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Concentration dependence of hopping conductivity in granular metals
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An analysis of conductivity in a model of identical metallic spheres randomly distributed in an in-

sulator is presented. Using an approach based on ideas of percolation theory, the equation is derived
which defines the limiting value for the separations between neighboring particles along the "op-
timal path. " The volume and structure of the current-carrying backbone are discussed and its con-
tribution to the bulk conductivity is obtained.

Granular metals are inhomogeneous materials consist-
ing of metallic particles dispersed in an insulator. For
metal concentrations above the percolation threshold, a
network of continuous current-conducting routes is
present and the bulk conductivity is of metallic type.
Below threshold the continuous metallic paths are absent
and electrical transport results from thermally activated
tunneling of electrons between isolated metallic grains.
(See the review of Abeles et al. ')

However, the existence of a metal-insulator transition
influences the parameters of hopping conductance at con-
centrations below the critical value. In the vicinity of the
transition the system is "prepared" for the appearance of
an infinite cluster with the result that infimte "optimal
paths" exist in the material, which are characterized by
maximum charge mobility. The charge-exchange rate be-
tween two grains, defining the mobility, is given by

v-exp( —2XSiJ —W,J /kT),
where S,J is the separation between the surfaces of the
grains, X is the tunneling factor, and WJ is the activation
energy. ' Consequently, in order to evaluate the mobility
we must obtain the limiting values for S,J and WJ along
the optimal routes.

For this purpose we consider a model of identical metal
spheres randomly distributed in an insulator matrix. Let
a be the diameter of spheres and P be the volume fraction
of metal,

exceed the value S=5 —a, where b is the diameter of the
swollen grains. Along any other path there are sections
where the hopping distance is greater than S.

In the first approximation the condition for the appear-
ance of the infinite cluster may be written in the form

(3)

S=—b —a=a (4)

However, Eq. (3) is not exact because it does not take
into account the overlapping of the contours of swollen
particles. Because of this overlapping, the effective
volume of a grain, defining the concentration of the "me-
tallic phase, " becomes less than the volume of a sphere of
diameter b [see Fig. 1(a)]. If r is the distance between the
centers of two overlapping spheres (a &r &b), the effec-
tive volume of each is equal to

(5)

where n is given by Eq. (2) and P, is the percolation
threshold. According to percolation theory and effective-
medium theory the value of the critical concentration in
3D systems lies in the range 0.3—0.33.6' From Eq. (3) we
have

' 1/3

an, —
6

where n is the number density of metal particles.
Consider the following thought experiment. Without

changing the number of grains and their positions we
shall increase their diameters until the effective composi-
tion reaches the critical value P, . Given this condition an
infinite cluster consisting of adjoining or overlapping con-
tours of swollen particles arises. It is known that the in-
finite cluster contains a current-conducting "backbone"
and "tag ends" which carry no current. '

We call a "virtual backbone" the aggregate of grains
which should transform into the real backbone under such
a simultaneous swelling of all metallic constituents.

It is evident that all separations between neighboring
particles which make up the virtual backbone do not

b. V(r)= [b(b r) ——,
'—(b ——r) ]

8

is the volume of a spherical segment. If a given particle
has a few neighbors, whose centers lie at distances
ri, . . . , r„ from its center, the "defects of volume*' are
summed, so that

&V=EV(ri)+ . +EV(r„) .

Let us introduce the radial distribution function g(r} for
the system of hard spheres. The quantity ng(r) defines
the number density of particles whose centers lie at a dis-
tance r from the center of a given particle. By virtue of
Eqs. (5) and (7), we must write the following instead of
Eq. (3):

34 6318



34 CONCENTRATION DEPENDENCE OF HOPPING CONDUCTIVITY. . . 6319

where x=b/a. The numerical solution of Eq. (11) is
shown in Fig. 2. Its asymptotic form at x »1 is

1/3 I= 1 —Q 1 —2$, =0.367—0.417 .

By similar arguments for a two-dimensional system of
hard disks the equation for the critical diameter b may be
written

C

2
b

n b —2n—n I g(r)b, V(r)r dr

FIG. 1. Schematic illustration of identical metal spheres ran-

domly distributed in an insulating matrix. Solid lines are
spheres of diameter a, at a concentration below the percolation
threshold; dotted lines denote swollen spheres of diameter b at
the critical concentration for percolation. Two cases are shown:

(a) b &2a~3; (b} b &2aV 3.

b m . r r5 V(r) = ——arcsin
4 2 b b

3/2-3''
b

' [/2

1—
b2

(12)

where n =Q/rra and $,=0.5.
Near threshold Eq. (12) takes the form

n b 4—urn—I g(r)b, V(r)r dr3
b

a
I

where b, V(r) is given by Eq. (6). This equation remains
true at all concentrations for which b &2a/v 3, because
at b & 2a/t/3 there are configurations disturbing the va-

lidity of Eq. (7) [see Fig. 1(b)]. The radial distribution
function for rigid spheres has been the subject of many in-

vestigations and there are good analytical approximations
for g (r) at concentration P &0.3.

Near the transition, when b —a &&a, we can simplify
Eq. (8),

16 2
( )b4 1

a15"' b

where"

71—
g(a)= 16

(1—P)

This has the solution
' 1/2

C —1

S/2

0

' 1/2 3/2 '

b mng(a)b (b ——a) = a (9) 1+ g(a)P, 1—2v2
(13)

Here g(a) is the value of g(r) corresponding to two
spheres in contact when their centers are separated by the
distance a. Seeking the solution of Eq. (9) in the form
b =b"'+b'2', where b'" is given by expression (4) and
b' '~~b'", we obtain

' 1/3

Equations (8) and (12) are exact for b &2a/v 3. This
corresponds to the conditions P) 0.65, P, =0.19 for 3D
systems (P, =0.3) and P &0.75, P, =0.37 for 2D systems
($, =0.5). It is easy to convince oneself from Fig. 1(b)

S=a —1 1+2g(a)P, 1—

(10)
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For g(a) one can use the interpolation formula proposed
by Carnahan and Starling, '

g(a) = [4—2P]/[4(1 —P)'] .

The replacement of g(r) in Eq. (8) by the constant g (a)
yields the interpolation of Eq. (8), which becomes exact as
P~P, and $~0 [in the latter case because g (r)~1],
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6 x FIG. 2. Solid curve represents the solution of Eq. (8) and the

broken hne (1}represents the relation S/a = (m./6$ }'/' —1.
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that at b )2a/v 3, the true values of &V(r) w»ch must

be substituted into Eqs. (8) and (12) are less than those
given by expressions (6) and (12). Consequently, the true
values of S are slightly less than those from expressions
(10) and (13), but greater than S'"=a [(P, /P)'~ —I]. It
should be noted that the deviation from the P

'~ law re-
sulting from impermeabihty of metallic grains is relative-

ly sinall. Thus at (P, /P)'~ =2 the ratio S/S"'~1.16
and for disks at (P, /P)'~ =2, the ratio S/S'" ~ 1.19.

Let us consider the energy-dependent part of the con-
ductance between two grains. The process of charge
transfer requires a certain amount of charging energy.
Following Abeles et al. ' we shall approximate the charg-
ing energy by the energy of a spherical capacitor with
internal diameter equal to a and with the gap between
plates equal to the separation X between a given particle
and its nearest neighbor. From electrostatic theory

'2
a/2+A,

W= V=- r dr
Sm' an

where
a+A,

(N)=4mn f g(r)r dr

(18}

The separations along the VB are independent random pa-
rameters distributed in a range 0&A, &S with the proba-
bility density

q(A, )=z 'u8(S —A, ) .

Here 8(x) is the Heaviside step function and the limiting
value S is the solution of Eq. (8). The normalization con-
stant z is determined from the condition

f q(A, )dk, =1,
and u(A, ) is the probability that there are no centers of
neighboring particles inside the spherical layer of radius a
and thickness A, , circumscribed around the center of a
given particle. This probability may be evaluated by the
Poisson distribution

=4nng(a)a A, =2+g(a) —.2=

Here e is the dielectric constant of the insulator and e is
the electron charge.

We now turn to the calculation of the bulk conductivity
and consider for this purpose the charge transfer along
the paths of greatest mobility, i.e., along the virtual back-
bone (VB). The structure of the VB coincides, by defini-
tion, with the structure of a "real" backbone consisting of
"swollen" grains. When the effective composition exceeds
the percolation threshold by a small amount, the backbone
is a sparse network of thin channels. ' Consequently,
the VB may be approximately considered as a network of
one-dimensional chains. In a small electric field the
current along the chain is defined by the charge mobility

p or, by virtue of the Einstein relation, by the diffusion
coefficient D (p=D/kT).

To calculate the diffusion coefficient we shall use the
following master equation:

PJ
=vj i(PJ i PJ. )+vj(PJ—+, PJ ) . —

dt

PJ is the probability for the electron or "hole" to be on
grain j at time t and the conductances vj are independent
random variables. If the v& are distributed according to a
probability density p(v}, we may use the well-known ex-
pression for the diffusion constant

(15)

The same result for tt (A, ) may be obtained from thermo-
dynamics as the probability for the creation of a cavity
around a given particle in a gas of hard spheres. s

Finally, we have

q(X)= ~' ', 8(S-X), P= +g"
1 —e-I'

Let us introduce the function

~(v)= f p(v')dv',

which, on the other hand, may be represented as

~(v)= f q(X)8(v yX})—dX.

Thus, we have

p(v) = = f q(A, )5(v —v(A, ))dg, .dM(v)

(19)

(20)

(21)

(22)

In a small electric field E, the mean current in a one-
dimensional chain is of the form

Substituting this in (15) one finds

I q(A, ) 1 P(e ' ~' —1)
b v(&) vob (n —P)(1—e ~ )

28a=2X+
z

. (23)
ea kT

v(X) =v,exp —2XX—
6'Qk T —+A

2

where b is the distance between the centers of grains. The
conductance between nearest-neighbors is determined by
the separation A, and, according to the expressions (1) and
(14), it takes the form

(24)

where n
&

is the number density of grains per unit length.
Let n2 be a number density of current-carrying chains in-
tersecting the plane normal to the applied field. The
current density j =n2i, and taking into account that
n ~n2-nb where nb is the number density of grains be-
longing to the VB, we obtain for the bulk conductivity the
fo11owing expression:
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e vcb nb ct p
kT P e(a P)$—1

(25)

' 1/3

In order to obtain the value of nb one must return to Eqs.
(3) and (8). In fact, on the right-hand sides of these equa-
tions we must replace the percolation threshold P, by the
constant (()' ~ P, and define it from the condition of max-
imization of conductivity. Let P'=P, + Q and Q «P, .
Then we have

of thin channels, among which at least the most "difficu-
lt" sections are sufficiently long one-dimensional chains.
Finally, the contribution of the VB to the bulk conductivi-
ty is given by

2/3 —tz
e nvoa

kT
1 —e -&S

t
1 alS

P(nia) e —1

(29)

Let us compare this value with the contribution resulting
from the spatially uniform transport of charges through
the maieriaI. In this case the mean separation is greater
than in the VB, but the number of grains involved in the
current flow is also greater. For a simple cubic lattice the
separation

1/3
1 (('c 5$

The exponent ti ——1.7—2 and the optimal value of 5$ is
derived by the maximization of the expression

and the contribution of the uniform current to the bulk
conductivity may be evaluated as

e nvp~p —as
2 2

llI1 (30)

This yields

3ti

aib
(27)

From Fig. 2 one can see that Sp —S-0.2a and, by using
the parameters of the material given above, we obtain

Using the typical parameters of granular metals'

X=0.5 A ', y=2Xe /e-3 eV, kT-10 eV,

and a -20 A, we obtain

ct=X 2+, -2.5 Ar
kT(Xa)
' 1/3

&20 A. (28)

Taking into account that at (() & 0.3, the values of g (a) & 2
and p&0.7 A ', we get 5$/((), &0.1, ns/n &0.01. This
evaluation confirms the initial supposition about the
structure of the VB in granular metals as a sparse network

nb
exp[et(So —S)]&~ 1 .

n
(31)

Thus, one may conclude that in granular metals in a
hopping-conductivity regime the spatial distribution of
current is highly nonuniform and it flows through the rel-
atively small number of optimally arranged particles. The
parameters of this system of grains (separations and ac-
tivation energy) are essentially different from those ob-
tained by averaging over the volume and they cannot be
obtained directly from structural investigations.

A comparison with reaI metals may be carried out only
for samples which have sufficient uniformity of constitu-
ent sizes, and a purely activated-type temperature depen-
dence for the conductivity.

'Requests for reprints should be addressed to the author, with
copies to M. P. Sarachik, Physics Department, City College,
Convent Avenue and 138 Street, New York, N.Y. 10031.
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