.16)
AR~87Y,

where we expect {=0 in general, and we will show that
this is definitely true in mean-field theory. The other
quantities in Eq. (3.14) all have traditional critical-index
notations:*!

(szT)I,g ~8—7’ ’

P1—Pg ~Pec —pg ~8°, (3.17)

7“’8“ ’

(the indices ¥, B, and p should not be confused with the
surface tension, the inverse temperature, and chemical po-
tential). These critical-index assignments, together with
Eq. (3.14), then imply

c 8B 4,8 V=85 . (3.18)

Now, if B—v>¢, then u=B+v+§. If B—v <, then
p=2B+y—v. We expect {=0. In that case, the first
supposition gives the mean-field expression u=/S+v, and
the second supposition gives p=2B+vy—v when B<v.
This latter expression would also apply if our argument
that £=0 is incorrect and instead {>B—7v. But what is

7?7 We recall that Widom’s expression’ for the critical in-

dex p is

#=2B+f}/__v’ (3.19)

where v is the index associated with the correlation
length. The argument leading to (3.19) is usually formu-
lated in terms of the thickness associated with the interfa-
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cial region;7 i, t;~87". Indeed, the argument that the
correlation length is the only relevant length associated
with interfacial thickness can be applied with equal validi-
ty (or perhaps we should say with equal uncertainty) to
the surface location shift AR (p.,T). Conceptually, of
course, the surface thickness and the shift in surface loca-
tion from the lever-rule position are different quantities,
and the statement

p=2B+y—v, B<v+¢{

may be different from the Widom result in (3.19). In any
case, we can say that the conjecture that |AR | and
have equivalent critical behavior leads to Widom’s result,
but that v<v if |AR | is less divergent than f;, while
V>v applies if | AR | is more divergent. There is some

J

(3.20)
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indication that ¥ should be slightly larger?? than v for *He
and *He [i.e., that the u given by Eq. (3.19) is slightly too
large].

We can establish another connection between ¥ and n,
by purely thermodynamic analysis. Beginning with the
areal Gibbs-Duhem relation [see Egs. (2.7) and (2.9)], we
find

d y(T) €1 —€g
_r2 e VL) A A (A AT g )
T T (ef —€g)—(nj ng)Pz—Pg , (3.21)

where we have used the Clausius-Clapeyron relation for
the temperature derivative of the chemical potential in
two-phase equilibrium. A bit of rearrangement, together
with the help of the areal thermodynamics in Sec. II, gives

__Tziz(T)z_Tz 3 _alp,T) _ 08 alpT)
dr T oT T |p=pn» 0T T p=p,(T)
1 1 67—‘5;
-7(n,+ng)(Gl—Gg)+(n1—ng) ?(Gl‘f’Gg)"‘ , (3.22)
P1—Pg
r
where G —Gg~—2a(p;—p,),
v v
G= €+P (;; (3.23)  where a is some constant, and since { } in Eq. (3.22) will
p PR T

is given in terms of the volume parameters (ap is the bulk
thermal expansion coefficient and K7 the isothermal
compressibility). The subscripts / and g in (3.22) mean
that one sets p=p; , in the corresponding volume thermo-
dynamic expression. €’ is the bulk energy per unit
volume.

This thermodynamic expression is simplest to apply in
the case of the van der Waals bulk model, and we will
make such an analysis after investigation of the general
microscopic form for a. In the van der Waals case, the

{ ] term in Eq. (3.22) is zero since
G'W=3ksT —2ap, (3.24)

where a is the van der Waals a parameter. If we suppose
that a(p,T) can be Taylor expanded in p—p, and T —T,
and that

lim n(p)(T),T)= lim n(py(T),T)=n,,
T—>T, T—>T,

we have (mean field only)

d |y 1|8 8 [aD
aT T |ror, dp oT T P=Pc
T=T,
2an,
= [pi(T)—pg(T)] .

(3.25)

This form is not restricted to van der Waals theory. It re-
quires

not be identically zero except in the van der Waals (vdW)
case, we suppose that n; and ng~n.+0(<(p;—pg)).
The assumption of a Taylor expansion for a is, of course,
a mean-field assumption.

The function a(p,T) is analogous to the pressure P, in
that its first and second density derivatives are zero at the
critical point:

da(p,T)

=0,
dp

(3.26)

P Te

82a(3, T)

=0. 3.27
o (3.27)

per T,

However, unlike the pressure, a(p;(T),T) and alp(T),T)
are not equal; their difference gives the surface tension .
Since the first derivative of @ with respect to p is zero at
pe>Te, Eq. (3.25) becomes

d y(I) | 1 d%apT) 2an, (01—p0)
dT T T, 8pdT |,.r. = 12 |F'7Fe
and since p; —pgz4pc8'/ 2 in vdW theory, we have, with
T=T,(1-9),
vdW 2 vdw
_1d (8) ~4p 1 da 2an; " 5172
T2 d8 | T.9pdT |,,1. T2 ’

or, using @ = 3[(kzT,)/p.] from vdW theory, we have,
solving this equation for v,
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a2avdW

YIVE) [ 5som | — 3P Te e
Y ( )IS—»O 3Pcdc apaT

pe T,

—6nVkpT, |82 (3.28)

The 83/2 behavior for van der Waals theory is expected.
The three equations (3.26)—(3.28) allow a phenomenologi-
cal construction of a van der Waals model for a(p,T)
from the microscopic low-density classical expansion, in
much the same way that the vdW a and b parameters can
be constructed from the low-density classical virial expan-
sion. We will return to this construction of a “van der
Waals a” in Sec. V.

First, however, we must show that the general hard
wall a can be related exactly to the bulk pair correlation
function and the single-particle momentum distribution.
We therefore proceed to the microscopic calculation of
the hard wall a via an examination of the integrated stress
tensor average for hard-wall boundary conditions.

IV. SURFACE CONTRIBUTIONS AND THE
INTEGRATED STRESS TENSOR AVERAGE

The important stress tensor operator difference is
2 2

—#V; Y
2m 2m

(rip)?—(rp)?
i fds,ldsrer_’ﬁ_J
12

(Ty—Tj= [ d’riy'(ry) Wiry)

dviry)
) S22t ol i)
drn

(4.1)

where the region of integration, when the fields are con-
fined to a finite box, is given by

<yi yzs-zy—, rp=(r,—1,), 4.2)

The fields can be expanded in “box™ eigenstates, in each
coordinate variable, which vanish on the surface. That is,

2 L,
U, (x)= L—x- sing, x+7 ,
nem
qx: Lx ’ nx—‘l’2’37 b
(4.3)
ug(r)=u, (x)ug (ylu, (2),
W)=Y uq(rag,
) 4.4)

ag= [ d’rul(ny(n).

It is convenient to use Eq. (4.4) to define a, for negative
Gxs gy, and g, so that ag is odd in each g¢;. Averages us-
ing this quantization scheme are box averages, and the
corresponding Hamiltonian in the density matrix contains
the wall potential explicitly.

In the true infinite-volume limit, many times it is con-
venient to suppose a translationally invariant Hamiltonian
(without the wall), and to quantize in the familiar periodic
states

1 ik, x 2

(Lx)1/2e o kx:L—x_nx’ n,=0,+1,+2,.. .,

¢k(r).———¢kx(x)¢ky(y)¢kz(z) ,
Y(r)= Y ¢y (Fey
K

b, (x)=
4.5)

av= [ droinvin) .

Averages taken with respect to the translationally invari-
ant density matrix, using this quantization scheme, in-
volve no physical surface and no wall potential. They
may be called “plane-wave” averages. For macroscopic
system quantities, like total energy, particle number, and
integrated stress tensor, the box and plane-wave averages
must be the same, in the large-volume limit, both being
proportional to the volume of the system. That is,

(A4)pox=(A4)pw as V— w0, each proportional to V.
(4.6)

To calculate the macroscopic quantities of %nterest, one
must investigate the averages (aja,) and (q, 144,34,09,)-

That is, we need both one-particle and pair correlation
functions. In carrying out the sums over the q eigenstates
needed for the large-volume limit and its leading correc-
tion, there will be a sum-to-integral conversion correction
which depends explicitly on the density of states in q
space. This process is not difficult, but there are other
possible corrections which can be eliminated only for cer-
tain operator averages. One of these, fortunately, is the
stress tensor difference in Eq. (4.1).

Consider (a,;aq Yvox- This is some function of q and of
L,,L,,L, also. The plane-wave average (cxe Ypw is
some other function of k. Call that function n(k). It
does not depend on the L’s explicitly, onl¥ the k’s. Now,
in the limit of large L’s, the function (aja,) must equal
n(q). [For free particles in a box, the exact {(a,a, ) equals
n(q), and is a Fermi or Bose function—but we cannot
make this statement in general.] One can show, from (4.6)
and comparison for the box-defined and plane-wave-
defined single-particle thermal Green’s function, that

+ 1 1 1
(a,a, Yoox=n(q)+ z-x—fx(q)+ ~L—y~fy(q)+ z:fz(q) 4.7)

as Ly, L,, and L,— . The functions f;(q) are un-
known, but are seen to be even in gy, g,, and g,. The
function n(q) is also unknown, of course, but is presum-
ably to be determined by the usual plane-wave analysis.
For an arbitrary thermodynamic average of the form
2 G(g){a]a, ), there are two kinds of corrections to the
large-volume limit
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v [ 24 o )3 Glgn(g)

One such correction arises from the sum-to-integral con-
version (density of states) and the other from the addition-
al term in Eq. (4.7). If G(q) is odd under interchange of
two g components g; and g;, then the second correction is
zero. In this circumstance, all the leading corrections
come from the sum-to-integral conversion.

For purposes of this conversion, we need the following
Euler-Maclaurin summation formula:

S Flo=L.LL, [ -2LF(q

3
q (0) ( 2m)

f o )3 [L.L,8(q,)+L,L,8(g,)

+L,L,5(q,)]F(q) . (4.8)

Consider then the first term in the average of the integrat-

(N)=L,L,L, f

The surface contribution N, /A =n 4 is explicitly
ST g mg)
2 { Gyttt

for free particles, where n(q) is in this case a Bose or Fer-
mi function. That is, for free particles, f;(¢)=0. Howev-
er, we have no proof that f;(q) is generally zero, and so
the form of n, cannot be determined in general from the
bulk single-particle momentum distribution. On the other
hand, the integrated stress tensor difference in (4.9), or at
least its kinetic part, is completely determined by the bulk
n(q).

The potential contribution to the average of Eq. (4.1)
(the second term) is more difficult. The potential piece of
the operator in Eq. (4.1) can be written as

—_— r;
(Ty—Tyhee=—7% [ [ d’Rd*r——LV'(r)
tlrort _r
X' [R+2|p |R—= ]
X R+§ 4.11)

with the restricted region of integration Q for these rela-
tive and center-of-mass pair coordinates given by

_ L, L L, 22
(Ta—Tydee=—4 [ “dx [ "dy [ dz(Ly—x)L, —pNL, —2)*—2-V(r)pg(r),

en @+ 2Ly +L, L+ LiL, ]zf d’q_ L)
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ed stress-tensor-operator difference of Eq. (4.1). Call this
term (T;—T;)xe- This kinetic-energy piece is clearly
odd under i<« interchange, and we find

_ _ d3 ﬁZ 2
(Ty—Tj)ke=Li(L;—L)w ——9—(2#)3 —‘1—2m 8(g;)n(q) ,

(4.9)

where explicit use has been made of the even property of
fi(q) in Eq. (4.7). The indices (i,j,k) are cyclic, and 6(g,)
is the one-dimensional Dirac § function. It should be not-
ed that the leading term in the average ( T; ) kg is

3 2.2
L.L Lz%f_ﬁ_q_ﬁ_q_

2m)? 2m n(@,

or % of the kinetic energy in the large-volume limit.

Note that the surface contribution to (N ) can be ex-
tracted from ¥, (a;aq ), making use of Egs. (4.7) and
(4.8), and the assumption that the functions f;(g) have the
same integral over all ¢g. The result, including both
volume and area terms, is

—7d(g,)n(q)] . (4.10)

i
Ly>re>—Lg

and (4.12)
TLg— V2R > —5(Lg— | i | )

The integral on each component of these center-of-mass
and relative variables therefore has the form

L
k/2
dr,k f_Lk/2 erk

Ly
= f —L, dr, k
In order to simplify the calculation, we add and sub-
tract the translationally invariant limit. That is,

(YTpY ) box =08 (N + [ {YTp¥ Yoox—p%8 (M]

where p’g(r) is the value of (' 1/J) in the infinite,
translationally invariant system. g(r) is thus the bulk ra-
dial distribution function. The remainder is a correction,
to be investigated later. The purpose of this separation is
to obtain the important contributions to the average of
(4.11) without involving explicitly the complications of
the “box” quantization in Eq. (4.3)—(4.4).

Since p’g(r) is independent of R, we may perform the
R; integration indicated in Eq (4.13). The right-hand
side of (4.3) then becomes f k drk x— | 7% | ). Recog-

nizing that the integrand is an even function of each rela-
tive coordinate r; separately, we have

Ly

—Lyp
/2Ly — (1 )

—(1/2)<Lk_|,k|)de- (4.13)

(4.14)

(4.15)

where we use the xx and yy components for clarity. We must investigate terms proportional to products of three L’s and
two L’s (i.e., volume and area terms) in the large L; limit. Retaining only such terms in the integrand, we have
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(Tax—Tyy pe=— 4LLLf dxf dyf dz™

2_
+4 fo dx fo’dy fo dz{xLyL,+nyLz+zLyL,}x b4

Consider now the second term in (4.16).
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V'(r)p g (r)

2
V'(rip’g(r) . (4.16)

Because the integrand is already of order L;L;, we can extend the limits of

integration to infinity. Then, for the zL,L, term in { }, the entire integrand is odd under interchange of x and y, and
this term is thus zero. For the term yL,L, in { }, now interchange x and y. The entire second term in (4.16) then be-

comes

®© © © x(xz_ 2) "
LL,—Loa [7 [ [ dxdyds=>—2=vrp’(n),

so that, returning to spherical coordinates and integrating only over the appropriate region 7/2 > 6, ¢ > 0, the result is

[Second term in (4.16)]=L,(L, —L, )

f drr*v'(rp’g(r) .

(4.17)

The first term in (4.16) can be written (using the odd property of the integrand under x <>y interchange)

[First term in (4.16)]=—4L,L,L, fL dy f dxf dz=

The function [(x?—y?2)/r]V'(r)p*g(r) is even in x, y, and
z. If we extend the x integral to «, and calculate the
leading term in (4.18) for all L’s large, and if that leading
term has the correct proportionality to L,(L, —L,), then
further contributions ignored by the extension of the x in-
tegral can be dropped. Define the function

L, w 2_ 2
Gy= [, dz ["dx*—L-vrp’e(r) .

This function has a well-defined Fourier transform, and
since it is even in y,

G(y)= f_: —gg—cos(qy)é(q)

while G is even in g. Equation (4.18) can then be written
as

[First term in (4.16)]
——8LLL, [ %[sin(qL,)—sin(qL,)]%‘Il .

(4.19)

Finally, we make use of the asymptotic expansion®* for
large L:

J, dgsintgLiFig) =52 -
(4.20)
Py _ F’(O) FI”(O) .
IR dg cos\gLIF (q)=— "5+~ =",
to obtain
[First term in (4.16)] =~ L,(L, —L,)lim | <2,
o q—0 q
4.21)

Y2y rpie (r) (4.18)

I

This expression is precisely the areal form expected for
the integrated stress-tensor-difference average, and if the
above limit is nonzero, this term will contribute. Howev-
er, consider the function

Glg)= fOdez fowdx fjwdycos(qy)xzjy

X V'(rip’g(r) .

The integral on x can be extended to — o0, whereupon the
entire integral is clearly zero at ¢=0. Therefore,
G(g)~q? as ¢g—0, and does not contribute anything to
the limit in (4.21). Hence, the first term in (4.16) is zero,
up to and including all area corrections, and we have
therefore concluded, using Eq. (4.17), that

((Trx =Ty JpEYbox =Lz (L, — L, )%

x [Cdrrvinp(n.  4.22)

This result shows that the simplest potential piece of
the integrated stress tensor difference comes from the
bulk part of the correlation function in the integrand.
Only the nature of the integration region restrictions in
the large box play a role in this term. There now remains
the question of possible corrections from the second term
in Eq. (4.14).

Since we have seen how the integration region restric-
tions affect the calculation, and have obtained a final ex-
pression (4.22) for the first term in (4.14), it is now
simpler to return to the general form. We will then use
the previous discussion to guide the necessary grouping of
terms in a full box calculation. In general, the potential
piece of the integrated stress tensor average is
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(r,z ( 12)

((Tii"Tjj)PE)box="“;. f fvd3’1d3’2

T2

where F(r,,r,) is {(#'(r))p(r;),¥(r;)), and the integrals
, are confined to the region —L;/2<x;,X;5, <L;/2.
We first expand F in the box eigenstates

F(l’l,fz)= 2
91,92
9,92 >0

uq‘(rl)uqz(rZ)ﬁbox(thZ) ’ (4.24)

and therefore have

Foor(q1,q2)= fvd%, fvd3r2uq’1(r1)uq'l(rz)F(rl,rz).
4.25)

It is convenient to extend the definition of F to negative
values for each g;. From the form (4.3) for u, we see that
Fox(q1,q2) is odd in each component of q; and q,

J

Fo_T. -
(Tt =Ty Deedvon 2m? 2m)?

! V'(rp)F (1y,12)

(4.23)

d3 d? ) —(rp)?
f 91 4792 fv r;fd3 (ryz ruJV’(rxz)expi

separately. Equation (4.24) can then be rewritten in the
form

r2+ Flqay),

(1'1,1'2)—— 2 ¢ql lr1+ ](p‘h

919

(4.26)

where f‘(ql,qz)=—§-ib,,x(q1,q2) and the ' means that
no component of q, or q, is zero. ¢ is the product func-
tion defined in Eq. (4.5), and L is the vector whose com-
ponents are L, L,, and L,.

We now substitute Eq. (4.26) into Eq. (4.23) and convert
the sums on q; and q, to integrals, making use of Eq.
(4.8). The result is

L
r2+—

L
q;° |+ )

) +qy-

N 3
XLxLyLzF(ql,qz)[l—ﬂ' S T-[8(gu)+8gn)]+ - ] 27)
k=1 *k

This expression then includes all area corrections. If we take
)= [ [ d’rid’ry0) ()85 (r)p% (11— 1)

i(q1—qa)

F(qy,q)=F . (q,q,

1
= [a3
L.L,L, J drexp | ==

then the correct leading term (proportional to volume) is
obtained in the equivalent of (4.27) for any component
{((T;)pg) (or, for any function of ri, in the integrand).
To include area corrections to this term, we have

L,L,L,F(q,,q))=L,L,L.F,(q,,q,)

3 i~
+ X L Aanan (4.29)
k=1 Lk

where H, is independent of the L’s.
Now, the F(q;,q,) piece, together with the first term

J

= L Qn)? 2n)?

m)——g—z -/ f 291 da: [6<q,i)+8<qzi>1[f [ dird’r,

r |p%g(r)(2m)%8(q;+q,) ,

(4.28)

in the { ] appearing in Eq. (4.27), gives the full result
(4.22) of the previous analysis. As we have seen, the
volume restrictions on the r; and r, integrals must be re-
tained to obtain these areal terms. Further possible
corrections, coming from the second term in (4.29) and
the second term in the {} of Eq. (4.27) represent those
terms arising from the correction expressed in Eq. (4.14).
We may write the result in the form

((Txx — Ty )pE Y box =D+ (I +(IID) ,
where (I) is given in Eq. (4.22). (II) is given by

(4.30)

2 2
Xn—yYn2

iqr
V’("]z)e L
T2

LxLyLzﬁao (QIqu) ’

(4.31)

where the delta function 8(q,+q,) appearing in (4.28) has been used to simplify the expression. The quantity (III) is

given by

Virp [ —5

131
m=-- 3 —L—f [ drdr, |5

}’12
T2

‘11 d3¢12
2m)? 2m)P o

xp{i[q*(r;+L/2)+q,(r,+L/2)1}Hi(q;,q0) -
(4.32)
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We now wish to show that both (II) and (III) are small-
er than order “area,” and that hence (I) gives the full re-
sult for the average integrated stress tensor difference.

Consider the integrals appearing in the { } term of Eq.
(4.31), denoted as .#. The center of mass integration can
be performed immediately to obtain

22
I = Hf dx(L——x, :y

i=1

Vire "

(4.33)

and we need only the volume contribution here, because of

the 1/L; coefficient appearing in Eq. (4.31). This contri-
bution is
2,2 .
#(leading term)=L,L L, [ d*r>—2-v"(r)e'®”
(4.34)

If we take q, along the z axis, we see that the full integral
is zero for all q;. Thus, II produces at most a length, not
an area, correction.

We may written Eq. (4.32) in the form

(T =Ty ) Vpox=Lo(L, — L) f o )3 2 6(q,)n(q)+ f dr r*v'(r)p*g (r)

Therefore, Egs. (4.37) and (2.13) together imply

___9___9_
2 27 2m 6(q,)n (q)

+5 J, drrvinp’s(n. (4.38)

Finally, making use of Eq. (3.2), we find the interfacial

surface tension

ZﬁZZ
_ﬁf (2m)® 2m

8(g;)[ni(g)—ng(g)]

+3 [y drrtvolelsn—pig(n]. (439
Equation (4.38) is an exact expression for the single phase
a, quite analogous to the virial theorem for the pressure.
Equation (4.39) is likewise exact, and involves only bulk
correlation functions, explicitly for each phase. Note that
y is a function of T only, since the density p is explicitly
set equal to the liquid or vapor coexistence densities p;(T)
and p,(T) in the two parts shown in (4.39).

We were able to obtain a by a subtraction of stress-
tensor-operator averages, where symmetry properties con-
spired to eliminate several unknown quantities. It should
be noted again that a similar attempt to calculate, for ex-
ample, (N ) will not yield a simple expression for the area
correction. In fact, @ appears to be the only surface quan-
tity which can be isolated in this manner, and the other
surface variables can be then obtained only by using the
thermodynamic relations (2.6) through (2.10). It is not
difficult to show that for free particles, the surface de-
pletion n 4 is given by
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131 d’q, d’q, _
(I = — — —_ B(q;,q,)H;(q1,9,)
2 g L f f (27) 27 q1,92 91,92

xXexpli(q;+qy)-L/2], (4.35)
where
3. 13 xh—yh ,
B(q;,qy)= ffd"ld r; T V'(ry)
Xexp[i(ql'r1+q2-rz] . (4.36)

The leading term of III for large L, independent of the
nature of B(q;,q,), requires q;= —q,. [See the asymptot-
ic expansion in Eq. (4.20).] Consequently, the leading
contribution from B in Eq. (4.36) involves the expression
displayed on the right-hand side of Eq. (4.34). Thus, the
leading term in III, as in II, is of order length, not area.

Consequently, we have demonstrated that Eq. (4.22) is
the full “potential” contribution to the integrated stress
tensor difference. Combination with the “kinetic” part in
Eq. (4.9) then gives the full result:

(4.37)

I

=—>f —La(q, n(q), (4.40)
where in this case n(q) is explicitly a Bose or Fermi func-
tion. However, we were unable to prove that (4.40) is in
any way a general result for the interacting case. Along
the same line, it is tempting to suppose that the surface
energy per unit area is given by

T d’q
“M=T7 f (2mr)? Sa:

- f drr’v

a result suggested by several approximation schemes.
However, we should emphasize that we do not believe
(4.41) to be generally true.

Our general result for « in Eq. (4.38) is quite analogous
to the virial theorem expression for the pressure. We can
complete the angular integral in the kinetic part, and
display the familiar virial theorem result for comparison.
The result is

2 2
L

(rp’g(r), (4.41)

5

1 = T (% 4y
a=§1;f0 ketkon (kidk + - [ " rV'(r)p’g (rdr
(4.42)
__ 1 >
P==7 [, K2etiom (k)
_3-3’1 PR Vinpg (ndr (4.43)

with e(k)=#*k2/2m. The first term in (4.43) is just two-
thirds of the kinetic-energy density, but the first term of
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(4.42) has no such simple physical interpretation. Both
expressions are simplified in the classical limit, where
n (k) is replaced by the Boltzmann distribution. The first
term in (4.42) becomes +A(T)pkpT, with A(T) the
thermal de Broglie wavelength, while the first term in
(4.43) becomes pkpT. The two equations together allow
us to simplify the classical result further. If we divide the
interparticle potential ¥ (r) into hard-core and long-range
parts,
o, r<r.

Vir=

Vir(r), r>r, (4.44)

and eliminate the short-range part of the integral in (4.42)
by making use of (4.43), we can put the classical result in
the form

ap, T)=+MT)pksT + s r.[pks T —P(p,T)]

+a(p, T)p?, (4.45)

with

alp,T)=% [, drrir—roVir(rig(r) . (446)
Therefore, classical models for a can be based on approxi-
mations for the function ay(p,T). In the extreme low-
density limit, for example, we can replace g(r) by its clas-
: : —BVyir(r) .
sical zero-density value e , and if the temperature
is such that | BV r(r)| <<, then the microscopic param-
eter

ao=7g [, drrr—roVig(r) (4.47)

€6 9

should play a role similar to the van der Waals “a” pa-

rameter of the corresponding pressure analysis.

V. A SIMPLE CLASSICAL MODEL

In order to use the classical form for a in Egs. (4.45)
and (4.46), so that y(T) can be calculated from Eq. (3.2),
we must first consider the bulk properties; in particular,
we need both an equation of state and the liquid-gas den-
sities in equilibrium. For this purpose, we may use the
van der Waals model (vdW) equation of state. Although
the inadequacies of this model are well known, its simpli-
city and familiarity are quite helpful in exploring the
surface-tension analysis. We should again emphasize the
close connection between pressure and surface tension ex-
hibited in the general expressions (4.42) and (4.43).

The vdW model pressure

P =pkyT/(1—pb)—p’a
can be derived from the low-density expansion
P~pkpT +p*bkgT —a)+ - - -,

using the classical form of (4.43), a hard-core part to the
potential as in (4.44), the low-density classical form
g(r)~e R for » >7r., and the further assumption
that | BV gr(r)| <<1 for r >r, [the true g(r) must also
vanish sufficiently rapidly inside the core]. Thus, one
identifies the vdW parameters
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b=02m/3)r}
and
a=-—2m frw r2Vir(ridr .

Analysis of the equation of state then gives the familiar
relations for critical parameters

pe=1/3b, kpT. =%, and RV =4p.ksT. ,

with the reduced equation of state

~  8ps? ~ P T
P="F_ 352 p=—"— =L s2=— (51
3_p ( prev P pe T,

Near T., in two phase equilibrium, the vdW model has
a quite simple (mean-field) behavior. This behavior, sum-
marized below, is needed for a subsequent analysis of the
surface tension. [That is, we need to known such infor-
mation about the bulk properties in order to construct a
corresponding phenomenological model for y(7T).] The
familiar results are

Pre(T=1+28"24 28T 3382+ 455 8°
Ty 2
w/kgT=—(c++)+cb—+82— 25> - |

B(T)=1—454+ 2825834 ... |

2 _2g—14 4 o172 76
(I-"KT)I,g“‘9‘S t8 — 225

(5.2)

_ 2 ¢1s2, 2008
T 36550 T+ s 0+ )

with 8=(1—T/T,) and ¢ =1—In[3p,A%T,)]. In this
case, the equilibrium densities and corresponding iso-
thermal compressibility K contain half-integral powers
of §, while the chemical potential and pressure contain
only integral powers.

Now, consider our classical expression for a in Eqgs.
(4.45) and (4.46). We first define reduced variables @ and
n according to

1 ~ ~
a=- p2kyT.&@ (same for v,7),
1 (5.3)
A 2/3~
ni=— (2v)1/3pc n [see Eq. (2.10)],
so that
=S50 JoP| (5.4)
379 |1/ O r
and Eq. (4.45) becomes
A=gops +=81(ps*—+P)+a,(p,s)p?, (5.5)
with
gOE%[prc}‘3(Tc)]I/3 ’
g, =2mp ) r, , (5.6)
4/3
~ P
asE(Zﬂ)lﬂ‘k—;—ias .
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The limit of a, as p—0, is given by Eq. (4.47), so that the
dimensionless quantity @; in this limit can be obtained
directly from the potential.

In the vdW model, P is the reduced pressure and g;=1.
If we take, for concrete example, the traditional Lennard-
Jones 6-12 potential (plus hard core below r.), the three
parameters € (strength of 6-12), r. (core radius), and ¢
(range or zero position of 6-12) then fix both the vdW a
and b (or p, and T,), and the limit

1—+(a/r.)®
2 =1lima, () = - | —— (5.7)

50 128 | 1—3(o/r,)"

Thus, the low-density limit of Eq. (5.5) for the classical a
is completely determined from the potential, in the same
way that the vdW a and b parameters are fixed. [In the
above example, the core radius is frequently taken to
equal o, but this is not necessary. r, should be slightly
smaller than or equal to o, and | BVr(r.)| should still
be small to allow the traditional expansion described
above.]

Now, we must construct a phenomenological form for
d; in Eq. (5.5), consistent with both the limit observed in
Eq. (5.7) and the general thermodynamic analysis at the
end of Sec. III. Consider first the lowest order (in density)
term +A(T)pkpT in a [or the gops term in Eq. (5.5)].
This term, and any terms containing g, which appear in
@, are “nonuniversal”’; that is, they depend on the specific
pc and T, [see Eq. (5.6)]. g is, however, a small parame-
ter for classical systems (the formal #—0 limit would give
g0=0). For Ne, Ar, Kr, and Xe, for example, g, is 0.08,
0.03, 0.01, and 0.009, respectively. To the extent that the
“reduced equation of state for a” (i.e., 5.5) is a simple
function of the reduced density and temperature for dif-
ferent substances, the g, terms must be negligible. How-
ever, the +A(T)pkyT term is the full classical result for
free particles, and we cannot retain it while deleting all g,
terms in a,, because then the thermodynamic conditions
(3.26) and (3.27) cannot be satisfied. There must be g,
terms in d; to provide thermodynamic consistency. On
the other hand, whatever phenomenology we adopt for
such terms cannot have much effect on the behavior of
the classical surface tension (other than the achievement
of thermodynamic consistency for the model, which is of
course necessary for expansions close to 7,). We already
know that the surface tensions for Ne, Ar, Kr, and Xe,
for example, are experimentally close to being functions of
reduced temperature only, when divided® by the factor

2/3
Pe kB Tc'

In order to construct a thermodynamically consistent
phenomenology, we adopt the simplest treatment of the
go terms. Note first that, for free particles, +Apks T and
+AP are indistinguishable. Thus, one might imagine
higher-order terms ~A(T)(P—pkT), or of the form
MTD)[c1kpT /(1—pb)+c,]p*>. However, such low-order
density corrections cannot be present in the classical
theory, because all the p? terms at low density are
“potential-like”—they come from replacing a; by its zero
density limit in Eq. (4.45). Any correction terms with this
suggested temperature dependence must be at least third
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order in density. Hence, such terms will be of order p in
d;. We take the simplest choice;

cis c, ]
I

l—3p 8

a,—ao+8op

where the gos term corresponds to AMT)kpT [go/s to
A(T)] temperature dependence. Since all the g, terms, in-
cluding the first term in Eq. (5.5), must satisfy (3.26) and
(3.27), we see that ¢; and ¢, are fixed. Thus,

8 19
I-5p

represents a thermodynamically consistent phenomenolog-
ical correction to a for the construction of a;.

Now, there must be other density corrections to @; with
no g, dependence. These must vanish as 5—0, and must
be such that (3.26) and (3.27) are satisfied. The simplest
two-parameter choice (phenomenologically guided by the
vdW loop form for the pressure) is a;6/(1—a,p). Thus,
a simple phenomenological form for the full @;, generated
from the microscopic theory, the van der Waals structure
of the equation of state, and the thermodynamic con-
sistency requirements is

a,p 80P ‘ 8s 19 (5.8)

1—ap 15 B

1—4p

where the constants a; and a, are determined by the con-
ditions (3.26) and (3.27). These requirements yield im-
mediately a value first for

3 3(1—ay)%(3—5a,+2a3)
=TT 163 -24,)(3—ay)

and an expression for @; in the form

~ 3 —p p

= o 3B | L 8P & 19
16 a;—3 | (1—ayp) 15 l1—4p s

with (5.9

a2=%+%{ao—[a(2,—%(a0+3—32)]1/2} .

Only a, remains as the “adjustable” microscopic parame-
ter [see Eq. (5.7)]. Note that the simplest fully classical
result would merely drop the g, terms in both (5.5) and
(5.9), and the resulting form for & can then be thought of
as a true van der Waals model, with the single parameter
ay. ag is related to potential parameters, [Eq. (5.7)], in a
manner similar to the connection between potential and
the original vdW parameters a and b. The g, terms are
an added complication, brought about by the demands of
the free particle limit and thermodynamic consistency,
but g, is small for classical systems.

The calculated surface tension, using (5.9), (5.5), (3.2),
and the vdW phase boundary properties (5.2) becomes

‘}’(5)=f183/2+f285/2+ e
with

(5.10
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_us, 3, 3
f1="1580 4+x(x__2),
5656 39 3 2 594
fa=7580+ 5 + 502 87+; 247+x ) ’

and

x=(a,—=3+3{ag—[ad—F(ao+5)]"?} . (.11

The leading 5°/? behavior is expected, of course, and
from Eq. (3.28) we see that the coefficient f; should equal
4 da

- + 67, ,
3 3pos ¢

p=s=1

where
fi, = lim #A(p.g(T),T)
p=s=1
[see Eq. (5.4)]. The fact that this relation is correctly
satisfied is merely a further verification of thermodynam-
ic consistency. The calculated value of 7, becomes

1
2x(x —2) °
The shift in interface location AR (p.,T) can be ob-

tained directly from the expansion of Eq. (3.14) about T.
We find

~ 134 i1
ne="580— 2 +

(5.12)

1

2——4/3n~ s

=5 51724 ... |

(2mp,)' AR (p,, T) =

(5.13)

The critical index ¥ discussed in Sec. III is therefore + for
the vdW model, as expected. The sign of the coefficient
in Eq. (5.13) can, in principle, be either positive or nega-
tive. That is, a large particle depletion at the wall (large
7i, ) forces the interface to shift to larger R, giving a posi-
tive AR (p.,T). A large coefficient in the surface tension
(large f1) has the opposite effect. It is physically reason-
able that a large gas depletion at the hard wall forces
more particles into the liquid phase when the total num-
ber of particles is fixed. The numerical values below, ap-
propriate for this vdW approximation, suggest that
AR (p.,T) is positive.

We know that the =3 behavior predicted by this
vdW model for a is incorrect. The early data® shows that
1 ~1.28 for simple classical fluids. More recent experi-
ments give the same result.* A numerical two-parameter
rms numerical fit for argon, giving the form y =8.428!28
produces only a 0.25% average relative error over a fairly
wide range of temperature. The corresponding one-
parameter fit to the p:—g— version given by vdW theory,
6.166°/2, produces a much less accurate fit to the same
data (20% average relative error over the same tempera-
ture range, with even higher error very close to 7.). The
value of o/r, required by this latter fit [from Eq. (5.7)] is
quite reasonable (o/r,=1.19), but the major error lies in
the direct use of the vdW equation of state, with the sub-
sequent mean-field value for u.

Our construction of a, starting with Eq. (5.5), used both
the vdW form for P and a phenomenological structure of
@, based on that form. The method was conceptually
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straightforward, except for the severe phenomenology of
the g, terms, which resulted in very small corrections
since g is itself small. Before attempting to make a ma-
jor improvement with a more realistic equation of state,
our analysis then suggests that the form

7~(A4 +Bgy)¥ (5.14)

should be investigated in detail for simple fluids to see if
the small go component can be extracted from experimen-
tal data. That is, we know how the incorrect u arises
from the vdW equation of state, but we do not know if a
8o dependence in the coefficient is required by experimen-
tal evidence. (As noted above, the phenomenology of the
8o term is not unique—we could have required all g,
parts to vanish in the leading ¥ terms by introducing ad-
ditional constraints in the construction of @;. This wouild
have required more parameters, and there is no compel-
ling reason for such complication unless experiment
demands a particular g, dependence.) The g, term in Eq.
(5.14) is interesting, because its presence implies that the
coefficient of the critical-region temperature dependence
is nonuniversal. A preliminary examination of argon and
xenon data>?* together, which includes surface tension
close to T, in both cases, suggests values 4=8.50 and
B =—-3.05, using u=1.28. For this choice, the average
relative error, over all data points, is less than 0.4%. The
value of B appears to be negative, but it should be noted
that there is a large uncertainty in its determination.

VI. CONCLUSION

We have approached the calculation of interfacial sur-
face tension by a “global thermodynamic” rather than a
local formulation. Thus, we are able to define a single-
phase surface tension a(p,T) in terms of the bulk correla-
tion functions n(k) and g(r), by an examination of in-
tegrated stress tensor averages in a large box. The general
result [Eq. (4.38)] is quite analogous to the virial theorem
for the pressure. Physically, this represents a surface ten-
sion associated with the introduction of a hard wall into a
uniform, single-phase system. Nevertheless, by an exam-
ination of the equilibrium between the hard wall and two
phases of the same substance, we are able to show (Sec.
III) that the interfacial surface tension for the two phases
can be calculated from a, given the bulk phase correlation
functions [Eq. (4.39)]. In the single phase, there is an area
correction to the overall particle number, brought about
by the hard-wall boundary conditions, which force the
system wave function to zero at the walls. This single-
phase depletion n , is related thermodynamically to a.

On the local level, we are able to avoid details of the in-
terfacial density profile, and to connect the wall depletion
and interfacial tension with the shift in interface position
(caused by surface corrections) from the bulk “lever rule”
location. This shift is a function of both average density
and temperature [see Eq. (3.12)]. At critical density, there
is a relation between interfacial tension, interfacial shift,
and wall number depletion in the gas phase [Eq. (3.14)].
The latter relation is used to explore some critical index
properties [Eq. (3.20)], in which the conceptual distinction
between surface thickness and interfacial shift plays a
role.
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Finally, we have simplified the treatment for classical
systems [Eqgs. (4.45) and (4.46)] and have applied the
surface-tension formulation to a simple classical model,
using a van der Waals form for bulk properties, primarily
to explore the close connection between the bulk equation
of state and the surface tension, even though the vdW
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form has well-known deficiencies. This analysis leads to
the speculation that, in the critical region, the reduced
surface tension for classical systems dePends in a simple
manner on the small parameter go=+[2mp AXT;)]'3,
and is not of universal form.
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