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Anisotropic exchange and spin dynamics in the type-I (-IA) antiferromagnets
CeAs, CeSb, and USb: A neutron study
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The anomalous anisotropic magnetic interactions and the spin dynamics of the fcc type-I or -IA
antiferromagnetic cerium and uranium monopnictides CeAs, CeSb, and USb have been studied by
inelastic and diffuse critical neutron scattering experiments. The diffuse scattering above the anti-

ferromagnetic ordering temperature largely corresponds to longitudinal spin fluctuations which are
highly anisotropic. In the ordered state the dispersion curves of the spin-wave excitations strongly
depend on the actually realized spin structure. For the antiferromagnets the spin waves split into
transverse modes with different polarizations due to the exchange anisotropy. In CeAs one of these
modes exhibits nearly zero energy gap and quadratic dispersion which has not previously been ob-

served in antiferromagnets. The wave-vector-dependent susceptibility tensor has been calculated
within the random-phase-approximation (RPA) by taking account of crystal-field, anisotropic bilin-

ear exchange, and isotropic quadrupolar interactions. General expressions including all levels of the
ground-state multiplet are derived for single-q and triple-q type-I as well as for type-IA antifer-
romagnets, and detailed formulas of the magnetic excitation spectrum are given for the particularly
interesting case of effective two-level systems which are often realized in f-electron magnets. The
RPA formalism consistently describes the transverse magnetic excitations for T & T~ as well as the
longitudinal spin fluctuations for T y T~ for all compounds under study. For CeAs and CeSb the
bilinear exchange interactions turn out to be similar, and evidence for important effects of higher-
order magnetic interactions is found. The latter are shown to be the driving mechanism for the real-

ization of the various magnetic phases in CeSb. For CeAs the magnetic excitation spectrum unam-

biguously demonstrates that a collinear single-q type-I spin structure is realized, whereas for USb a
noncollinear triple-q type-I spin structure emerges from the observed magnetic excitations.

I. INTRODUCTION

All the cerium and uranium monopnictides (CeX and
UX with X=N, P, As, Sb, Bi ) crystallize in the face-
centered-cubic (fcc) NaCl structure. At low temperature
they exhibit unusual magnetic properties, the most strik-
ing phenomenon being the existence of strongly anisotro-

pic magnetic interactions. For the majority of these com-
pounds antiferromagnetic type-I (AF-I) ordering is ob-

served, in which ferromagnetic (001) planes are stacked in

a + —+ —sequence. ' Exceptions are CeN, which does
not order magnetically, and CeSb, which exhibits a large
number of commensurate magnetic phases corresponding
to a characteristic stacking of nonmagnetic and ferromag-
netic (001) planes. ' At T- Ttt /2 CeBi and UAs under-

go a first-order transition to the antiferromagnetic type-
IA (AF-IA) structure corresponding to a ++——stack-
ing; this is also the low-temperature phase of CeSb. In
CeSb (Refs. 4 and 5) and CeBi (Ref. 5) a significant
tetragonal distortion was observed at T~, whereas the oth-
er compounds show no detectable distortion in conjunc-
tion with magnetic ordering. Some magnetic properties of
CeX and UX are listed in Table I.

The magnetic properties of CeX and UX originate in
the 4f or 5f electrons of Ce3+ and U +, respectively.
Whereas for CCX the electrons are localized, the UX sys-
tems show an increasing delocalization of the 5f electrons
towards the lighter pnictides. The most central problem

associated with the CeX and UX compounds is the
anomalous anisotropy of the magnetic interactions in
these systems. One mechanism which yields an anisotro-
pic exchange interaction is a resonant hybridization of the

f electrons with the conduction-band electrons, i.e., an in-

teraction of the Coqblin-Schrieffer (CS) type. These
hybridization-mediated anisotropic two-ion interactions
have been specifically applied to CeX and UX by Cooper
and co-workers. Another theoretical model explaining
the anomalous magnetic properties in the CeX and UX
systems in terms of a mixing of the f states on the cerium
or uranium ions with the neighboring anion p orbitals pf-
mixing) has been developed by Takahashi and Kasuya.
At present it is not clear which model is more appropri-
ate.

Among the experimental tools, promising progress to-
wards understanding the unusual anisotropy in the CeX
and UX compounds is expected from neutron scattering.
Diffuse critical neutron scattering (DCNS) and particular-
ly inelastic neutron scattering (INS) are able to provide a
very detailed picture of the magnetic anisotropy on a mi-
croscopic level. DCNS experiments display the anisotro-

py of the short-range-ordered spin fluctuations, whereas
INS experiments yield direct information about the long-
range dynamic spin correlations, from which the size and
the nature of both single-ion and two-ion anisotropic in-
teractions can be quantitatively determined.

Some years ago DCNS experiments were performed for
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TABLE I. Some properties of the cerium and uranium rnonopnictides: a is the lattice constant,
(a —c)/c is the tetragonal distortion for T ~ T&, T& is the ordering temperature, and po is the ordered
magnetic moment.

CeP
CeAs
CeSb

CeBi

UN
UP
UAs

USb

5.932
6.078
6.412

6.487

4.890
5.589
5.768

6.197

Magnetic
structure

AF-I
AF-I

6 AF phases
( T (T~/2 AF-IA)

AF-I
( T g Tp(/2: AF-IA)

AF-I
AF-I
AF-I

( T ~ Tp(/2 AF-IA)
AF-I

( a —c)/e

~ 10-4
~10
—10

(10-'
g 10-4

~ 10-4

8

8

16

50
125
126

220

po (pa)

0.8
0.85
2.06

2. 1

0.75
1.8
2.2

2.8

the uranium monopnictides by Lander et al. (USb), Sinha
et al. ' (UAs), and Holden et al. " (UN). As a conse-
quence of the anisotropic magnetic interactions only long-
itudinal short-range-ordered spin fluctuations were ob-
served and their correlation lengths were found to be
strongly anisotropic. The same behavior was found for
the cerium monopnictides. ' ' The anisotropy of the
correlation lengths continuously decreases from the UX to
the CeX systems and towards lighter pnictides, which re-
cently was explained in terms of the CS model for the an-
isotropic interactions. ' It should also be noted that an in-
teresting multicritical fluctuation behavior was observed
for CeSb. ' ' Although the phase transition at T~ is
first-order, CeSb exhibits critical fluctuations above Tz.
However, the short-range ordering of these fluctuations
shows AF-I structure, whereas there is no long-range or-
dering of this type. Above features gave evidence for a
competition between bilinear and higher-degree magnetic
interaction in CeSb. '

In the past there have been many attempts to measure
the magnetic excitation spectrum of CeX and UX by INS
experiments in order to determine the anomalous coupling
mechanism in these systems. Discrete spin waves were
observed for CeSb, ' ' ' CeBi, ' and USb, whereas for
UN (Ref. 21) and UAs (Ref. 22) the magnetic response
was found to be spread diffusely in both energy and
momentum space. The broad features observed for UN
and UAs have been attributed to a fairly large degree of
f-electron delocalization. Another puzzling feature was
the apparent longitudinal nature of the collective excita-
tion in USb, which has been explained in terms of trans-
verse spin waves in a noncollinear triple-q structure.
Furthermore, the magnetic excitations in CeSb and CeBi
could not be consistently interpreted by a simple exchange
Hamiltonian. Only for CeBi some calculations of the
magnetic excitations within the CS model exist.

In this paper we present new DCNS and INS data for
the critical behavior and the magnetic excitations in
CeAs, CeSb, and USb. Furthermore, we give a detailed
theoretical investigation on the effects of anisotropic ex-
change interactions on the spin dynamics in these type-I
or -IA antiferromagnets.

In Sec. II the theoretical model is described. For the f
electrons the electrostatic and the spin-orbit couplings
dominate and only the ground-state J multiplets of the
magnetic ions are considered, which are split by the crys-
talline electric field. The anisotropic exchange interac-
tions are described in terms of ion-ion couplings expanded
in powers of the spin operators. In our model anisotropic
bilinear and isotropic quadrupolar interactions are as-
sumed. A mean-field (MF) calculation in all three spin
components yields the static magnetic properties. The
spin dynamics then are calculated in the random-phase
approximation (RPA) by use of the Green's-function for-
malism. Including anisotropic interactions, this formal-
ism has already been applied to paramagnets. In the or-
dered state, however, the RPA formulas strongly depend
on the actually realized spin structure and become very
complicated. For the AF-I magnets RPA calculations
have been performed, but isotropic interactions were as-
sumed. In this paper we give for the first time the RPA
formalism for AF-I and related magnetic structures in-
cluding anisotropic exchange interactions. The above for-
malism describes both the magnetic excitations and the
critical fluctuations and allows a quantitative analysis of
the whole spin dynamics as well as the static and critical
behavior of the considered magnetic system. Within a
two-level model closed expressions for the dispersion
curves of the magnetic excitations are given, which may
also apply to conventional spin-wave systems. Further-
more, the formalism developed here should be easily
adapted to other magnetically ordered states, such as the
type-II antiferromagnets, where similar results are expect-
ed.

In Sec. III the experimental details are given and in
Secs. IV and V the DCNS and INS results for CeAs,
CeSb, and USb are presented and discussed. The experi-
ments turn out to provide detailed answers to several key
problems. The basically new result of our investigation is
the observation of a splitting of the transverse spin-wave
excitation into modes with different polarization. This
splitting is a direct consequence of the anisotropic ex-
change interactions present in these systems. For CeAs
one of the spin-wave modes shows quadratic dispersion
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and nearly zero energy gap at the X points of the Bril-
louin zone, which has not previously been observed in an-
tlfcrromagncts. Fllrthcfl110I'c, froII1 thc observed excita-
tion spectrum for CCAs a collinear single-q spin structure
emerges in contrast to the triple-q configuration postulat-
ed by Burlet et a/. A report on the interesting new exci-
tation behavior observed in CeAs has already been pub-
lished. For CeSb the magnetic excitations together with
the static behavior indicate that in addition to the bilinear
exchange interactions strong higher-order magnetic two-
ion interactions have to be present, as recently predicted
by the p-f mixing model and resulting from DCNS ex-
periments in Cei „(La,Y)„Sb.' Obviously, the often
used "axial next-nearest-neighbor Ising" (ANNNI) and re-
lated models ' with competing bilinear interactions alone
do not apply to CeSb. Another interesting result is that
for CeSb the crystal-field strength was found to be not
conserved by going through the phase transition at Tz
The fourth-order crystal-field terms are drastically re-
duced in the ordered state of CeSb. Finally, the magnetic
excitations in USb give strong evidence for locahzed 5f
states and predict a very large crystal-field interaction for
this compound.

II. THEORY

A. Structural

The antiferromagnetic structures of CeX and UX are
characterized by longitudinal magnetic waves with corn-
mensurable modulation wave vectors

qo=(2'Ir/a )(qo 0 0)

qo
—(2m /a )(o,qo, o),

qo=(2m/a)(0 0 qo)

corresponding to a periodic stacking of ferromagnetic
(100), (010), or (001) planes, respectively, with the mo-
ments perpendicular to the planes. The single com-
ponents of the magnetic moments gpa(S~") at the lattice
sites R; are the results of a superposition of above longi-
tudinal waves and their higher harmonics

where the c„are complex numbers and depend on the ac-
tually realized magnetic structure.

The type-I antiferromagnetic structure (AF-I) corre-
sponds to a + —+ —stacking of ferromagnetic planes
with qo

——1. The type-IA antiferromagnetic structure
(AF-IA) has a ++——stacking and qo= —,'. For the
ferromagnetic state (F) we set qo ——0. The expectation
values for the single spins in the different structures then
become

B. Hamiltonian

To calculate the magnetic behavior of localized f-
electron systems a model Hamiltonian is used which in-
cludes crystal-field, anisotropic bilinear exchange, and
quadrupolar interactions:

This operator acts on the (2J+ 1)-fold degenerate
ground-state J multiplet of the f electrons. The calcula-
tions are performed in the Cartesian coordinate system of
the fcc crystal lattice and [001]~~z is the quantization
axis.

The crystal-field (CF) potential acts on each ion. The

sirlgle q double q triple q

Above considerations allow a collinear as well as a non-
collinear arrangement of the spins (see Fig. 1). In the col-
linear case the different (00qo) waves are separated, giv-
ing rise to different domains. For the a domain the a
component is the only nonzero spin component and there
is a single relevant ordering wave vector qo (single-q
structure). This magnetic structure has tetragonal sym-
metry (P14/mnc). In the noncollinear case different lon-
gitudinal (00qo ) waves are superposed, so that more than
a single qo is needed to describe the magnetic structure
(multi-q structure). Of special interest is the cubic config-
uration (Pn3) with an equal population of the three waves
parallel to [q000], [Oq00], and [00qo] (triple-q structure)
and the magnetic Inoments parallel to the (111) direc-
tions (Fig. 1.).

Neution diffraction experiments give identical patterns
for the collinear multidomain single-q or the noncollinear
triple-q spin configuration since in Fourier space there is
no difference between separation or superposition. An
identification of the actually realized spin structure is
only possible, if a single-domain state can be guaranteed,
e.g., by the application of uniaxial stress or in an external
magnetic field. More direct evidence for a single-q spin
structure, however, is the observation of a tetragonal lat-
tice distortion or a tetragonal symmetry of the magnetic
excitations (see Sec. V).

In the following we will always refer to the full nuclear
fcc Brillouin zone independent of the realized magnetic
structure. In the case of a single-q configuration with
tetragonal symmetry we will distinguish between the dif-
ferent (001) and (110) directions and denote the symme-

try points (2m/a )(100)=X„, (2m /a )(010)=X», and
(2n/a )(001)=. X, (see Fig. 2.).

FIG. 1. Different possible spin configurations for the AF-I
structure. Only one-quarter of the fcc nuclear cell is displayed.
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with

0', =3(S')'—S(S+1),
0', = —,

' [(S+)'+(S )'],
and effective quadrupolar coupling parameters

~aa
EIJ 2 KIJ ~

C. Static behavior

I. Mean field -approximation

FIG. 2. Brillouin zone of the nuclear fcc lattice. For magnet-
ic structures with tetragonal symmetry the X points are labeled

as X„,X„,and X,.

The many-body Hamiltonian Eqs. (6)—(8) may be re-
duced to a single-ion Hamiltonian by the mean-field ap-
proxiination (MF). The bilinear exchange and the qua-
drupolar interactions yield dipolar and quadrupolar
molecular fields, respectively, which split the crystal-field
levels. %e obtain the MF Hamiltonian

corresponding operator is given by

Mcp ——84(04+ 50' )+86(06—2106),
where O„are Stevens operators and 84 and 8& are ef-
fective crystal-field parameters. For Ce + with J= —', the
sixth-order term vanishes (86 ——0). The octahedral crystal
field splits the J multiplet of the free ion into different
crystal-field levels, namely for Ce +, I 7, 1"s and for U +,
r, ,2I,.

The anisotropic bilinear exchange interactions are treat-
ed as two-ion interactions in a generalized Heisenberg
orID

J,J~S; S&~ . (6)
&~Ji&~P

S; and S~~ (a,P=x,y„z) are components of the total an-
gular momentum operators at the lattice sites R; and RJ,
respectively, which transform in the usual way as
S-+=S"+iS~. The J;J~ are the most general symmetrical-
ly allowed effective bilinear exchange interaction tensors
(see the Appendix). The coupling tensors have the same
symmetry as the dipolar interactions and transform from
one lattice site to the other with the full fcc symmetry.
For the i th-neighbor shell the number of coupling param-
eters reduces to diagonal elements J and J with I and t
for a predominantly longitudinal or transverse spin con-
figuration with respect to the bonding axis of the ions,
respectively, and off-diagonal elements Ji'.

In close analogy to the bilinear interactions we write for
the quadrupolar interactions

~~= — g sc,', i'g, g,i'
&~J~~P

with the quadrupole operators

Q; =3(S; ) —S(S+1) (a=x,y, z)

and effective coupling tensors E,'J ~ We only consider th. e
case of diagonal and isotropic interactions and get

A g
———QICq(020' +302 02 )

E,J

4 Mp
——4 cp —+2J (qo)(S )S

a, P

—2E(qo )( ( 02 )Oi +3(02 )02 )

where J ~(q) and E(q) are the Fourier-transformed in-
teractions and qog is the ordenng wave v~tor of the quad
rupole structure. From symmetry (see the Appendix) we
have

J""(qo)=J~~(qo) =J (qo) =Jo

J ~(qo)=O (a&P) .

Setting

rC(qo~) =Iso

we finally arrive at the MF Hamiltonian

„=A —2J, ( (S")S"+ (S")S'+ (S')S')
—2Eo( (02 )02+ 3( Oz )0 i )

(12)

where, in general, all a„~ are nonzero and complex num-
bers. The expectation value for an operator X is given by

(X)= gp„(n iX i
n) (16)

with Boltzmann occupation numbers

p„=(1/Z)e

and the partition function

8„/kT—

The above Hamiltonian may be solved self-consistently,
leading to MF solutions with eigenvalues E„and eigen-
vectors

i
n)

4 Mp i
n ) =F„

i
n ) (n =1,2, . . . , 2S+1) .

The eigenvectors are linear combinations of the pure an-
gular momentum wave functions

)n= g „ai S) (S' = —S,—S+1, . . . , S),
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r = —kT ln(Z)+ J,((S")'+(Si')'+ (S')')

+~,((0', &'+3&0,'&') (20)

for all of the cases (a)—(d) yields the energetically lowest
state and the easy direction of the moments. The energy
difference between states with different spin directions
arises from the single-ion anisotropy of the system. This
anisotropy is given by the crystal-field and the quadrupo-
lar interactions which both favor a particular spin direc-
tion. In cubic symmetry the two-ion anisotropy of the bi-
linear exchange interactions has no influence on the
single-ion anisotropy [compare Eq. (11)].

D. Dynamic behavior

To describe the spin dynamics of localized f-electron
systems we use the Green's function formalism in the
random-phase approximation (RPA). The formalism
treats the collective fluctuations of the system as perturba-
tions to the mean-field state. The noninteracting Green's
functions are the single-ion susceptibilities given by the
MF eigenstates, and the collective fluctuations are
described by the wave-vector-dependent susceptibilities or
the spin fluctuations of the single ions due to the pertur-
bation induced by the fluctuations on their neighboring
1ons.

1. Single-ion susceptibilities

In MF approximation the spin dynamics of a single ion
is given by the single-ion susceptibilities

p + (n }S ~m)(m ~S~~n)
E~ —E~ —Q7

+~..„X [& iS i

1

n, m

—&S &(S~)], (21)

where E„E=h„and (n
~

—S
~

m ) ( m
~

Si'
~

n ) =M„~
(a,P=x,y,z, +,—) are the tra'nsition energies and matrix
elements between MF eigenstates, respectively.

In the paramagnetic state the single-ion susceptibility

2. Single-ion anisotropy

The MF Hamiltonian Eq. (13) always has at least four
different types of self-consistent solutions with

( ) &S")=&S"&=(S'&=o,

(b) (S"&=(S )=o, (S'&&0,

(.) (S"&=0, &S'&=&S'»0,

(d) (S"& = &S'& = &S'&@0 .

Case (a) corresponds to the paramagnetic state, whereas
for cases (b), (c), and (d) the magnetic moments

p=gpii(S) are ordered along the cubic symmetry direc-
tions [001], [011],and [111],respectively. Consideration
of the free energy

Xo (~, T)= Xo"(~—, T)=(i/4)[XO+ (~,T) X, +—(co, T)]

=Xo(et), T),
Xo (co, T)=0 (a@z) .

For y,
~ ~
[111]the MF eigenstates are complex and become

linear combinations of all pure angular-momentum wave
functions. Thus, all matrix elements are nonzero. How-
ever, the symmetry reduces the number of different ele-
ments of the susceptibility tensor to two, namely a diago-
nal (d) and an off-diagonal (a) susceptibility

Xo (~, T) =Xo (~,T) =Xo (~,T) =Xo(~,T),
Xo'(~ T)=XO(~ T)=XO(~, T)=Xo(~ T),
Xo~(oi, T) =(X())'(ro, T) .

(24)

2. Wave-vector-dependent susceptibilities

Based on the above single-ion susceptibilities the wave-
vector-dependent susceptibilities of the coupled spin sys-
tem may be calculated. In the crystal lattice a perturba-
tion by an external field causes a change of the moments
at the single sites, which directly implies a change in the
mean-field describing the coupling among the different
spins. Thus, an ion at a given lattice site R; is influenced
not only by the external perturbation, but also by a change
in the internal molecular field

d (S; ) = Q Xo~(dH~„; +dH MF; ),
P

(25)

where the fluctuation in the molecular field is due to the
change of the spins on neighboring sites

dH~F; ——+21(~&rd(SJ) . .

In the paramagnetic (P) and the ferromagnetic (F)
state the single-ion susceptibilities are equal for all ions in
the lattice. However, for the antiferromagnets only the
diagonal susceptibilities are equal, whereas the sign of the
off-diagonal single-ion susceptibilities changes from sub-
lattice to sublattice. Similar to Eq. (3), we have

tensor reduces to a single paramagnetic susceptibility

Xo (co, T ) =X~/(co, T)=Xo (co, T)=Xo(~,T),
Xo~(co, T)=0 (a&P) .

In the magnetically ordered state the single-ion suscep-
tibilities depend on the direction of the ordered moment.
For @~~[001] the MF eigenvectors are real and for sym-
metry reasons the matrix elements M„~+, M„~, and
M„(a&z) vanish. Only a real longitudinal (~}), a real
transverse (J.), and an imaginary off-diagonal (a) suscep-
tibility remain:

Xo (co, T ) =Xji(co, T),
X() (oi, T)=X~()"(~,T)= ,'[Xo+ —(co,T)+Xo+(co,T)]

=Xo (co, T),
(23)
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aa aa
Xo j —+0

X'=e' "'X,' (AF —I) (27}

Taking into account the above site dependence of the
single-ion susceptibilities the Fourier transformation of
Eq. (25) yields for paramagnets and ferromagnets

d &S (q)) = QXP dH~„(q)+ g 2J~ (q)d &S (q))

i ~.R.
Xo~= —,

' [(1 i—)e ' '+(1+i)e ' ']Xa~ (AF —IA)

(a&p, a&a, e&p, and a,p, e=x,y, z) for type-I antiferromagnets

(28a)

d &S {q))=X dH, „(q}+g 2J r(q)d &Sr(q) )

+ y X,~ dH~„(q+q;)+ /2J~"(q+q')d &Sr(q+qo') (28b)

for type-IA antiferromagnets

d &S (q) ) =Xo dH, „(q)++2J "(q)d &Sr(q) )

+ g —,'(1 i)x,~—dH~„(q+q;)+ +2J~r(q+qo)d&S (q+qo))
P~a y

T

+ g —,'(1+i)xp dH~„(q —qo)+ +2J~r(q —qo)d&Sr(q —qo))
y

We arrive at a system of linear equations coupling the
different components x,y,z of spin fiuctuations. In the
paramagnetic and ferromagnetic state only fiuctuations
with the same wave vector q are coupled leading to a
3)& 3 matrix. In the antiferromagnets the different sublat-
tices may fiuctuate in phase or out of phase. Thus, the
corresponding system of equations is enlarged to a 6X6
matrix for a single-q AF-I state or even a 12)& 12 matrix
for triple-q AF-I and single-q AF-IA magnets. Solving
the system of equations yields the single spin fluctuations
d &S~(q) ) and the wave-vector-dependent susceptibilities
X'~(q) =d &S (q) ) ldH~„(q).

In the paramagnetic and ferromagnetic cases the above
system of equations may be written in tensor form yield-
ing the well-known RPA formula

X(q) =Xo[ I +2J(q)x(q) ] . (29)

With diagonal coupling tensors the system of equations
is reduced, and the different components of the wave-

vector-dependent susceptibilities partly decouple. This
holds especially for some symmetry directions (e.g., [q00],
[OqO], [OGq], [Oqq], [qGq]), where J @(q)=0 (a&P).
For the resulting eave-vector-dependent susceptibilities
we obtain the following.

For paramagnets

Xo
X (q) = z (a=x,y, z),

1 —2J (q)xo
X'~(q)=0 (a~P) .

For ferromagnets with p,
~ ~

[001]

2 (Xo +Xo +)—J~"(q)xo Xo
+

X { )=
2—[J""(q)+J"(q)](X+ +Xo +)+2J (q)J"(q)x+ X, +

—,(Xo +Xo +)—J (q)xo Xo
+

X~'(q) =
2—[J (q)+J"~(q)7(xo +Xo +)+2J (q)J~~(q)xo Xo

+

+0
X (q)=

1 —2J (q)XO

i —,'(Xo —Xo +)
X"~(q)= —X~"(q)=

2 —[J (q)+J~(q)](x(~) +Xo +)+2J (q)J~"(q)xo Xo
+

X (q)=x~'(q)=0.
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For single-q type-I antiferromagnets with pI I
[001]

2(Xo+ +Xo+)—J"(q+qo}Xo+ Xo+
X ()=

2—[J (q)+J»(q+qp)](XQ +Xll +)+2J (q)J»(q+qpNQ Xp
+

—,
'

(Xo +Xll ) —J (q+ qll)XQ Xo
+

X»(q) =
2-[J»(q)+J"(q+q', )](X+-+X;+)+2J»(q)J"(q+q', )X,+-X;+ '

Xo
X (q)=

1 —2J (q)Xll

X ~(q)=0 (~&p) .

For single-q type-IA antiferromagnets with p I I
[001]

X""(q)=[—,(Xp+ +Xll +)——,'(&1+23)XQ+ Xp
+ ——,(A 1+232+33)(XQ +Xll +)'

+ —,(&1&2+&233+&3&1)(XQ +Xll +)Xll Xp
+ —313233(X(~) Xo +) ]

x[2 (+0++1++2++3)(XQ +Xp ) (+QA1+A1A2+A2A3+A3i40)Xll Xp

+ 4 ~0~1+~1~2+~2~3+~3~0+2~0~2+2~1~3)(XQ +X0

(~0~1~2+~1~2~3+~2~3~0+~3~0~1)(XQ +Xo )X0 Xo +2~0'41~2~3(X0 Xp } ]

(32)

(33)

with

~0 =J (q) ~ i =J"(q+qo)

A2 ——J (q+ 2qo), A 3
——J»(q+ 3qp),

X (q) analogous to X (q) with x and y interchanged,

Xo
X (q)=

1 —2J (q)Xll

X ~(q)=0 (a&p) .

For triple-q type-I antiferromagnets with p, I I
[111]

X (q) = tXo —2(~ i+~2 }(
I
Xo I

' —
I
Xo I

')+4~ i~2[(Xo)' —3&o
I Xo I

'+(Xo)'+(Xo")']
I

X I 1 —2(AQ+A 1+A2)XQ+4(AQA1+A1A2+A2AQ}( I XQ I

—
I Xll I

)

—&& & 3 [(Xo")'—3Xo IX'oI +(X'o)'+(X'o')']I (34)

with

Ap ——J""(q), A 1
——J»(q+qp), A2 ——J (q+qo),

X»(q) and X (q) analogous with cyclic permutation of
x,p', z and

X ~(q)=0 (a&p) .

In general, the off-diagonal elements of the Fourier-
transformed exchange interaction tensor couple all com-
ponents of the spin fluctuations, and the full system of
equations (28) has to be solved. The resulting expressions
for the particular susceptibilities become very complicated
and are not explicitly reproduced here.

3. Magnetic excitations

The magnetic excitations (crystal-field excitations, mag-
nons or spin waves) of a spin system are given by the
poles of the wave-vector-dependent susceptibilities [e.g. ,
Eqs. (30)—(34)]. In a crystal the resonances co=A,„of
the single-ion susceptibilities [Eq. (21)] become dependent
on the wave vector q by the exchange interactions leading
to dispersion curves co(q). The intensities I(q) of the ex-

citations are proportional to the residue of the correspond-
ing poles. In general, the dispersion curves of the magnet-
ic excitations and the intensities have to be calculated nu-
merically. However, for a two-level system simple expres-
sions for oi(q) and I(q) may be obtained as shown below.

In the paramagnetic state only the crystal field acts on
the single ion and splits the Jmultiplet of the free ion into
crystal-field levels. As a simple example, for Ce + we get
a doublet I 7 and a quartet I 8 separated by hcF ——36084.
The paramagnetic single-ion susceptibility Eq. (22) then
becomes

p 80 ~CF
Xo(~ T)= » 2(S'r, —Pr, »

~CF
(35)

The anisotropic exchange interactions split the crystal-
field excitation into three modes with different polariza-

and with diagonal exchange interactions we obtain from
Eq. (30) for the dispersion and the intensity of the
crystal-field excitation

(q) = [~cF—'9 J"(q)~cFV r, —ur, )]'"
I (q)= —,hcF(pr —pr ) (a=x,y, z},
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tions which may be partly degenerate along symmetry
directions.

In the magnetically ordered state the degeneracy of the
crystal-field levels is completely lifted by the molecular
fields. Each transition between two MF eigenstates leads
to at least one dispersion curve. If the molecular fields
are strong compared to the crystal field, we get nearly
pure Zeeman levels ~$), ~$ —1), . . . ,

~

—$). Then at
T-0 the ordered magnetic moment has almost the value
of the free ion, and the magnetic excitations correspond to
conventional transverse spin waves. In the RPA formal-
ism only the two lowest-lying levels become relevant, and
the system is well described by a two-level model with a
transverse transition. On the other hand, for a Kramer's
ion a strong crystal field may create a well-isolated
ground-state doublet which forms an effective $= —,

'
sys-

tem, and again a two-level model with a transverse transi-
tion applies.

For p~ ~[001] and T-0 the relevant single-ion suscepti-
bilities [Eqs. (21) and (23)] for the two-level model with a
transverse transition are

co (q) =pi»(q)

=
I [6—J (q)M][b, —J»(q)M] I

'~

I"(q}= [MS—J»(q}M']/2 (q},

I»(q)=[MA, —J (q)M ]/2aP~(q) .

For single- q type-I anti ferromagnets

co (q)= ([b —J (q)M][b, —J»(q+qp)M]I'~

pi»(q) =
I [6—J (q+qp}M][b —J»(q)M] I

'~'

I (q)=[MD, —J»(q+qp)Mz]/2' (q),
I»(q)=[MD, —J (q+qp)M ]/2pi»(q) .

(38)

(39)

where b, is the energy splitting of the two levels, and M is
the transition matrix element. Then only xx and yy exci-
tations exist, and with J ~(q}=0 (a&P) we obtain the
following.

For ferromagnets

Xp+ (pi)=,Xp +(pi) =
6—QP 6+co

(37)
For single-q type-IA antiferromagnets

xx( ) (Qxx+Qxx)1/2

Q, =[6,——,
'
(Ap+Az)M][b, ——,

'
(A ]+33)M],

Qp ——[(Qi ) —(6—ApM)(b, —HAM)(b, —AzM)(b —33M)]'i

[Mb —,
'

(A )+—A3)M ][co+(q)] —M(b —A )M)(h —22M)(h —AgM)
I+ (q)=

4I [~+ (q}]'—[~+ (q}]']~+(q)

(40)

with

~p=J"(q}, ~, =J»(q+q'p},

~,=J (q+2q', ), ~, =J (q+3q', )

and ay/(q} and Pg(q) analogous with x and y inter-
changed.

For }M,
~
~[111]the matrix elements of a transverse transi-

tion (here transverse means with respect to [111])are from
symmetry

(q) =[52—4(Ap+A (+32)Mb

+12(AoAt+AiAz+AzAp)M ]'i
I (q)=[MD, —3(A~+Hi)M ]/co (q),

where fora=x

Ap ——J (q), A[ ——J»(q+qp), &2=J (q+qp),

for a=y

Ap ——J»(q), A (
——J (q+qp), A2 =J""(q+qp),

(43)

M"i'=Mi"=M = ( —, +i v 3/2)M—,
(41)

for a=z

y( )
2MB

—QP
2 2

Mh+i v 3Mco-
Xp pi

(42)

In triple-q structures a transverse transition leads to a
response in the xx, yy, and zz components of the suscepti-
bility. For the magnetic excitations in the AF-I triple-q
state with J ~(q) =0 (a&P}we get

and for the two-level model the single-ion susceptibilities
[Eq. (24)] at T-0 become

Ap=J (q), A, =J (q+qp), &2 ——J»(q+qp) .

From the dispersion behavior obtained for the two-level
systems given above, we conclude that each MF transition
leads to only one dispersion curve in ferromagnets,
whereas in antiferromagnets the anisotropic exchange in-
teractions split the transverse excitations into modes with
different polarization.

Up to now we only considered the case of diagonal ex-
change interactions. %ithin the two-level model it may be
shown that in a single-q AF-I state the off-diagonal ele-
ments of the interaction tensor yield an additional cou-
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pling of the xx and yy fluctuations, which splits the MF
transitions into different modes also along symmetry

directions where they are degenerate in the diagonal case
(e.g., [qqq]). We get

co (q)=(Qi —
i Q2i )'i'

t0"s(q)=(Q, +
~
Q,

~

)'~2,

with

(44)

Qi ——5 ——,(A0+ A 1+32+33 )Mb + —,(A0A3+ A1A2 —28081)M

Q2 ——I[—,'(A0 —Ai —32+33)ME——,
'

(A0A3 —A1A2)M ] +(80—81) M 5

+(~ 081 +~1 80+~ 281 +~3 80)(80 81)M ~+(~0~281 ~0~38081 ~1~28081+~1~380)M

A0 ——J (q), A1 ——J (q+q0), A2 ——J3's(q), A3 =Jss(q+q0),

8 =J"~(q), 8, =J"~(q+q') .

A similar splitting may also be expected for AF-IA and
triple- q magnets.

The magnetic excitations provide detailed information
on all the parameters of the model Hamiltonian con-
sidered. The crystal-field transitions in the paramagnetic
state determine 84 and 86, and the MF transitions in the
ordered state yield, in addition to the crystal-field parame-
ters, the molecular-field parameters J0 and E0. The
dispersion behavior of the single transitions give the
wave-vector dependence of the bilinear exchange interac-
tions which is defined by the different two-ion couplings.

4. Qttasistatic fluctuations

The quasistatic short-range ordered spin fluctuations
become important in the critical temperature region of a
second-order phase transition and are therefore often
called critical fluctuations. Following the "fluctuation-
dissipation theorem, " they are described in the quasistatic
approximation by the static or elastic part of the wave-
vector-dependent susceptibilities.

In the paramagnetic state the wave-vector-dependent
susceptibilities along [q00], [OqO], and [00q] where
J ~(q)=0 (ct&P) become [Eq. (30)]

X0(co=0)
(q, t0=0) =

1 —2J (q)X0(co =0)
(45)

The single susceptibilities X (q, to=0} are directly related
to the corresponding exchange interactions J (q) and
show the same symmetry. The fluctuations X (q, co=0)
are peaking at the ordering wave vector qo where the cou-
plings J (q) reach their maxima. By expanding the
J a(q) around q0 we get the famous Ornstein-Zernike
formula which suggests that the susceptibilities become
Lorentzians in q space with half-widths proportional to
the quadratic term in the above expansion. The position
and half-widths of the Lorentzians define the structure
and mean inverse correlation lengths of the fluctuations,
respectively. The anisotropic exchange interactions lead
to two different inverse correlation lengths K

I I

and K1,
longitudinal and transverse to the spin direction. %e get

(q0+qll'm 0)-1/(Kll+&II ) ~

(q0+ qi, t0 ——0)—1/(Ki+ q1 ) .

For AF-I fluctuations with q0 ——1 the anisotropy of the
inverse correlation lengths Kll/Ki becomes

K

Kg

——,J, + —,J', +J' +J —5J' +2J +2J' +
—J ) +J2+4J3 —2J3+4Jg+ .I I I t

' ]/2

(47)

Obviously the anisotropy of the quasistatic fluctuations
reflects the exchange anisotropies to the different neigh-
bors in an integral manner.

The information on the exchange interactions given by
the quasistatic fluctuations is limited. One only finds the
wave vector for which the exchange couplings reach a
maximum as well as the behavior of the Fourier-
transformed coupling tensor in the vicinity of that max-
imum. Concerning the anisotropy of the exchange in-
teractions only qualitative statements are possible.

E. Quadrupolar effects

In the above calculations of the spin dynamics the qua-
drupolar interactions entered only as the single-ion pa-

I

rameter E0. In fact, the effects of a possible tetragonal
lattice distortion by magnetoelastic interactions are
correctly described by the quadrupolar single-ion Hamil-
tonian. However, the two-ion quadrupolar interactions
exhibit a wave-vector dependence and will influence the
dispersion behavior of the system. Usually in the ordered
state there is an internal coupling of the spin and quadru-
polar moments of the single ion, and the spin and quadru-
polar fluctuations get mixed. For isotropic interactions
detailed calculations along this line have been er-
formed. With anisotropic exchange interactions J (q)
and quadrupolar interactions E(q) the systems of coupled
equations [Eq. (28}],however, become very large and com-
plicated. Here the variations of K(q) as a function of q
are assumed to be small enough that their influence on the
dispersion behavior may be neglected.
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F. Neutron cross sections

The wave-vector-dependent spin susceptibilities may be
directly measured by neutron scattering. In contrast to
other experimental methods neutron scattering allows us
to measure the susceptibilities in the whole reciprocal
space.

Inelastic neutron scattering experiments (INS) yield the
magnetic excitations or the inelastic part of the wave-
vector-dependent susceptibilities. The cross section is

( 1 e —w/kT) —IF2(Q)
dQ Bc&

X g(5 p
—Q Q~/Q')ImX ~(q, co, T),

a, P
(48)

where Q=q+r is the scattering vector and r is a
reciprocal-lattice vector. E(Q) is the magnetic form fac-
tor. With the use of the polarization factor
(5~p —Q Q@/Q ) neutrons can only couple to spin fiuc-
tuations perpendicular to the scattering vector Q, which
allow us to determine the single components of the sus-

ceptibility tensor by measuring in different Brillouin
zones. In a magneticaiiy ordered crystal different
equivalent domains usually coexist and a superposition of
the corresponding susceptibilities is observed. The
scattering contributions of the individual domains may be
obtained by forcing the crystal to form a magnetic single
domain state by application of external fields.

The elastic scattering at the short-range-ordered spin
fluctuations is called diffuse critical neutron scattering
(DCNS). In the quasistatic approximation the cross sec-
tion is

-F (Q) g(5 p QQ~/Q2)k—TX ~(q, co=0, T) .
n

(49)

III. EXPERIMENT

The experiments were performed on single crystals of
CeAs (-0.3 cm ), CeSb (-0.1 cm )„and USb (-0.7
cm ) which were grown by the recrystallization method
by &ogt and Mattenberger at the Eidgenossische Tech-
nische Hochschule Ziirich-Honggerberg (Zurich, Switzer-
land).

Most of the INS measurements were carried out on the
triple-axis spectrometers at the reactor Saphir at
Wurenlingen. To gain intensity doubly bent monochro-
mator and horizontally bent analyzer systems were used,
both made of pyrolitic graphite. The measurements were
performed in the neutron energy-loss configuration with
the analyzer energy kept fixed at 13.7 or 14.9 meV and
pyrolitic graphite as the higher-order filter. The high-
resolution INS experiments on CeAs were carried out at
Ris@ National Laboratory on the triple-axis spectrometer
TAS7 which is installed at a neutron guide connected to a
cold H2 source. Then a 5.0- or 2.6-meV analyzer energy
and a Be filter were used.

The DCNS experiments were performed on a double-
axis spectrometer at %urenlingen. The detector could be
moved out of the scattering plane allowing q scans in all
three directions of the reciprocal space. The neutron ener-

gy was 13.7 meV and a 10-cm-thick pyrolitic graphite fil-
ter removed the higher-order contamination of the beam.
Cryostats and closed-cycle He refrigerators were used as
cooling systems. For measurements with an external
magnetic field the sample was mounted in a 45-kOe su-
perconducting magnet.

IV. ANISOTROPIC CORRELATION BEHAVIOR
ABOVE T~

DCNS experiments performed for UX (Refs. 9—11) and
CeX (Refs. 12—14 and 17) nicely demonstrated the pres-
ence of anisotropic bilinear exchange interactions. For all
these compounds (with the exception of UAs) DCNS
shows diffuse I.orentzian peaks at the AF-I centers or the
X points of the Brillouin zone. The DCNS intensity is
seen near I 110) but not at I001I, which means that ac-
cording to the polarization factor in the neutron cross sec-
tion Eq. (49) the aa fluctuations in the X~ points are
much larger than the fluctuations in the other spin com-
ponents

(X~,co=0) ~~X~~(X~,co=0) (a&P) .

Using Eq. (45), it directly follows that the exchange cou-
plings J~~(q) reach a maximum at the X points and that
the interactions are strongly anisotropic

J (X )&&J~~(X ) (a&P) .

The observed DCNS intensity distributions are aniso-
tropic in q space. The contours of equal intensity are ci-
garlike as schematically is shown in Fig. 3, with the ex-
ception of CeAs which exhibits a lenslike intensity distri-
bution. Typical DCNS scans for CeSb and CeAs are
shown in Fig. 4. The half-widths of the DCNS peaks
directly yield the inverse correlation lengths a~~ and xz,
parallel and perpendicular to the spin direction. The an-
isotropy of the correlation lengths ~~~/ai turned out to be
almost temperature independent:

=O.6+O. 1 (CeAs)

x((/zi ——1.8+0.3 (CeSb)

K(
)
/Ki =5.0+0.5 (USb )

..(222)

(OO2)~
~(202)

/

=~( }0») I

(O2O), ,

~- --——-= ——— --~.-- i
( )(000) ' (200)

II

FIG. 3. Situation in the reciprocal space of CeX and UL for
T ~ Tz.. diffuse neutron scattering is observed in the AF-I
centers with anisotropic inverse correlation lengths K~~ and ~, .
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(110 ) peak T=16.77 K

Cooper' could explain above change in the anisotropic
correlation behavior in terms of the CS model with
hybridization-mediated two-ion interactions.
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V. MAGNETIC EXCITATIONS

A. CeAs, AF-I single-q structure

CeAs orders below T~-8 K in a AF-I structure. In
the paramagnetic state at T =9 K, INS experiments were
performed along the symmetry directions [00q], [qqO],
and [qqq]. Consistent to earlier powder measurements of
Heer et al. a crystal-field transition with ECF-13 meV
was found. The lowest-lying J multiplet of the Ce + ion
is split into the doublet I 7 as the ground state and the
quartet 1 s as the excited state. The observed crystal-field
transition shows a slight dispersion [Fig. 5(a)] and is split
into two modes at the X points as a consequence of aniso-
tropic magnetic interactions. At (003) only the energeti-
cally higher mode is observed, whereas at (110) both
modes appear (Fig. 6). Because of the polarization factor
in the neutron cross section at (003) one measures only X""
and X"", which are both equal by symmetry. However, at
(110) the xx and yy excitations have half intensity, and in
addition the zz excitation, which has a lower energy, ap-
pears. The magnetic excitations co~~(q) in the paramag-
netic state [Eq. (36)] are directly related to the correspond-
ing interactions J (q), and we get

J (X,)))J~(X,)=J~~(X,),

0 ~

~~ 200
C

100
C

200

100

0.3
I

0.2
I

0.1 0 0.1

IqI ( 41)
0.3

FIG. 4. DCNS intensity distributions in CeSb and CeAs: q
scans along the cubic (OOq) directions through (110) show

Lorentzian peaks arith anisotropic half-widths. The experimen-
tal resolution is indicated by the horizontal bars.

The last value is from Ref. 9. The anisotropic correlation
behavior above T~ is a direct evidence for anisotropic
magnetic interactions. For CeSb and USb the couplings
within the ferromagnetic (001) planes are stronger than
the interplanar couplings, whereas for CeAs the ratio of
the coupling strengths is reversed. Recently, Kioussis and

which is consistent with the DCNS experiments. The
dispersion curves of the crystal-field excitation may be
calculated by Eq. (36) which reliably defines the crystal-
field parameter 84.

Since the crystal-field splitting of —160 K is very large
compared to the ordering temperature of -8 K, the mag-
netic behavior of CeAs is dominated by the well-isolated
ground-state doublet I 7. In the ordered state the doublet
is split by the molecular field. The transitions within the
doublet were measured by INS experiments with cold neu-
trons. Figure 7 shows typical scans and in Fig. 5(b) the
observed energies of the excitations at T =4.2 K for wave
vectors along the symmetry directions of the fcc Brillouin
zone are summarized.

CeAs exhibits a fundamental new magnetic excitation
behavior. At the X points the dispersion is quadratic with
a nearly zero energy gap of -0.03 meV (Fig. 8). This is
in contrast to the linear dispersion which is generally ob-
served for antiferromagnetic magnons.

Similar to the crystal-field excitation the doublet transi-
tion is split into two modes at the L points. The lower-
lying mode is observed near (110) but not near (001) (Fig.
7), indicating an apparent longitudinal character of the ex-
citation. Taking into account the multidomain structure
of the crystal, however, this mode clearly corresponds to a
transverse spin-wave excitation as shown belo~.

By application of a magnetic field of 21 kOe along
[110] (or 40 kOe along [210]) in CeAs a single-domain
single-q AF-1 state with qo (2n/a)( , 010——) (z domain) is
obtained. Then the excitations of wave vector qII[00q],
perpendicular to the ferroroagnetic planes, show normal
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FIG. 5. Dispersion curves of the magnetic excitations in CeAs: (a) crystal-field transition I 7~I 8 in the paramagnetic state at
T =9 K; (b) spin waves in the multidomain AF-I single-q state at T =4.2 K and H=O; (c) spin waves in the AF-I z domain at
T =4.2 K. The solid lines represent the theoretical dispersion curves calculated with the parameters in Table II.

spin-wave behavior and a large energy gap of 1.2 meV at
the X point (Fig. 7). But for q~~[q00] and q~~[OqO],
within the (001) planes, the peculiar branch with nearly
zero energy at the X„and X» points is observed [Figs. 7
and 5(c)]. Figure 5(c) shows the excitation spectrum of
the z domain again within the full nuclear Brillouin zone,
but with respect to the tetragonal symmetry of the single-

q AF-I structure.
The intensity behavior of the excitations in the single-

domain state (H&0) yields the polarizations of the dif-
ferent branches. The neutron intensities near (001) and
(110) (Fig. 7) indicate a transverse character of the excita-
tions. At (001) the polarization factor allows only trans-
verse excitations (X""and X»»), whereas at (110) the same

transverse excitations appear with half the intensity, but it
is also possible that longitudinal excitations could be ob-
served. The excitation spectra for wave vectors along the
symmetry direction [10q] from (120)=X„ to (121)=X»
(Fig. 9) finally allow the determination of the polarization
of the two split transverse branches. There the polariza-
tion factor is -0.8 for the xx excitations and -0.2 for
the yy excitations. Thus the more intense excitation with
the energy minimum at the X„point has xx polarization,
and the weaker mode with the energy minimum at the X~
point has yy polarization.

Obviously the zero-field spectrum in CeAs [Fig. 5(b)]
can be considered as a superposition of the appropriate
spectra [Fig. 5(c)] of the three equivalent (001) domains,
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FIG. 6. INS spectra of the crystal-field excitation I 7~l."8 in

the paramagnetic state of CeAs indicating a splitting of the
transition at the X points.

FIG. 8. Quadratic dispersion for the spin waves at the X
points of CeAs at T =4.2 K.

corresponding to a multidomain AF-I state. In particular,
the [00q] direction of Fig. 5(b) is just a superposition of
the [00q] and [q00] directions in Fig. 5(c). The observa-
tion of two higher-energy excitations along [00q] in zero
field direx:tly demonstrates that the spina in CeAs are or-
dered in a single-q structure. The tetragonal symmetry of
the single-q structure allows different excitation energies
for wave vectors within or perpendicular to the ferromag-
netic planes, both of which can be observed simultaneous-
ly in the multidomain crystal. For the triple-q structure

with cubic symmetry the [q00], [OqO], and [00q] direc-
tions are equivalent and only a single higher-energy mode
is expected. A comparison of the INS spectra for the
single- and multidomain crystal shows no change in the
excitation peak at (002), but a significant broadening of
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FIG. 7. INS spectra of the I"7 excitation in CeAs for the
AF-I multidomain state (8=0) and the AF-I z domain (H&0).

0.5 ~.0 &.5
Energ y ( rr)e'{)/ )

FIG. 9. INS spectra in the AF-I z domain of CeAs for wave
vectors along [10q]. The strong peak {long arrow) and the weak
peak (short arrow) indicate the xx and yy excitations, respective-
ly.
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the peak at (00—', ) is observed (Fig. 10), which supports
the existence of two slightly different high-energy excita-
tions at (00—,). Furthermore, INS measurements in zero
field at T =2 K (where line broadening due to relaxation
effects become negligibly small} clearly show two higher-
energy peaks in the inultidomain state at (00—, ) (Fig. 11}.
Above INS experiments undoubtedly prove the multi-
domain single-q AF-I state for CeAs in zero field.

The particular magnetic excitation behavior observed in
CeAs is the consequence of anisotropic bilinear exchange
interactions. In fact, the model derived in Sec. II excel-
lently describes the magnetic excitations in the ordered
state as shown below. As a first step we have neglected
the single-ion anisotropy due to higher-lying quartet states
and the quadrupolar interactions. The two isolated I 7
levels then form an effective S = —,

'
system with

S ={S')=+—', at T =0, and the calculation for the two-
level model [Eq. (39)] applies. For the z domain the
molecular-field splitting becomes 5=4S J' (qo)=4S Jo,
and the matrix element is M =4S . For the dispersion
behavior of the magnetic excitations we then get

~ (q) =4S'{[Jo—J (q)][Jo—J (q+qo)]) '"
oP'(q) =4S2I [Jo—J»"(q)][Jo—J (q+qo)] I

' (50)

co (q=(1,0,q))=16S m' A iq +
(51)

CeAs [00 2] [ 0 0 3/2 ]

Hw0
4,.2 K

At the X„point the xx excitation becomes co (q)=0,
since J~(X, )=Jo and J»»(X, +qo)=J (X»)=Jo, and
similarly oi»»(q) =0 at the X» point. However, at the X,
point both excitations oi and o»»» have nonzero energy, so
that the observed behavior of the magnetic excitations is
correctly reproduced. The quadratic dispersion at the X
point is obtained by expanding the exchange coupling ten-
sor:

co (q=(1+q, 0,0))=co (q=( l,q, 0))

=16S m AiApq +

2K
[ 0 0 3i2 ]

8 100-

0.5
l

1.5 2

with

A i
——( ——,

' Ji+ —,
' JI+Jp+ J3 —5J3

+»'+2J'+ . . )'"
A2 ——( Ji+J2+4—J3 —ZJi+474+ . . )'

Obviously, the dispersion minimum displays the tetrago-
nal symmetry of the exchange tensor.

We arrive at the interesting result that any 5= —,',
type-I, fcc antiferromagnet with anisotropic exchange in-
teractions exhibits the above excitation behavior with a
mode going quadratically to zero at the AF-I centers with

q&qo. Tlm system once ordered with cP immediately
displays a "soft mode" at the other qo. Any of the
equivalent longitudinal {001)waves shows a zero-energy
excitation with respect to another {001)wave. Similar to
the ferromagnets these systems show the behavior that the
magnetic moments are not fixed to a certain direction.
The spins can turn around in a way compatible with the
AF-I ordering without any restoring force leading to the
zero-energy spin waves with a quadratic dispersion.

In CeAs a small single-ion anisotropy is produced by
the crystal-field and the quadrupolar interactions. A de-
tailed RPA calculation [Eq. (32)] with the full six-level
scheme takes the single-ion anisotropy into account. The
spin-wave dispersion curves at T =4,2 K as well as the
crystal-field excitations in the paramagnetic state yield the
best-fit values of the model parameters as listed in Table
II. The off-diagonal elements of the interaction tensor are
negligibly small, since no splitting of the excitations along

Energy { meV)
FIG. 11. INS spectrum in CeAs in the AF-I multidomain

state at T =2 K. The resolution is indicated by the horizontal
bar.

c

' ~ H=O

2 2.5

FIG. 10. INS spectra in the AF-I multidomain state (H=O)
and the AF-I z domain (8&0) of CeAs at T =4.2 K.

TABLE II. "Best-fit" values for the system parameters of
CeAs.

84 ——0.036+0.001 meV
Jp ——0.392+0.006 meV
Kp ——0.045+0.005 meV

J, = —28+2@ V, J', =16+4@,V, J;-0
J =20+5 peV Jz=25+2 peV
J' =0+2 peV, J' =4%2 peV, J",J' -0
J4 ——2+2 peV, J4 ——0+2 peV, J4-0
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[qqq] has been observed [Fig. 5(c) and Eq. (44)]. Figure
12 shows the calculated zz component of the Fourier-
transformed bilinear exchange interaction tensor along the
different symmetry directions. The anisotropy of the cou-

pling is especially pronounced at the X points, where

21

B. CeSb, AF-IA single-q structure

Below T~ ——16.4 K, CeSb exhibits various magnetic
phases with different stackings of ferromagnetic (001)

xx

0.4—

0.3-
QP

E
Q2

ta" 0)
N
N

0,5
f Qq q ] f q00] f 00q] fqq0l

FIG. 12. Bilinear exchange interaction J (q) resulting for
CeAs. J (q) and J~{q) look the same with the appropriate
permutation of the symmetry directions.

J (X, ) ))J (X„)=J (Xy)

is consistent with the DCNS result.
The parameter set obtained from the excitation mea-

surernents using the model derived in Sec. II gives a con-
sistent description of the static and dynamic magnetic
properties of CeAs. The spin-wave dispersion curves at
T =4.2 K and the crystal-field excitations in the
paramagnetic state are excellently reproduced in detail
(Fig. 5). The temperature dependence of the doublet split-
ting is perfectly predicted as exemplified for the excitation
at ( —,

'
—, —,

'
) (Fig. 13). The calculated ordering temperature

Tz and the calculated zero-field moment po

T~ ——8.7+0.3 K,
p,,=(0.94+0.01)p,

are very close to the actual values listed in Table I. Insert-
ing the exchange parameters into Eq. (47) for the anisotro-

py of the correlation lengths in the critical temperature re-

gion above T~ yields

a'~
~

la i ——0.8+0.2,
which is in good agreement with the lenslike intensity dis-
tribution observed in the DCNS experiments (Sec. IV).
Finally the parameter set is consistent with the AF-I
single-q ordering of CeAs: the large quadrupole interac-
tion dominates the [111]easy direction predicted by the
crystal field and slightly favors a [001] alignment of the
spins with an extremely small anisotropy gap of -0.03
meV. Obviously CeAs is an almost ideal model S = —,

' an-

tlferromagilet.

6 7
T (K)

FIG. 13. Experimentally observed and calculated ternpera-
ture behavior of the magnetic excitation in CeAs at the I. point.

planes with up or down spins and paramagnetic planes. '

The magnetic ordering is accompanied by a tetragonal lat-
tice distortion directly indicating collinear single-q spin
configurations. In an external magnetic field

~
H~ ~[001]

~

~38 kOe and for temperatures T ~10 K in
CeSb ferromagnetic ordering is obtained. In this state
the crystal is a single domain with p~ ~

[001]and the inter-
pretation of INS experiments is straightforward. Thus
the magnetic excitations of CeSb were first measured at
T=4.2 K and

~
H~~[001]

~

=42 kOe. For geometrical
reasons (H perpendicular to the scattering plane) only
wave vectors along the symmetry directions [q00] and

[qq0] were accessible. The measurements show a mag-
netic excitation at -4 rneV with a dispersion considerably
different along the above symmetry directions [Fig. 14(a)].
The excitation energy is 4.2 meV at the X, point but 3.3
meV at the X point, which is a direct consequence of an-

isotropic magnetic interactions. However, as expected for
the ferromagnetic state [Eq. (38)], the excitation does not
split into different modes although the couplings are
strongly anisotropic.

Without external field the magnetic phases of CeSb
above T-9 K correspond to complicated antiferromag-
netic structures with periods up to 13 unit cells, so that
the analysis of the magnetic excitations becomes rather
difficult. Below T-9 K, however, the AF-IA structure
is realized and the corresponding RPA formalism was
developed in Sec. II. In the AF-IA state at T =4.2 K and
H=O, INS experiments were performed for wave vectors
along [00q], [qq0], and [qqq]. As in the ferromagnetic
state a magnetic excitation at -4 meV with a moderate
dispersion is observed. At the AF-I centers or the L
points two excitation peaks at 3.2 and 4.2 rneV appear
(Fig. 15), indicating an apparent splitting of the spin-wave
excitation into two modes similar to CeAs. The intensity
behavior of the two peaks, however, is different from that
of the AF-I magnets. In contrast to CeAs, in CeSb both
excitations are observed at (110) as well as at (001). The
only effect is a change in their intensities towards a
stronger lower-energy excitation by going from (001) to
(112) and (110) (Fig. 15).

In order to identify the contributions of the different
domains a single-domain AF-IA state of CeSb was creat-
ed by cooling the sample in an external magnetic field
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FIG. 14. Dispersion curves of the magnetic excitations in
CeSb at T =4.2 K: Ia) in the ferromagnetic state with

! H!![001]!=42 kOe; (b) in the AF-IA z domain with H=O.
The solid lines are the result of the RPA calculation described in
the text. The thickness of the lines roughly indicates the intensi-

ty of the corresponding excitation.

! HI![001]!&20 kOe through the ordering temperature
and then slowly reducing the field to zero. Now the mag-
netic excitations of the AF-IA z domain along [q00] and

[qq0] may be measured. It turned out that the two exci-
tation peaks observed in the multidomain state at the X
points (Fig. 15) have to be assigned to different domains.
The dispersion curves resulting for the AF-IA z domain
of CeSb are shown in Fig. 14(b) in the full nuclear fcc
Brillouin zone with respect to the tetragonal symmetry of
the single-q configuration. The single domain essentially
has only one excitation peak which has transverse charac-
ter. The xx and yy excitations are almost or fully degen-
erate A. comparison of the excitation spectra at (020) and
(120) for the ferromagnetic and AF-IA z-domain state,
however, reveals undoubtedly a broadening of the neutron
peak at the X„point in the AF-IA phase (Fig. 16). Thus,
the excitation at the X„point may be slightly split into
two modes with xx or yy polarization [as indicated by the
theoretical line in Fig. 14(b)j. In Fig. 14(b) for each q a
single experimental point is given since the anticipated
splitting into different modes could not be resolved in the
present measurements.

The magnetic excitations in CeSb observed in the multi-
domain AF-AI state are understood in terms of a super-
position of the appropriate spectra [Fig. 14(b)] of the three
equivalent x,y, z domains. The intensity behavior at the X
points (Fig. 15) differs from CeAs, since in CeSb the xx
and yy excitations are almost degenerate at X„and X„,
whereas in the AF-I magnet CeAs they are strongly split
at these points.

As in the AF-I magnet CeAs [Fig. 5(c)] the magnetic
excitations in the ferromagnetic and the AF-IA z-domain
state of CeSb (Fig. 14) have a pronounced energy
minimum at the X„and X„points. This immediately in-
dicates that similar to CeAs the magnetic interactions in
CeSb have a maximum at the AF-I centers which is con-

I I I I

150—

l00—
i!20] CeSb

4.2 K
[020]

50—

0—

0—
50—

L

e

t112]

do

0
~ e

50-

0
'

0
I

2 0 6
Energy ( rneV )

FIG. 15. INS spectra in the multidomain AF-IA state
( T =4.2 K, H=O) of CeSb observed at different X points.

l I

4
Energy

i

2
( rneV j

~ ~

FIG. 16. INS spectra at the X„and the I point of CeSb in
the ferromagnetic state {!H!![001]!=42 kOe) and for the AF-
IA z domain.
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sistent with the AF-I fluctuations observed in the
paramagnetic state of CeSb (Refs. 16 and 17) (Fig. 4).

At T =4.2 K the magnetic moment of CeSb is saturat-
ed and nearly has the free-ion value (Table I). Then the
ground state is an almost pure

~

—,
' } state and the only

possible magnetic excitation is the
~

—, }~
~

—,} transition

which has transverse character. Thus, CeSb at T =4.2 K
may be considered as a two-level system, and the magnetic
excitations follow Eq. (38) for the ferromagnetic. state and
Eq. (40) for the AF-IA state. The transition matrix ele-
ment is M =5 and the splitting of the single-ion levels is
given by the parameter b,F or b,~F iA for the ferromagnet-
ic or AF-IA state, respectively. A "least-squares fit" of
the above equations to the experimental data for the mag-
netic excitations in the I' and AF-IA state, taking into ac-
count the temperature dependence of the critical AF-I
fluctuations and their anisotropy a~~/~i, yields the system
parameters displayed in Table III and Fig. 17. As in
CeAs the exchange interactions were assumed to be diago-
nal, since the transition along [qqq] does not split into dif-
ferent modes. The parameter set excellently describes the
magnetic excitations in the ferromagnetic and antifer-
romagnetic states (Fig. 14) as well as the quasistatic fiuc-
tuations in the paramagnetic state with a virtual diver-
gence at T-14 K (Ref. 16) and anisotropic correlation
lengths a~~/aj = 1.3+0.5.

There is a remarkable similarity of the bilinear ex-
change interactions J (q) found in CeSb (Fig. 17) and
those of CeAs (Fig. 12) although the static and dynamic
behavior of the two compounds is considerably different.
In CeSb as in CeAs, P(q) shows a well-defined max-
imum at the X, point. Obviously the bilinear exchange
interactions in CeSb favor an AF-I structure, although a
long-range-ordered state of this type is not realized. Thus,
all the magnetic phases of CeSb are not forced by the bi-
linear exchange coupling, but are the result of the lattice
distortion or higher-order magnetic interactions. Indeed
this has been recently demonstrated for the diluted system
Ce, „(La,Y)„Sb.' The higher-order interactions are also
responsible for the large single-ion anisotropy of CeSb
with [001] as the easy axis instead of [111]predicted by
the crystal field.

The magnetic excitation spectra observed in CeSb indi-
cate that the single-ion levels of the Ce + ions in the or-
dered state are almost pure Zeeman levels. Obviously, the
molecular fields dominate over the crystal field. The
molecular-field parameter Jo for the Ii or AF-IA state is

TABLE III. "Best-fit" values for the system parameters of
CeSb.

4F——4.5%0. 1 meV
OAF. IA ——4. 13+0.1 meV

xx Xz

0.1

0.5
f Oqq )

0.5 0 0.5
t qoo l I ooq l

0.5
f q q 0 l

0 05

FIG. 17. Bilinear exchange coupling J~(q) resulting for
CeSb.

given by the two-ion exchange parameters obtained from
the dispersion behavior of the magnetic excitations (Table
III). Then to obtain the observed Zeeman levels with an
energy splitting b,z or b,&F i~ of the two lowest-lying lev-
els the crystal-field parameter 84 has to be negligibly
small, and for the quadrupole interactions we get Eo-20
peU which is the size needed to correctly predict the
first-order transition to the magnetically ordered state at
Tz as well as the strong [001] single-ion anisotropy of
CeSb. The apparent disappearance of the crystal field in
the ordered state of CeSb is a very unusual phenomenon.
In the paramagnetic state INS experiments showed a
crystal-field transition from which 8~=8.9 peV was de-
duced. Thus, in contrast to other rare-earth systems, in
CeSb the strength of the fourth-order crystal-field terms
is not conserved in the phase transition at TN. Undoubt-
edly, Bq is drastically reduced in the ordered state. The
tetragonal lattice distortion alone is not able to take into
account the reduction of 84 mentioned above. Rather, it
seems that the disappearance of the crystal field has to be
understood in conjunction with the anomalous magnetic
interactions in CeSb.

The experimental data available for CeSb quite reliably
define the bilinear exchange interactions J ~(q) and give
an estimate for 84 and Ko. The individual two-ion quad-
rupole or higher-order interactions, however, are still un-
known. High-resolution INS experiments and a generali-
zation of the RPA theory to include higher-order interac-
tions would give more insight into the anomalous cou-
pling mechanism in CeSb.

Ce8i exhibits a nearly identical magnetic excitation
spectrum' as observed for CeSb, and similar arguments
concerning the magnetic interactions will hold. Ceai
shows in addition to the low-temperature AF-IA phase a
high-temperature AF-I state which directly confirms the
bilinear magnetic interactions of AF-I type already found
for CeSb.

J I ———21+2 peV, J I
——14+5 peV, J I -0

J,=13+9peV, J', =22+8 pev,
J3 ———2+3 peV, J3 ——3+2 peV, J3',J3 -0I

J4.———1+2 peV, J4 ——3+4 peV, J4-0

C. USb, AF-I triple-q structure

USb orders below T&-220 K in the AF-I structure.
Pressure experiments indicate a noncollinear triple- q
configuration with the moments along [111]. In contrast
to the cerium systems INS experiments in the uranium



ANISOTROPIC EXCHANGE AND SPIN DYNAMICS IN THE. . .

!0 l

0 05
[00ql

0.5
[qq0[

0 05

FIG. 18. Experimentally observed and calculated dispersion
curves for USb in the AF-I triple-q ordered state at T =10 K.

monopnictides usually show only a diffuse response '
and fail to find any discrete crystal-field levels which
could give evidence for localized 5f states. An exception
is USb, for which Lander et al. found a well-defined
spin-wave mode with an anisotropy gap of -6.4 meV at
the X points and a broad excitonic magnetic level at -26
meV. However, the spin-wave excitation showed an unex-
pected longitudinal character. Jensen and Bak found an
explanation for the longitudinal character of the excita-
tion in terms of spin waves in a triple-q structure.

The magnetic excitation behavior of USb, which is very
similar to that of CeAs, has been reinvestigated in detail.
In the ordered state at T =10 K, INS experiments for
wave vectors along the cubic symmetry directions [00q],
[qq0], and [qqq] were performed. The observed spectra
always have a considerable contribution of phonon
scattering. However, the dispersion curves and the inten-
sities of the phonons are well known, which essentially
simplifies the identification of the magnetic scattering. In
Fig. 18 the resulting energies of the observed magnetic ex-
citations are summarized. In contrast to Lander et al. ,
the excitation at -26 meV was found to be a well-
resolved spin-wave excitation.

Similar to CeAs the spin-wave excitation in USb is split
into two modes at the X points. Near (003) only the ener-
getically higher mode is observed, whereas near (221) the
same mode has half the intensity, but in addition the
lower-energy mode appears (Fig. 19). This behavior
might mislead one to assign a longitudinal character to
the lower excitation mode, but, as in CeAs, it has to be
understood in terms of transverse spin waves in an AF-I
magnet with anisotropic interactions.

For the AF-I triple-q structure the magnetic excitations
have been calculated in Sec. II. Since USb at T =10 K
has nearly the full moment, the transverse

!
—,
' )~!—', )

transition dominates (here transverse means with respect
to the spin direction or [111]). Thus, as a first approxi-
mation Eq. (43) with only the transition between the two
lowest-lying levels may be considered. At least two of the
resulting excitations co (q), aP~(q), and co (q) are always
degenerate by the symmetry of the anisotropic exchange

USb
500 — T= 10K

500—

400—

200 A M 0 M
[ [

10 20 30
Energy ( rneV I

FIG. 19. INS spectra near the X points in USb: The arrows
indicate the magnetic excitations (M), the optical (0), and the
acoustical ( A ) phonons, respectively.

interactions. For the X, point we get co""(X,)=co (X, )

&co (X,). By the polarization factor near (003) only the
degenerate xx and yy excitations are observed at -26
meV. However, in the vicinity of (221) the xx and yy ex-
citations have half the intensity, and the zz excitation ap-
pears with a much lower energy (see Fig. 19).

Using a numerical full ten-level calculation [Eq. (34)] of
the magnetic excitations in USb, a reasonable description
of the neutron data at T =10 K is obtained (Fig. 18).
Taking into account the actual ordering temperature T~
and the anisotropy of the correlation lengths a[~/ai above
TN, we arrive at the "best-fit" values for the system pa-
rameters listed in Table IV. The crystal-field parameters
84 and 86 are in the notation of Ref. 39: 84 ——Wx/60
and 86 ——W(1 —!x!)/2520. For the triple-q structure
with the magnetic moments along [111] the quadrupole
moments (Oz) and (Oz) vanish, and Ko becomes ir-
relevant. Furthermore, similar to CeAs and CeSb diago-
nal exchange interaction tensors were assumed, since there
is no observable splitting of the spin-wave excitation along
[qqq]. The resulting zz component of the Fourier-
transformed exchange interaction J (q) is shown in Fig.
20. %'ith the parameters in Table IV the calculated order-
ing temperature, the ordered moment, and the anisotropy
of the inverse correlation lengths becom. e

T~ ——240+20 K,
po ——(2.73+0.05)pii,

K!!/vg ——5.2+2.0,
which are in good agreement with the actual values (Table
I).

Jensen and Bak calculated the excitation spectrum of
USb by ordinary spin-wave theory in the triple-q struc-
ture with pseudodipolar exchange interactions. The large
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FIG. 20. Bilinear exchange interaction J (q) resulting for
USb.

off-diagonal elements of their interaction tensors should
produce a splitting of the spin wave into different modes
along [qqq] whtch is not experimentally observed. Furth-
ermore, based on the excitation spectrum they calculate an
ordering temperature which is far above the actual value.

In addition to the size of the exchange couplings our
RPA treatment of the magnetic excitations provides in-
formation on the crystal field. The set of crystal-field pa-
rameters given in Table IV predicts for the U + ions in
USb the quartet I s" as the ground state and the doublet
16 at 100 meV and the quartet I s

' at 104 meV as the ex-
cited states. The crystal field strongly favors an align-
ment of the spins along (111) corresponding to the
triple-q structure. The large single-ion anisotropy due to
the crystal field is directly responsible for the energy gap
of -6 meV at the X points.

The crystal-field concept with localized 5f electrons
successfully applies to USb and yields a consistent
description of the magnetic excitations at T =10 K as
well as static properties such as TN, the triple-q configu-
ration and the ordered moment. Compared to the CeX
compounds, however, for USb a considerably larger crys-
tal field is expected. It so:ms that the 5f electrons in USb
are rather localized as already found from photoemission
experiments.

TABLE IV. "Best-fit" values for the system parameters of
USb.

x =0.82+0.02, 8'= l.9+0.3 meV,
I,'a~ ——25.6 p,eV, 86——0. 14 peV)
Jo——1.48+0.05 rneV

J', =35+5 peV, J~ ——383+50 peV„JI -0
J' =110+8peV, J2 ———65+6 p V,
J3 ———72+4 peV, J3 ———35+3 peV, J3',J3 -0
J' =3823 peV, J' = —7+5 peV, J'-0

In this paper we have given a detailed theoretical and
experimental investigation on the anomalous anisotropic
magnetic interactions present in the cerium and uranium
monopnictides and their effects on the spin dynamics in
the paramagnetic as well as in the AF-I or related mag-
netically ordered state. For CeAs, CeSb, and USb inelas-
tic and diffuse critical neutron scattering experiments
have been performed. Undoubtedly the chief benefit of
such experiments results from the magnetic excitations
which contain a lot of information on the anisotropic in-
teractions present in these system. s„ thus providing de-
tailed answers to several key problems. Once the magnet-
ic excitation spectrum is measured with sufficient accura-
cy, properly disentangled from the domain problem, and
analyzed by an appropriate Hamiltonian, the resulting
model parameters can reliably predict the magnetic
behavior of the system. We particularly emphasize the
complete consistency that is obtained for CeAs, CeSb, and
USb in describing the anisotropy of both the spin waves
which are transverse excitations, and the critical scatter-
ing which corresponds to longitudinal fiuctuations, as well
as static properties such as the magnetic structure, the or™
dering temperature, and the ordered moment.

Apart from a scaling factor a remarkable similarity of
the bilinear exchange interactions was found for CeAs,
CeSb, and USb, although these systems exhibit a com-
pletely different static and dynamic behavior. This direct-
ly demonstrates the drastical influence of the magnetic
structure on the actually observed excitation spectrum.
Furthermore, it is interesting to note that for all com-
pounds negligibly small off-diagonal exchange couplings
were obtained. The anisotropic interactions derived in
this paper must be considered as phenomenological pa-
rameters, but they may provide a useful quantitative basis
for theoretical investigations on the origin of the large
magnetic anisotropy or on the nature of the phase transi-
tions in the CeX and UX compounds,

In the paper we showed that bilinear exchange alone
does not explain all the magnetic phenomena observed in
the cerium and uranium monopnictides. Higher-order
magnetic interactions are present in these systems as was
undoubtedly found from the study of CeSb, where bilinear
exchange is not the dominant mechanism driving the sys-
tem through the various phase transitions. Indeed the im-
portance of higher-order interactions has recently been
emphasized in a detailed theoretical study explaining the
anomalous magnetic properties of the cerium monopnic-
tides in terms of the anisotropic p-f mixing mechanism,
which requires higher-order couplings to express the ef-
fective two-ion f-f interactions in terms of spin opera-
tors.
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APPENDIX: ANISOTROPIC BILINEAR
INTERACTIONS IN THE fcc LATTICE

Jl +Jl 0

Jo, —— +J; JI 0 for R, = '
a( —,, + —,,0)

a( ——,, + —,,0),

a(-,',0, +-,' )

The most general symmetrically allowed coupling ten-

sors for the four first-neighbor shells in the fcc lattice are
the following.
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For fourth-nearest neighbors,
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JQ2

3

J3I
for R~=a(+ —,, + —,', +1),

for Rj=a(+ —, , + —, , +1),

—J3 for Rj=a(+ —, , + —,, +1),
J3I

J' 0

Joj —— 0 J4

0
a (0, 1, +1)

+J4 for RJ. ——'

(0 1 1)
J4

J ~(q)= g J()j~e
J

with the diagonal element

The Fourier-transformed interaction tensor at
q =(2n /a)(x, y, z) becomes
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J (q)=2J', Icos[~(x+y)]+cos[n(x —y)]j

+2J, Icos[~(x +z)]+cos[m(x z—)]+cos[n(y +z)]+cos[n(y —z)] j

+2J2 [cos(2tTX ) +cos(2ny) ]+2J3 [cos(2mz) ]

+2J3 Icos[a(x +y+2z)]+cos[m(x +y —2z)]+cos[tT(x —y +2z}]+cos[n(x —y —2z)] j

+2J3 Icos[7T(x +2y +z)]+cos['IT(x +2y —z)]+cos[TT(x —2y +z)]+cos['lT(x —2y —z) j

+cos[m(2X +y +z)]+cos[m(2X +y —z}]+cos[m(2X —y +z)j +cos[n (2x —y —z)] j

+2J4 j cos[2m(x +y)]+cos[2n(x —y)] j +2J4 I cos[2tT(x +z)]+cos[2tT(x —z)]

+cos[2n {y +z)]+cos[2tT(y —z}]j

and the off-diagonal elements

I"3'(q)=J3'"(q)=2J l t cos[m(x +y)]—cos[m(x —y)] j

+2J3 Icos[ tr(x +y +2z)]+cos[tT(x +y —2z)] —cos[tT(x —y +2z)] —cos[~(x —y —2z)] j

+2J3 Icos[n(x+2y+z)]+cos[m(x+2y —z)) —cos[m(x —2y+z)] —cos[m(x —2y —z)]

+cos[m(2X +y +z)]+cos[~(2X +y —z)]—cos[n (2x —y +z)] cos[n—(2x —y —z)] j

+2J4 t cos[2m(x +y)]—cos[2m(x —y) ] j

and I (q), J»(q), J (q), J~(q) with the appropriate cy-
clic permutation of x,y, z.

Along the cubic symmetry directions we obtain for
q= (2n. /a)(o, o,q),

J~(q) =4(J', +J3+J4)+8(Jl+2J3) cos(nq)

+2(J3+4J3+4J4) cos(2mq),

I"~(q)=0,
for q=(2tT/a)(q, o,o) and q=(2m/a)(o, q, o),

J (q)=2(2Il+ J3+J3+2Jg)

+4(Il +J'l+2J3+2J3) cos(nq)

+2( J3+4J3+2J4+2J4 ) cos(2mq),

I"~(q)=0,
for q=(2n/a)(q, o, 1) and q=(2n/a)(o, q, 1),

J~(q) =2{—2Il+J3+J2+2Jg)

+4( —J', +Jl +2I3 —2J3) cos(mq)

+2(J2 —4J3+2J&+2J4)cos(2~q),

I"~(q)=0,
for q=(2tT/a)(o, q, +q) and q=(2trlt3)(q, o, +q)„

J (q)=2(J', +J,'+2J', +J,')
+4(Jl +Jl +J3+J3 }cos(mq)

+2(Il +J3+J3+2J3+2J4+2J4) cos(2mq)

+4(J3+I3)cos(3tTq)+2J~ cos(4~q),

J""(q)=0,

for q = (2m /a)(q, +q, o},

J-(q) =2(Jtl +Jl2+2Jt3+ Jt4)+ 8(Jll +Jr3) cos(~q)

+2(J l +2J3+2J3 +4Jq ) cos(2m q)

+8J3 cos(3mq)+2J& cos(4mq),

J""(q)=~2(Jl+2J3'+ J4)+8J3 cos(~q)

+2(J;+2J3') cos(2mq)+8J3 cos(3~q)

+2Jt't cos(4mq),

for q = (2m /a)(q, q, q),

J {q)=2(2Jl+Jl+J3+2J3+2J4+I&)

+2(2Jl+ Jl +J3+2J3+2J3+4J3)cos(2trq)

+2(J3+2J3+2Jq+Jq) cos(4mq),

Jxg(q) 2(Jtt Jit +2Jtt2+ Jtt )

—2(J l
—2J3 '

) cos(2trq)

+2{J3'+2J3 +J4) cos(4m.q) .

For the different elements of the Fourier transformed in-

teraction tensor the following symmetry relations hold:

{ql q2 q3) I (q2 q3 ql) I {q3 ql q2)

J (q, o,o)&J (O, q, o) =I (O, o,q),
J»(o,q, o)~J»(o,o,q) =J»(q, o,o),
J (O,o,q)&J (q, o,o)=J (O, q, o),

J (q, o,o)=J»(o,q, o)=J (O,o,q) .
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