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Generalized Langevin equation for an oscillator
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A central oscillator coupled to a bath of harmonic oscillators with a two-dimensional Debye spec-
trum is set up as a model for the dynamics of strongly coupled linear systems. The bath oscillators
are eliminated from the central oscillator s equation of motion, other than for initial conditions.
The resulting Langevin equation is solved analytically for two different initial conditions for the
bath. In one case, the bath oscillators are started at finite temperature and the coupling is turned on

suddenly, and in the other they are adiabatically heated with constant coupling. The problem of
equipartitioning of the kinetic energy, the velocity autocorrelation function of the central oscillator,
and its spectral distribution are examined for various values of the physical parameters. The analyt-
ical results of the sudden case are compared with molecular-dynamics calculations and excellent
agreement is found.

I. INTRODUCTION

We have recently investigated the dynamics of a
damped driven pendulum coupled to a set of harmonic os-
cillators. ' The coupling can be choosen so that in one
limit (called the strong-coupling limit), the rotor is "free."
The precise meaning of the expression was made clear in
Ref. 1 and will be discussed again later. The published re-
sults based on molecular-dynamics calculations suggested
that the system went to thermal equilibrium for the range
of parameters considered. However, for some parameter
choices there seemed to be a problem with the approach to
equilibrium, and certain other questions of principle arose,
in particular, how the dynamics behavior depended on ini-
tial conditions.

To address the question of the approach to thermal
equilibrium and the effect of different initial conditions
and values of different physical parameters, we investigate
analytically and by molecular dynamics a model in which
a central oscillator is coupled to an otherwise uncoupled
set of harmonic oscillators, i.e., a completely linear force
model. A model of this type was first introduced by Ull-
ersma in a series of papers with a frequency-dependent
damping function designed to given an exponential decay
law for the central oscillator's autocorrelation functions.
This model has recently been examined in a quantum con-
text by Haake and Reinbold (using Ullersma's damping
function) and, for our purposes more relevantly, by
Wagner. The latter paper shows that the "very definition
of the initial state engenders the decay law. " This work,
however, does not deal with the question of whether this
system reaches thermal equilibrium nor does it calculate
the spectrum in detail. Our interests are broader. %e
wish to obtain the spectral representation of the velocity
autocorrelation of the central oscillator and to explore

whether the system has reached thermal equilibrium or
only a steady state. This linear model can serve as a
benchmark for the nonlinear case discussed above. Its
main advantage is that it can be solved fully analytically
and also by molecular dynamics thus allowing one to
gauge the accuracy of the numerical technique. The
molecular-dynamics results track the analytical ones very
well. %'e hope to return to a fuller analysis of the non-
linear case later with the opportunity of comparing its
behavior with the linear-oscillator problem.

II. THE MODEL AND ITS GREEN'S FUNCTION

The model consists of a central one-dimensional (1D)
oscillator coupled to a set of oscillators with a two-
dimensional (2D) Debye spectrum. The Lagrangian and
the equation of motion of the central oscillator are simply
linearized versions of those of the rotor model

and

(2.1)

(2.2)

F(r)=u'a/X g I0;X;(rt)cos[Q;(w —~t)]

+X,«t »in[&, (~—~t )] I . (2.3)

The 0; in the coupling term ensures vanishing coupling to
the zero-frequency modes which normally occurs for
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acoustic phonons. %'e use the initial conditions
8(ri) =8(r) ) =0. AII these quantities are in dimensionless
units. ' In the continuum limit (X~ ao )

H(~) =2 f dQ Q cos(Q~) . (2.4)

(13) are solved by

p —1, Pz ——n, if@&1
1 —p, Pq ——0, if p&1, (2.14)

8(r) =g(0)F(r)+ f F(r')dr';
I O'T

(2.6)

thus g(0)=0 follows from the initial conditions. It will
prove useful to introduce the Green's function G by

(2.7)

Differentiating Eq. (2.6) again and substituting into Eq.
(2.2) leads to

G(0) =—,1

p
(2.8)

and by choosing F to be a 5-function pulse at a time be-
tween ~I and ~ gives

The Debye oscillator coordinates have been eliminated ex-
cept for their appearance in F(r), the force exerted on the
central oscillator, which depends on the initial conditions
and uncoupled frequencies of the Debye oscillators. The
coupling strength a can vary from zero for an uncoupled
central oscillator to unity, ~here the instantaneous poten-
tial vanishes and this oscillator is forced by a term [in ad-
dition to F(r)] dependent only upon the past velocities of
the central oscillator itself. We refer to the latter case as
the "free"-particle limit. Let us introduce the Green's
function g such that

8(r) = f g(r v')F—(r')dr' . (2.&)

Sp =+i VP (2.15)

For 0&a & 1, Pz
——0 is a solution of Eq. (2.13), with Eq.

(2.12) becoming

@+alnR&+( I —a)(R& —1)=0 . (2.16)

The solution for any p & 0 is unique and satisfies
0&R& & l. One can show that with P &0 there are no
roots consistent with Eq. (2.11). Thus

s =+ (2.17)

are imaginary and outside of the branch cut except in the
limit p= ~, when R&~0.

The inverse Laplace transform can now be performed
on the contour of Fig. 1. There are no contributions from
the infinite quarter circles and the contributions of the
two contour lines parallel to the negative real axis cancel.
The contour surrounding the poles and the branch cut can
be pulled tight as a noose. The Green's function can be
written as a sum of contributions from the branch cut and
the poles

G( r) =G~(r) +G~(i) . (2.18)

Gz(t) = Azcos(cozt ), (2.19)

The contributions from the poles (which are simple poles)
is given by

—1 1

' a+(I —a)R&
(2.20)

for r & 0 . (2.9)

The Laplace transform of this equation together with Eq.
(2.7) gives

S
G(s) =

s [p+aln(1+1/s )]+1—a
(2.10)

The Green's function has branch points at s =+i and 0.
They can be connected by a branch cut running between
+i along the imaginary axis. The location of the poles of
G(s) and its values on the sides of the branch cut are best
examined introducing the real variables R and P by

Re'~=1+1/s; R &0, 7r($ &m. . —

One finds that P= —m on the edges of the branch cut in
the first and third quadrants and P=~ for the remaining
two. The pole locations must satisfy the equations

czar~+(1 —a)R&sing& ——0 .

For a=0 (uncoupled central oscillator) Eqs. (2.12) and
FIG. 1. The contour of integration for the inverse Laplace

transform.
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Rz is the solution of Eq. (2.16), and the "pole frequency"

~~ is related to R~ by

Rp
——1 —1/mp .

p+ agz —(1—a)(e r + 1)=i an .

Comparison with Eq. (2.16) shows that

g +i~
0

(2.28)

(2.29)
The contributions from the four sections in the different
quadrants of the branch cut can be collected into

1

Gs(&) =f dy f(y)cos(y&), (2.22)

where

3

f(y) =2a 2 2 2
{—y [p+czln(1/y —1}]+1—aI +(any }

(2.23)

Note that for a =1 the integrand is singular as a function
of y but the integral still coverges.

It is instructive to show that Eq. (2.8) is satisfied. In
order to perform the integration in Eq. (2.23) for r =0 we
introduce the transformation

The pole location gz is therefore uniquely related to co~ by
the equation

(2.30)

G(t)= f dc@A(co)cos(cot), i&0,
where

(2.31)

The contribution of the pole at g to Gs(0) is —A, can-
celing precisely the contribution of the pole in G~(0). The
poles at z„contribute I/p to G(0) and Eq. (2.8) is satis-
fied.

It is useful to introduce the spectral function A (co) such
that

1

(e'+ 1)'rz
(2.24)

1

A(~)= f dy f(yN(c0 y)+—A&5(co co&)—. (2.32)

Gs(0) =aIs, (2.25)

e& 1

—~ 1+e ' [p+czz —(1—a)(e'+1)] +(crt)

which we shall repeatedly use in this paper. This leads to
III. VELOCITY AUTOCORRELATION FUNCTION

The calculation of the velocity autorcorrelation func-
tion requires that one calculate

(8(r)8(cr) & = f dr' f do' G(r ')rG—(o o')—

The poles of the integrand are located at
X (F(r')F(o ) &, (3.1)

z„=(2 +n1)im, n =0,+1,+2, . . . ,

and at the solution gz of

(2.27)
where the lower limit shall be chosen either zero or nega-
tive infinity. The force autorcorrelation function is calcu-
lated from Eq. (2.3), where again the continuum limit will
be taken. Thus

(F(r')F(cr') &
=—g [Q; (X, (ri) &cos[Q;(v' —ri)]cos[Q;(cr' —ri)]+ (X;(ri)&sin[Q;(r' —ri)]sin[Q;(o' —ri)] )

i=1
(3.2)

assuming all cross correlations to vanish. Taking the un-
coupled Debye oscillators initially in thermal equilibrium
at the dimensionless temperature T*, i.e.,

The temperature dependence is trivial.
We discuss two cases which correspond to two different

ways of transferring energy to the central oscillator. In
one ease, subsection A, we start from ~I ———ao and adia-
batically turn on the force F(r) and in the other case, sub-
section 8, we turn on F(r) suddenly at ri =0.

(F( ')F( ')
& = T"H( ' '), —

where H is defined in Eq. (2.4), and therefore

(3.3)

A. Adiabatic turning on of I'(z)

(()(r)(}(o)&

=aT* f de' f do' G(~ ')Gr( r')H(r—' o'} . —

(3 4}

In Kubo's linear-response theory an external force is
turned on adiabatically. In the present case this cannot be
accomplished by turning on a adiabatically in Eq. (2.3}
because a also occurs in Eq. (2.9). The same parameter,
the strength of the "external" force, also determines the
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spectrum of the system. Thus, turning to Eq. (3.2), in-

stead of turning on a one could supply the 0; with identi-
cal imaginary parts and incorporate the resulting ex-
ponential time dependence into T in Eq. (3.2). This situ-
ation cannot be physically realized because it amounts to
heating the uncoupled Debye oscillators even though they

are coupled to the central oscillator. Our excuse for doing
so is that the calculation is brief, the result educational,
and the comparison with the more realistic ease insight-
ful. Formally the exponential time dependence is intro-
duced into the Green's function, rather than into T*. The
time integration can be carried out and one obtains

(8(r)8(o))=2aT' f dy f dy' f dQQA(y)A(y')
'2

0 + — 5(A —y)6(Q —y') cos[Q(r —o)] .
(II —y )(II —y' )

(3.5)

There is no oscillation excited at frequencies outside the
Debye spectrum. %e need to carry out the integral

&(y) '
d f (y) ~p

(3.6)

fY
02—y2

00 dz=a —"(0 —1)e '+0

The integral on the right-hand side of Eq. (3.6), using the
transformation (2.26), becomes

Cukier and Mazur, ' according to whom a heavy impuri-
ty in a chain comes to equilibrium, but a light one does
not.

The difference between this calculation and that of
Schwinger is that in his case the bath responded at all
frequencies and therefore complete equilibrium was
reached. His result for long times corresponds to our adi-
abatic case. %'agner's results are similar in analytical
form to Eq. (3.9), although he uses a different technique,
which ignores the possibility of isolated poles and is there-
fore incomplete. Also he does not pose the question
whether the system comes to equilibrium or not.

B. Sudden turning on of I'(r)

[—()u+az)+( I —a)(e'+1)] +(am)

(3.7)

In this case the autocorrelation function to be calculat-
ed 1s

Here again gz is a pole but now the infinite set is
T

a(cr)= lim —f dr(8(r)0(r+cr}) .
T w T

(3.11)

1

0
—1 +2nmi, n =0, 1,2, ... . (3.&)

Remarkably, the contribution of the pole gz cancels
against the last term in Eq. (3.6) and the rather complicat-
ed contribution from the poles zn combines with that of
the 5 functions in Eq. (3.5) to yield

( 8(r)8(cr ) ) = T' f d0f( Q)cos[Q(r —o ) ]
= T*Gs(r cr), — (3.9)

Here we use o as a time difference in contrast to the last
section. The time integrations are exceedingly tedious.
Several terms vanish due to symmetry or in the limit
T~oc. Only two terms survive: One is identical to the
first term in Eq. (3.5), the other one requires the evalua-
tion of the integral

where f(Q} is given by Eq. (2.24). Since the result has
time translational invariance it is the required autocorrela-
tion function. The integral here is the same one appearing
in the branch cut contribution to the Green's function
Gs(i) Thus.

p(8 (r) ) = T'(1 pAp) . —

The result shows that the central oscillator does not take
on the full equipartition energy unless 2&

——0. It is only
that fraction of the spectrum that overlaps the Debye
spectrum that equilibrates, the rest does not get any ener-

gy at all. This finding is consistent with the result of

(3.12)

This integrand involves unusually complicated generalized
functions and we are unaware of any rigorous way of
evaluating the integral. Our intuitive way of evaluation is
justified by the result agreeing with molecular dynamics.
In this double integral there are terms originating from
the branch cut only, from the poles only, and there are
cross terms. The latter ones vanish in the limit T~m.
The pole contribution includes a factor of the form

sin[(co~ —co~)T]l(cop —cop)T
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TABLE I. The pole frequency and various spectral weights of the central osciHator as functions of p
alld 0,'.

P

0.5 1

0.5
0.1

1.59
1.52
1.44

0.770
0.836
0.948

0.474
0.335
0.108

0.229
0.164
0.052

0.703
0.499
0.160

0.92
0.63
0.20

1

0.5
0.1

1.257
1.177
1.067

0.582
0.604
0.662

0.413
0.335
0.270

0.418
0.396
0.337

0.831
0.751
0.607

1.05
0.89
0.71

1

0.5
0.1

1.075
1.02
1.00

0.313
0.190
0.

0.264
0.168
0.

0.687
0.810
1.00

0.951
0.978
1.00

0.96—1.1

1.04
0.96—1.03

which we interpret as a Kronecker 5 for T-+00. The
branch cut contribution to the integrand involves the fac-
tors

lim
I' I' Q'+yy' sin[(y y') Tj—

T Q —y Q —y' 2(Q+y)(Q+y') (y y')T-
Q —y Q —y' Q +yy'

0 (Q —y) +e (Q —y')'+e 2(Q+y)(Q+y')
2

X
(y y&)2+e.2

(3.13)

where we have interpreted 1/T as e, rewritten the princi-
pal values using it, and replaced the sine representation of
the Dirac 5 in the last factor by its I.orentzian representa-
tion. The last expression can be regrouped into

0(Q —y) +e (Q —y') +e
lun

2 2

Q +yy' (Q —y)(Q —y')
2(Q+y)(Q+y') (y —y')2+&2

(3.14)

which shows that the first two factors alone would be-
come Dirac 5 functions in the limit and the third factor
would become a number. The last factor decides whether
in the limit one really has only the product of two 5 func-
tions, of course with the requisite factor (m/2) . Numeri-
cal evaluation of the double integral for finite e showed
that the last factor can be replaced by unity. Consequent-
ly the branch cut term exactly equals the second term of
Eq. (3.5) and thus

a(a) = (8(0)8(cr) ) +2aT' f dQ Q
20 —

COp

0 +Np
cos(co~cr) . (3.15)

We conclude that the Fourier transform of the velocity
autocorrelation function in the sudden case is the adiabat-
ic result Eq. (3.9) plus a term originating from the pole.

Table I shows for various central oscillator masses (p)
and coupling constants (a), the value of the pole frequen-
cy (co&), the fraction of the spectral weight at the pole
(pA~ ), the fractional degree of equipartitioning contribut-
ed by the pole (P), by the continuum (C) and the total
( T). For p=0.5 most of the energy is picked up by the
central oscillator at the pole, if the interaction is turned on
suddenly. For @=2.0 more energy is picked up in the
continuum, and the share of the pole is less or even nearly
zero. Note that the spectral weight of the pole decreases
as it approaches the Debye frequency with increasing
mass. For p=2.0 and a=0.I the pole has practically
merged with the continuum and has no appreciable spec-
tral weight. At this point equipartition is virtually com-
plete. The last column in Table I, MDT, the molecular

dynamics result for the fractional degree of equipartition-
ing is generally appreciably larger than the analytical re-
sult. We do not know the reason for this.

IV. ASYMPTOTIC BEHAVIOR
OF THE AUTOCORRELATION FUNCTION

The asymptotic behavior of the autocorrelation func-
tion depends on whether F(r) is turned on adiabatically
or suddenly. In the latter case there is an oscillatory con-
tribution at co&, absent in the former one. The branch cut
contribution can be calculated from Eq. (3.9) for the first
case by using a theorem on the asymptotic expansion of
Fourier transforms. It shows that the Q~O behavior of
the integrand determines the asymptotic form. The dom-
inant long-time behavior is o, for 0&a ~ 1. For a= 1

the integrand diverges as Q~O and the integral to be
evaluated is
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'dQI(o)=fo Q

2 cos(Qcr )

p+ ln 0
The dominant contribution to the integral comes from

0 near zero both because the cosine oscillates rapidly for
large o and because of the divergence. We estimate

CI(o)&, e oo
lno. '

where C is some positive constant. The asymptotic
dependence is inverse logarithmic. In the sudden case the
conclusions regarding the branch cut contribution are the

same. It is important to note that the assumption of a
frequency-independent width of the continuum part of the
Green's function or of the Fourier transform of the velo-

city correlation function is not possible in the present case
because it is proportional to 0 . The frequency renormal-
ization term also depends strongly on Q [see Eq. (2.23)].
Nevertheless for a «1 and p & 1 a Lorentzian line shape
is a good approximation in the continuum [see Fig. 2(c)].

V. ASYMPTOTIC BEHAVIOR
OF THE KINETIC ENERGY

By performing the integrations in Eq. (3.4) one finds
for r, =o

(8 (r)) =2aT' f dQQ f dy 2 2 f dy'
2 2 IQ —2yQsin(yr)sin(Qr) —2Q cos(yr)cos(Qr)

I A(y) ", A(y')

+yy'sin(yr)sin(y'r)+Q cos(yr)cos(y'r) I .

In the asymptotic limit there are the following leading
terms originating from the several terms in the brackets:
constant; periodic at twice the pole frequency; decreasing
as lie and 1/r, and periodic at the pole frequency; and
decreasing as 1/~ .

VI. MOLECULAR DYNAMICS
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For the molecular-dynamics calculations we have pro-
ceeded similarly to the rotor problem, choosing 100 oscil-
lators to represent the 20 Debye spectrum and solving
101 equations of motion. The equations are the linearized
version of those given in Ref. 1, and the technique was
fully described there. The results are shown in Fig. 2.
Direct comparison of the columns is possible. It can be
seen that the molecular-dynamics results are very close to
the analytical ones.

Because of the lack of equipartitioning for many values

of the parameters in this problem the system generally
does not relax to thermal equilibrium. We have therefore
tested if a steady state is reached. We found that without

any aging at all the results for times corresponding to the
first and second 30 Debye cycles are virtually indistin-
guishable. (A Debye cycle is the time period at the Debye
frequency taken as unity. ) We therefore always plotted
the results for the first 30 cycles. The only exception to
this occurs for the parameters @=2.0 and a=0.1, where
the second 30 cycles had to be plotted. Apparently for a
heavy mass with weak coupling more time is required to
pick up energy. The temperature is always taken as unity.

The correspondence with the analytical calculations is
excellent, where the curves are smooth. All the peaks
within or without the continuum are at the right frequen-
cy. In the continuum their heights match. One cannot
compare the Dirac 6 functions at the poles for the analyt-
ic calculations with the peaks of the molecular dynamics
which is why they are not shown. Discrepancies also
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FIG. 2. Spectral function of the velocity autocorrelation
function of the central oscillator [P„i0)] in arbitrary units as a
function of frequency at T*= 1; mass p =0.5 (a), 1.0 (b), 2.0 (c),
for the analytical (column 1) and molecular-dynamics (column

2) calculations; a = 1.0, — —; a =0.5,
a=0. 1, —.—.—. Note that for the analytical case we only ex-

hibit the adiabatic results. The sudden calculation adds Dirac
5-function peaks which match the peak positions obtained from
molecular dynamics.
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occur at the Debye frequency where the molecular
dynamics cannot match the discontinuity in the analytic
results and, for a = 1, at low frequencies. Since the lowest
bath oscillator frequency is 0.1 in the molecular-dynamics
calculation, where a small peak occurs in the spectrum,
the vanishing of the spectral function just below this value
is due to the vanishing density of bath oscillators in this
regime. The central peak does not diverge because of the

finite time run. These results are very encouraging for the
continued examination of the rotor case.
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