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The pioneering work of Ambegaokar, Halperin, Nelson, and Siggia on dynamical phenomena in

superfluid films near the Kosterlitz-Thouless transition is formulated in a more systematic way in

the context of the classical two-dimensional (20) XFmodel. Specifically, we extend the discussion

of Nelson and Fisher on spin dynamics to include the effect of the vortices. The coupled equations
of motion for the spin-wave and vortex fields are derived from a Lagrangian analogous to that used

in classical electrodynamics of a continuous medium. In the electromagnetic analogy, the spin
waves (or third sound) correspond to transverse photons, the renormalization effects of the bound

vortex pairs entering through the transverse dielectric function e&(q, co) of the equivalent 20 neutral
Coulomb gas. The relation between our results for the dynamic response functions and previous
work on static response functions (in which the spin-wave —vortex coupling is apparently ignored) is
clarified by noting the distinction between the bare (80) and the renormalized (8=HO/ej ) spin-wave
fields.

I. INTRODUCTION

For some time, we have had a very thorough under-
standing (using a variety of techniques whose qualities
range from intuitive to rigorous) of the Kosterlitz-
Thouless-Berezinskii transition in the classical two-
dimensional (2D) XF model insofar as equilibrium and
static response functions are concerned. (For reviews, see
Refs. 1 and 2.) In contrast, there have been very few
theoretical studies of dynamical response functions near
the Kosterlitz-Thouless (KT) transition. The key paper in
this field is that by Ambegaokar, Halperin, Nelson, and
Siggia3 (henceforth referred to as AHNS), written with
the specific goal of explaining certain experiments in su-
perfluid He films. In the present paper, our goal is to
give a systematic derivation of the AHNS results within
the more general language of the XF model, as well as to
expand on the analogy AHNS made to the equations of
motion for electrodynamics in a dielectric medium. We
put special emphasis on what the theory says about the
frequency and weight of the spin-wave pole, as renormal-'
ized by the bound vortex pairs. %'e hope that our work
will set the stage for studies on the dynamical properties
of XFmodels with frustration.

For orientation, we briefly recall some standard results
for the static response functions near the KT transi-
tion. The starting point of such studies is the Hamiltoni-
an

I dr[Vs(r)]

where we have introduced the continuous field angle vari-
able P(r) since only the long-wavelength properties are of
interest. This field is split into two parts

(1.2)

where the spin-wave field 8(r) describes the small phase

where E, is the vortex core contribution. In this picture,
the spin-wave and vortex contributions to the static corre-
lation functions are apparently uncoupled and one finds
the power-law behavior at large distances characteristic of
a system with only quasi-long-range order,

( et[8(r') —8)0)])
&+~K

r

( et [8)r) —+0)]) 1/2eKy

(1.5)

The usual way of summarizing these results is that the ef-
fect of the (bound) vortices is to renormalize the Gaussian
spin-wave power-law exponent Ko —+Eq, with

1 1 1+
Xz Xo Xv

(1.6}

As first shown by Kosterlitz and Thouless, one can ex-
press Kt in terms of a size-dependent dielectric function
8'(l) describing the screening of the interaction between
charges separated by a distance r =—a0 exp(l) arising from
the bound pairs of smaller size. One obtains

fluctuations in the local order parameter while the vortex
field P(r) is related to the large amplitude fluctuations as-
sociated with the zeros of the local order parameter (for a
particularly clear discussion, see Ref. 1}. The energy (1.1)
then splits into two separate contributions, due to the spin
waves and vortices,

8=Hs~+H&

The energy H„corresponding to the vortices can be
shown to be essentially equivalent to a classical 2D neu-
tral Coulomb gas,

I

0„=—mEo dr dr'n r n r' ln +E, , 14
ao
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(1.7)

as being appropriate in describing long-wavelength phe-
nomena near the KT transition. The famous KT
renormalization-group flow diagram shows that in the
i~no limit, K& decreases as the temperature increases
until it reaches the critical value 2/m. , at which point the
bound vortex pairs unbind and the system passes into a
phase described by a gas of free vortices [e'(l = co )~oo
or, equivalently, Eti ——0]. This abrupt behavior in fact
only occurs in the extreme long-wavelength limit. At any
finite value of the wave vector q, however, the important
vortex pairs have a size approximatdy -q ' and K& is
smoothly varying through TKT,

The only detailed studies of the dynamic response func-
tions of the 2D XF model below TKT have been made in
the so-called Gaussian spin-wave approximation ' in
which one completely ignores the vortices in (1.1). Our
major interest in this paper is to understand the origin of
the spin-wave —vortex coupling which gives rise to the re-
normalization of the spin-wave velocity (the analogue of
third sound discussed in Ref. 3) and to what extent this
renormalization involves the same KR as found in the
static response function calculations reviewed above.

In Sec. II, following Nelson and Fisher9 and others, we
argue that in order to discuss the dynamics of the 2D XF
model, the energy in (1.1) must be augmented to include a
term involving the square of the z component of the local
magnetic moment M, (r). The resulting equations of
motion are shown to automatically reproduce a term in-
volving the vortex current, which is ultimately the origin
of the renormalization of the spin-wave field. We also
show how these equations of motion reduce to those de-
rived by AHNS, who started from the phenomenological
theory of the motion of vortices in superfluid He films.

In Sec. III, we formalize and develop the electromag-
netic analogy discussed by AHNS and Halperin, ' in which
the spin-wave (vortex) field is associated with the trans-
verse (longitudinal} electric field. In particular, we discuss
the equivalent Lagrangian for the spin-wave —vortex prob-
lem.

In Sec. IV, we set the stage for the calculation of the
dynamic spin response function by expressing the vortex
current in terms of the dielectric function describing
bound vortex pairs. In the electromagnetic analogy, this
corresponds to passing from the microscopic to the macro
scopic version of Maxwell's equations. We concentrate on
the region just below TKT, which is dominated by the un-

binding of the vortex pairs. We discuss to what extent
one can calculate the response functions using a Gaussian
spin-wave approxiination of the kind

8 = f dr[V80(r)]',
2

where 80(r) is the bare spin-wave field but Ea is the re-
normalized exchange constant given by (1.7). The distinc-
tion between 8O(r) and 8(r} is the key to understanding
why the spin-wave —vortex coupling is crucial in our work
in spite of the fact that in most discussions of static
response functions, it is apparently ignored. These results

are used in Sec. V to generalize the Nelson-Fisher calcu-
lation of the transverse spin response function to include
the effect of the bound vortex pairs.

II. COUPLED EQUATIONS OF MOTION

In the two-dimensional classical XI' model with fixed-
length spins, the only degree of freedom is the angle P;
which the spin at site i makes with some reference axis in
the plane. The standard Hamiltonian for such a system is

H = —Jo g cos(((};—PJ),
&~,j&

(2.1)

where the summation is over nearest neighbors only and
Jo &0 is the exchange constant (the fixed magnitude of
the spins is incorporated into Jo). Since it is the long-
wavelength response of the system which is of interest, the
discreteness of the lattice is irrelevant and we introduce a
continuous field ((}(r). Keeping only the quadratic term in
the expansion for the potential energy given by (2.1} and
adding a kinetic energy for the rotation of the spins, a
simple Lagrangian for the dynamic 2D XY'model is

'2

I. = — f dr[Vs(r)] +—f dr . (2.2)
2 2 dt

Here o, is a constant that can be determined, in principle,
from the solution of the quantum-mechanical problem of
spin evolution in a planar magnet. "' Defining a conju-
gate momentum density to P(r),

Sp(r)=, . =a5L dP(r)

dP(r) dt
5

(2.3)

L

the corresponding Hamiltonian is found to be''

H= f dr[V&(r)] + f drS&(r) . (2.4)

M(r)=
~

M(r}
~
exp[i/(r)],

Sii(r) is in fact proportional to the spin component S,(r)
as discussed by Villain' as well as Nelson and Fisher.
The inclusion of a term (VS&) can be shown to be ir-
relevant in the critical region of a 2D XY model close to
the Kosterlitz-Thouless transition. More precisely, our
model deals with a 2D system of three component spins
with an easy plane anisotropy. As is well known, a fully
isotropic 20 Heisenberg model exhibits no quasi-long-
range order at any temperature. '

Using Hamilton s equations of motion, (2.4) gives us
immediately

5H
5$( )

5H dg(r)
5S~(r) dt a

If p(r) was a well-behaved, smoothly varying field, the
solution of this set of equations would be trivial. Howev-
er, this is not the case when we include the vortex config-
urations. More precisely, if we denote the local order pa-
rameter as
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then the phase P(r) is continuous and differentiable except
at the points where

~
M(r}

~

=0. These points are associ-
ated with vortices. Ill llslllg (2.4), wc alc 1gnoring tllc
small fluctuations in the amplitude of M(r) but are keep-
ing the large fluctuations associated with the vortices.

As mentioned in the Introduction, we can separate the
phase P(r) into a spin-wave part 8(r) and a part associated
with vortices g(r),

(2.15)

and the vortex current density associated with it

ever, as we shall show, these two fields are coupled and
this leads to a renormalized value of the spin-wave fre-
quency due to the presence of bound vortex pairs.

The number density of vortices is given by

n(r}= gn;5(r —r;)

P(r) =8(r)+P(r) . (2.6) j„(r)= g ntr;5(r —r ) . (2.16)

These satisfy the continuity equation

dn (r, t) +V'j„(r,t) =0 .
f

' 1/2
Jp

(2.7)
A straightforward calculation gives

If the vortex part P(r) is ignored, the equations of motion
(2.3) lead to spin-wave oscillations with the dispersion re-
lation (2.17)

This is the approximation used by Nelson and Fisher in
their evaluation of dynamic response functions for the 2D
XY' model. These authors used a "hydrodynamic fixed-
length" free-energy functional

V X Vp(r) =2nn (r)z,

—[Vg(r)] =V —2nk Xj„(r),d d (r)
dt dt

(2.19)

F= f dr[(VM„) +(VM~) ]+ f drM, , (2.8}
2 X

where Ko= Jo/kyar T and M„+M» = l. In contrast with
(2.4), this constraint means that all magnitude fluctua-
tions are neglected, including those associated with vor-
tices (apart from being included implicity in K). With re-
gard to (2.4), we also remark that it is assumed that
a= 1/Jo in (2.8). While this may be true (see, for exam-
ple, the microscopic calculations of Villain' ), it is only
the coefficient of (VP) which is renormalized by the
bound vortex pairs.

The vortex field g(r) at point r due to vortices of
charge n; =+1 at r; is given by

—[Vg(r)]= —g n; zx
dt

d I'I
XV VG(r —r )

(2.20)

V (V/ X*)=z (V X VQ) =21m (r), (2.21)

Vx(Vpxz) = —zV'p= — z,
Jo dt

V X (Sp)= —z X VS~ ——a—( V(() X2)+2rraj„.d

(2.22)

(2.23)

Combining all the results in Eqs. (2.9)—(2.20) with some
elementary vector algebra, one obtains

f(r) = g n; arctan
x —xl

The gradient of this is easily shown to be

Vg(r)= gn;zxVG(r —r;),

V16 (r—r; ) =2m.5(r—r; )

(2.9)

(2.10)

(2.11)

We have written these equations of motion in this way in
order to facilitate comparison with the analogous micro-
scopic Maxwell's equations in Sec. III. As we shall dis-
cuss there, the coupling between spin waves and vortices
has its origin in the vortex current j„ in (2.23). It is grati-
fying that this crucial term arises naturally in our analysis
based on the Hamiltonian in (2.4}.

Taking (2.12) and (2.14) into account, we note that
(2.21) reduces to an equation only involving the vortex
field

V Vg(r) =0 .

In sumroary, then, we see that

(2.12)

(2.13)

involves a purely longitudinal component

(2.14)

associated with spin-wave field and a purely transverse
component Vg(r) associated with the vortex field. How-

and z is a unit vector normal to the xy plane. Since we
only need (2.10) in the region r »ao (ao is the vortex
core radius) where the field is smoothly varying, we take
G (r)=in(r/ao). We note that Vg(r), as defined in (2.10),
is purely transverse since

V (Vfxz)=2nn(r), (2.24)

while (2.22} reduces to an equation only involving the
spin-wave field

Vx(V8xz)= —zV'8= — z .
dS~

Jo
(2.25)

At this point, we can make contact with the work of
Ambegaokar et al. , on the dynamics of superfluid He
films. As we discussed in the Introduction, these authors
combined the phenomenological theory of vortex motion
in superfluid films with the Kosterlitz-Thouless analysis
of bound vortex pairs. To the extent that superfluid He
films are a realization of the 2D classical XF model, the
superfluid velocity is given by
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VP(r) = v, (r)M
(2.26)

and S~(r) is identified with the variable m (r) related to
the deviation in film thickness (for details, see Ref. 3)

along the z axis. This accounts for the logarithmic poten-
tial of a vortex charge and for the factor 2' instead of the
usual 4' in the above equations. The charge of a vortex is
now q;=(2mJo)'i n; and thus

S~(r)= m (r) .
M
fig

(2.27)
p(r)=(2m Jp)'~ n(r),

j(r) =(2m J p)'~'j, (r) .
(3.6)

In terms of these variables, (2.22) and (2.23) are complete-
ly equivalent to Eqs. (5.15) and (5.16) of AHNS, namely,

d v, (r)
=g Vm (r) —z XJ(r),

dm(r) o=gp, V.v, (r),
(2.28}

where g =—I/a, J=hj„/M. The superfluid density in the
absence of vortices is given by p, =Jo. Thus we see that
the equations of vortex motion in superfiuid films used by
AHNS are in fact generated by

M Ma= p', f drv,'(r)+ f drm'(r) .
2' 2'

(2.29)

The equivalent free-energy functional was written down

by Hohenberg, Halperin, and Nelson' in their review of
AHNS, although they did not emphasize that it gives a
description of vortices in both the statics and dynamics of
2D superfluid films.

ET(r) =( 2n Jp)'~' Ve(r) Xz, (3.7)

while the longitudinal part of the electric field is related
to the gradient of the transverse vortex field

Et(r)=(2mJp}'~ Vg(r)Xz. (3.8)

Using this equivalence, one can use the standard Lagrang-
ian for the electromagnetic field in the nonrelativistic lim-
it' to find the analogous Lagrangian for our XFmodel in
terms of vector and scalar potentials. This will be used in
Sec. IV in our study of dynamic response functions. The
Lagrangian is given by

In this electromagnetic analogy, we see that' the trans-
Uerse part of the electric field is related to the gradient of
the langitrtdinal spin-wave field

III. ANALOGY TO ELECTROMAGNETIC THEORY
+g r; A(r;),

Cp
(3.9)

As pointed out by AHNS in their discussion of super-
fiuid films, there is a formal relation between the equa-
tions of motion for the 2D XF model summarized in
(2.21)—(2.23) and the microscopic Maxwell's equations.
In this section, we wish to develop this equivalence in
somewhat more detail since it is crucial in understanding
in a more systematic fashion how bound vortices below

TKT lead to a renormalized spin-wave dispersion relation.
Introducing an electric field and a magnetic field,

where

E= —V4( )
1 BA(r)

co Ot

8=VX A(r),
(3.10)

and r; (r;) gives the position (velocity) of the ith vortice.
Using the Coulomb gauge V A=O, we obtain

EL =(2~Jo) ~ (Vg&&z)= —V4,
(3.11)

{3.1) E =(2~J,)'"(VOXz)=—
JO

Spz,

Eqs. (2.21)—(2.23) may be written as

We can find 4(r) explicitly using (2.10), namely,

4(r) = —g q;G(r —r; ) (3.12)

V B(r)=0,
V E(r) =2rtp(r),

(3.2)

(3.3)
and thus the Lagrangian of our XF model can be written
in the form

(3.4) L = —,
' f dr Jo(VP)&z)' ——(S~z)'

(3.5)

The speed of light co is equivalent to the bare spin-wave
velocity in (2.7) in our 2D XF model. The mapping is
thus to a system of Maxwell equations on a surface (since
8=8oz) in three dimensions such that all quantities have
variation in the xy plane only: V=—[(B/Bx),(B/By), 0].
Here r is a two-dimensional vector in the plane so that a
vortex in our system is equivalent to a line of charges

{3.13)

The equations of motion discussed in Sec. II can be de-
rived from this Lagrangian, where 4(r) and A(r) are now
considered as the generalized coordinates along with the
positions of the vortices r;. We can also derive an equa-
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tion of motion for the vortices using

az.
'

aL.
dt gr. B(Vr;) Br;

to obtain the equivalent of the Lorentz force

F=rni; =q;E(r;)+ v; XB(r;) .
co

Using the fact that vortices have no mass, this gives

(3.14)

DT =(2n—Jp)'i V8pXz=crEr . (4.3)

dependent dielectric functions describing the effect of the
bound pairs, while jT r, (q, co) is the transverse part of the
current related with the free vortices.

Since we are mainly interested in how the bound pairs
renormalize the spin-wave excitations, we shall concen-
trate on the equation of motion for the transverse electric
field Er(q, co). The equivalent of the displacement field
can be associated with the unperturbed spin-wave field
(denoted by 8p)

r; = [V8(r;)+V/(r;)] .
Sp r;

(3.16)

IV. RENORMALIZATION OF THE SPIN-%AVE
FREQUENCY BY VORTEX PAIRS

The analysis in Secs. II and III may be viewed as the
equivalent of deriving the microscopic Maxwell s equa-
tions. That is to say, we are dealing with the fields in free
space treating the full charge and current densities as
sources. In the present section, we go over to the
equivalent of macroscopic Maxwell's equations in that we
shall shift the contribution of the bound vortex pairs from
the sources into the effective electric fields they give rise
to. The bound vortex pairs will be treated as a dielectric
medium in which the unbound vortices move, in complete
analogy with the introduction of dielectric functions in or-
dinary electrodynamics. Thus (3.3) is now written as (for
an isotropic system)

iq eL (q, co)EL, (q, pl) =2mpr„, (q, co),

while (3.4) and (3.5) can be combined to give

(4.1)

QP 2&l .
q Er(q, co) = 2 CT(q, co)Er(q, co)+ 2- jr r„,(q, co) .

eo Co

That is, VP at r; acts as the equivalent of a force which
produces a velocity, in agreement with the work of Niki-
forov and Sonin. ' This equation of motion for the vor-
tices shows in an explicit manner how the spin-wave field
V8 and the vortex field Vg at the position of a vortice are
coupled through the velocity r; of the vortice.

While the equations of motion (3.2)—(3.5) are formally
identical to Maxwell" s equations, certain differences
should be kept in mind. For example, we note that a vor-
tice is itself a particular configuration of the fields, in
contrast to the charges and currents in ordinary electro-
dynamics which are entities independent of the fields they
create. The vortices having no mass means that all the
energy is in the fields E and B. Another difference is
that the equivalent longitudinal electric field as defined in
(3.8) involves Vg which is not an ordinary gradient in that
V X Vf(r)&0 at the vortex centers r;. This is easily veri-
fied using (2.10) and arises from the singularities associat-
ed with the vortices. As a consequence, one cannot easily
extract information about correlation functions involving
the vortex field it from the well-known correlation func-
tions for longitudinal electric fields.

8p is renormalized by the transverse current of vortex
pairs which it generates and we have 8p~8=8p+8;„d. In
terms of er, this is given by

8p(q, oi)
8(q, co)=

er(q, co)
(4.4)

If we ignore the presence of any free vortices ( T & TKr ),
the effective transverse Hamiltonian is now

Dp ET Q2a,= fdr + Jdr (4.5)

The transverse normal modes have the usual dispersion
relation

CO

C()g

eT(q, co)
' (4.6)

as can be seen most directly by expressing (4.2) in the

27rlco jz' rqce(q, co )
Ez (q, ro) =

cpfq —(co Icp)er(q, co)]
(4.7)

Thus we see that the renormalized longitudinal spin-wave
modes are equivalent to the (transverse) photons in a
dielectric media composed of dipoles. In the long-
wavelength limit which we are interested in, the renormal-
ized spin-wave speed is given by

I /2
Co JTc=

[&T(q =o ~)]'"
since the renormalized exchange constant is

Jo
JT(q, co) =

Er(q, co)

(4.8)

(4.9)

In the q~O limit, the longitudinal and transverse dielec-
tric functions are equal in an isotropic system and we
defer further discussion of e'(q~O, co) to the end of this
SeCt10n.

The calculation of the dynamic correlation functions
for transverse electromagnetic fields XEn(q, ~)
=(Er ET)(q,co) ls dlscllsscd ill thc lltcl'atlllc Slid oiic
easily obtains

T M
XEa(q,~)=

& X~A(q, ~)
Co

(4.2)

Here el r(q, co) are the wave-vector- and frequency-

@AT
[5(co—cq)+5(co+cq)] .

ET(q, co)
(4.10)
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Using (3.7), this immediately gives

kgT
Xse(q, to) =

2 [Sto cq—)+5(to+cq)],
2q JOLT(q, co)

where Xse(q, co)—:(W)(q, to).
If one defines the new transverse electric field

1 8
V xE'T ————

c t

1 BE'r
VXB=——

c t

(4.13)

where c is the renormalized value defined in (4.8). These
equations of motion are generated by an effective trans-
verse Hamiltonian of the kind

E'7+8
HT —— dx

= —,
'
JT f dr(WOO) + f drSt, .2' (4.14)

Thus we see that in terms of this new transverse field E'r,
the equations of motion and the associated Hamiltonian
look precisely as if we were dealing with a pure spin field,
with no vortex configurations included. The effect of the
bound vortices is completely buried in the renormalized
exchange constant. A straightforward calculation of the
correlation function for this bare spin-wave field gives (see
also Ref. 17)

kgT
Ze g (q, co) = [5(to cq)+5—(to+cq)],

2q JT(q, co)

(4.15)

where c is defined in (4.8). Our work shows how this re-
normalization of Jo to Jr(q, co) arises from the spin-
wave —vortex coupling which enters through the trans-
verse vortex current. The correlation function (4.15) is
consistent with our earlier results for the renormalized
spin variable given by (4.11) and (4.4), namely,

(4.12)

treating Jz. in (4.9) as a constant, then one can rewrite
(3.4) and (3.5) in the form

literature, it is common to work with the unrenormalized
longitudinal superfluid current

and the transuerse superfluid current contribution

(4.19)

(4.20)

where tij still includes the bound vortex pairs. In terms of
gt, and gr, the superfluid density is given by the rigorous
expression ' *'9

(4.21)

T»s can be shown to be related to the helicity order pa-
rameter. There is no contradiction with the alternative
formula

p, = lim Xss (q)
1

q-+0 kg T (4.22)

Dt. ——et, EL,
we so: that (4.1) is equivalent to [compare (3.3)]

V Dt (r)=2npt„, (r) .

(4.23)

(4.24)

The effect of the bound vortices on the dynamics of the
free vortex gas is completely contained in the longitudinal
dielectric function et . [As defined, we note that the zeros
of eL(q, to) would only describe the longitudinal collective
modes' in a gas of bound vortex pairs ]The lo.ngitudinal
part of the Hamiltonian is given by [compare with (4.5)]

DL Ela, = fdr (4.25)

which is equivalent to a 2D gas of free vortices with a re-
normalized coupling,

since the significant part of the transverse superfluid
current associated with vortex pairs has already been in-
corporated into g, as defined in (4.18). To be precise, the
static correlation functions in (4.21) are calculated using
(1.3) in which the spin waves and vortices are uncoupled.
In (4.22), in contrast, the correlation function is calculated
using the Hamiltonian (1.8).

For completeness, we briefly consider the renormalized
transuerse vortex field associated with the longitudinal
electric field EL in (4.1). Of course, recalling

Xe,o,(q,~)=~T(q, co)Xso(q, to) . (4.16)
(4.26)

We recall that with the equations of motion (2.28) ap-
propriate to He superfluid films, the unrenormalized su-
perfluid density is given by p, =JO. In this connection,
one has two equivalent expressions for the longitudinal su-
perfluid current density which includes the effects of the
bound pairs (see also p. 70 of Halperin')

(4.17)

(4.18)

Here p, =JT is the superfluid density including the effects
of the vortex pairs. In the approach used in most of the

(Here we treat eL as a constant for simplicity of notation. )
For a discussion of correlation functions describing free
vortices aboUe TKT, we refer to Huber. '

The result in (4.26) shows that two vortices added to
the system interact via a renormalized stiffness constant
JL, =Jo/eL, due to the screening of the interaction by the
"dipoles" in the system. As we mentioned earlier,
eT(q=0, co) =eL (q =0,co) so in the long-wavelength limit,
the renormalized exchange constants for the renormalized
vortex field problem ( JL ) is the same as in the renormal-
ized spin-wave problem ( JT). In this limit, we can denote
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Co

in '

[ (I)]' ' (4.27)

The dependence on I means that the dominant screening
effects arise from bound pairs with a size which decreases
as the frequency increases (or, equivalently, as the wave-
length decreases). However, the classic renormalization-
group analysis of the KT transition shows that eKT(l)
only exhibits a discontinuous drop at T = TKT for infin-
itely large bound pairs (l~ ao ). The smaller I is (i.e., the
larger the frequency ei is), the smoother is the behavior of
e Kr(l) as we pass through the KT transition. This fact is
well understood in the context of third sound studies on
He films but it should also be kept in mind when dis-

cussing how the spin-wave dispersion relation will behave
near TKT in layered magnetic systems. One expects that
in the range of frequencies accessible to inelastic neutron
scattering, the KT renormalization of the spin-wave velo-
city in 20 XI' magnetic systems would be quite small.
One would have to use some other sort of experimental
technique which would probe spin waves in the true hy-
drodynamic region if one wanted to see the sudden disap-
pearance of spin waves due to the KT unbinding of vortex
pairs (see, however, Ref. 23).

the renorroalized exchange interaction simply as J.
As discussed at length in Refs. 3 and 22, the real part

of eL(q=O, co) can be related to the Kosterlitz-Thouless
scale-dependent dielectric constant @AT(l ) with I
=—In(rD/ap), where rD is the appropriate diffusion length
of the vortices. In the case of "He films, it has been es-
timated that rD -(14D/co)'n, where D is the vortex dif-
fusion constant. According to the preceding results, then,
the renormalized spin-wave speed just below the
Kosterlitz-Thouless transition is given by'

Using these results in (5.1), a lengthy but well-documented
calculation ' shows that S(q, co) exhibits a peak at the
bare spin-wave frequency co=cpq with a characteristic
power-law exponent

1
S(q,co)-

2 &~22) 4
(5.5)

Xg,g,(r, t)=kgT f dq
e 'q' cos(cqt)

q JT q, cg
(5.6)

where c and JT(q, to) are defined in (4.8) and (4.9), respec-
tively. With this result, it is easy to see that the spin-wave
resonance in S (q,ca} will be described by

1
S(q,to)-

(~2 &2~2) ~R

where in the long-wavelength limit gz (2rtECtt )
' and——

(5.7)

The exponent rip=(2mKp) ' is the same one which occurs
in the static spin response function given in {1.5).

In considering S{q,cp} using the full Hamiltonian (2.4),
there may be new dynamical structure arising from the
presence of vortices in their own right. . However, we limit
ourselves to understanding how the spin-wave resonance
exhibited by S(q, to) in (5.5) is renormalized by the cou-
pling to the bound vortex pairs. This part will still be
given by

(cos[8p(r, t) —8p(0, 0)] )a

but now the thermal average and the dynamics will be
controlled by the renormalized Hamiltonian (4.14) instead
of (5.2). Since (4.14) is a quadratic form, (5.3) is still
corre:t but now (5.4) is replaced by

V. ORDER-PARAMETER CORRELATION FUNCTION

' 1/2
ktt m:ti

(5.8)

Jo tX d8o
H = f dr(V8p) +—f dr

2 2 dt
(5.2)

In this harmonic approximation, one has

(cos[8p(r, t) —8p(0, 0)])=expI ——,
' ([8p(r, t) —8p(0,0)] ) I

The transverse spin-correlation function is defined as

S(q,p~)= f dte '"' f 'dre'q'(cos[P(r, t) —tt'i(0, 0)]) .

(5.1)

Nelson and Fisher have given a detailed evaluation of
S(q,co) within the bare spin-wave Gaussian approxima-
tion. This corresponds to taking P(r) to be 8p(r) as de-
fined in Sec. IV, the thermal average and time dependence
being determined by

where Ka is defined by (1.7).
In Sec. IV, we emphasized how the bound vortex pairs

led to renormalization of 8p to 8. One might be tempted
to use

(cos[8(r, t) —8(0,0)])a (5.9)

in calculating the spin-wave resonance in S(q, co) but this
would be quite incorrect. The effect of the bound pairs is
to modify the interaction between the 8p variables, not to
alter their definition. To use an analogy, consider a sys-
tem of interacting atoms. The full Hamiltonian may be
diagonalized by the introduction of new quasiparticle ex-
citations. However, this does not alter the fact that physi-
cal observables are given in terms of the original atoms.

~e note that the equal-time (static) correlation function
is easily obtained from (5.6), namely,

where [using (4.15)]

=exp[Xg, g,(0,0) Xg,g,(r, t)], —

(5.3}
kgT

lim (8p8p)tt(q, t =0}=lim
q -+0 q p mq JT(q, cq)

(5.10)
AT

Xg g (r&t)= f dq 2 cos(cput) .
0

(5.4)
This is in perfect agreement with the classic Kosterlitz-
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1 1

mq Ko mq Ky2 + 2

1

mq Kg
(5.11)

The spin-wave and vortex contributions are completely
decoupled. In contrast, the average in (5.10) involves the
spin-wave Hamiltonian with an exchange constant renor-
malized by the bound vortex pairs. Recalling our discus-

Thouless result, although the method of calculation is
somewhat different. In the usual approach reviewed in
Sec. I, the static correlation function is calculated using
the decomposition

»m &04 &=&florio&sw+ &A'&.
q~o

sion of the superfluid density in Sec. IV, we see that (5.10)
and (5.11) are equivalent to (4.22) and (4.21), respectively.
The discussion there is relevant in the present context.
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