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Relativistic dynamics of sine-Gordon solitons trapped in confining potentials
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A collective-coordinate method is used to study theoretically and numerically the stability and the
dynamics of a sine-Gordon soliton trapped in a confining potential. The example of a harmonic
well is emphasized. A remarkably simple approximated solution is found and checked by numerical

simulations. The perturbed soliton is stable up to high (relativistic) energies and its profile has the
following kinklike dependence on space and time:

I/2
1+ 4 V(y)

U(», t)=4tan ' 'exp, [» —y(t)]
. . [l —(y')'l .

where V(y) is the potential energy of the particlelike kink at x =y(t). %hen an external driving

force is present„resonances are pointed out and their nonlinear nature is stressed.

I. INTRODUCTION

The study of the dynamics of a sine-Gordon (SG) soli-
ton under the influence of an external driving force has
been developed within the last decade. ' Using varied
theoretical tools, authors first claimed that the SG soliton
behaves as a rigid Newtonian particle, i.e., its acceleration
is proportional to the amplitude of the applied field. 2

Then a controversy, now widely settled, developed about
the particular case of a uniform external driving field:

U„—U~+sinU=X, g ~~1 .

It has been shown that, on a short time scale [of order
of the characteristic phonon period: here, in the dimen-
sionless units used in (1), this period is 2m], the soliton
does not react upon the field X as a particle, but is dressed
with the linear (phonon) waves excited in the original vac-
uum state U(», 0)=0 by the Geld X. ' As a consequence,
a complex process of interactions between the soliton's
particlelike and wavelike aspects occurs, leading to
anomalous (with respect to the reference Newtonian tra-
jectory) soliton dynamics ioithin this short time scale

Actually, this anomalous effect is a transient process
happening mainly because the initial soliton profile,

U(», 0)=4 tan 'exp( —o»)

(o = —1 for a kink; o =1 for an antikink), is not a solu-
tion of Eq. (1). As noted in Ref. 6, in order to avoid this
transient effect, one may add the so-called vacuum state
U„„=sin X to the kink (2). The resulting solitary wave
4 tan 'exp( —cr») +sin 'X connects two states of
minimum effective energy, and therefore almost no pho-
non waves are excited. The dynamics of this "renormal-
ized'* kink wave is fairly Newtonian.

Another way to avoid the presence of phonon waves is
to change the expression of the driving force in (1). As-

suming a potential V(x), whose characteristic length L
satisfies the usual pointlike assumption in classical
mechanics when applied to the SG kink (2),

where 1 is the soliton dimensionless width, we obtain, in
first approximation with respect to 1/L, the Newtonian
equation of motion of the soliton position y (t):

8y"=— (4)

provided the potential V(x) enters the perturbed SG equa-
tion in the following way:

U« —U~+[1+—,V(x)]sinU =0 . (5)

[see (4)], as long as the maximum amplitude y,„of the
soliton oscillations remains small enough to allow pertur-
bative regimes (see Fig. 1):

Note that the soliton rest mass equals 8 in dimensionless
units.

The advantage of Eq. (5) in comparison with Eq. (1) lies
in the fact that the term —,

' V(»)sinU vanishes on the soli-
ton wings U-0 [mod(2m. )], so that the main source of
phonon waves disappears.

A simple case of (5) is the harmonic problem:

V(x)=/ex, Ir &&1 .

A good test for studying the resulting soliton dynamics is
the Fourier spectrum of the soliton position variable y (t),
when the range of t allows a great number of oscillations
of the kink inside the potential (6). We find out that this
Fourier spectrum is sharply peaked at a frequency 0&
very close (to a few percent) to the Newtonian frequency
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-of-freedom collective-coordinatea simple two-degrees-o - re
followinmethod already suggested by Rice through the o owing

.8ansatz:

(12)U(x, t)=4tan 'exp[ —crk(t)[x —y(t))) .

The agreement with direct numerica 1 simulation of the
original partial differential equation (11) is quite amazing.

Th wer to question (i) is defmitely positive. Moree answer
've len thprecisely, ue o e, d t the separation of the respective g

'
1 cf. (3),1 f h liton and of its confining potentia c .

dcduccdwe show that the adiabatically modulated profile de u
from (12),

U(x, t) =4tan 'exp —cr

' 1/21+ 4 pc/

[x —y(t) j1—

FIG. 1. Kink oscillations frequency Qq y,„.vs . The param-
are ~=0.09, o;=0, a=0. The numerical points are

represented by circles {0)miih a
ical points given by (23d) and (23e) are represented by crosses
(g). Q~ ——0.15.

t){x) T=150 T=300

(13)

bl ki klike wave which approximates airly well
E s. 5) andthe solution of the inhomogeneous problem [Eqs. (

(6)]: see Fig. 2.

@/max Q(1

Since the Hamiltonian corresponding to (5),

H= f hdx

d —'U + —'U + 1+—'V x 1 —cosU

=const=—E,

-20 x 2Q

T=4SO T=600

~ 0

is an invariant for the evolution problem {5),the condition
(8) simply means t a eh t th soliton dynamics is nonrelativis-
tic:

410

2b,E=E—8-4(y') +ay =irym, „~~8 . (10) U(X1 T=300

Therefore, as ong as1 the problem is conservative, one
s ~ ~

may reasona y c aimbl 1
'

that the oscillations of a SG kink at
b Es.of a harmonic potential well described y qs.

(5) and (6) are Newtonian, in good agreemen w'

Things drastically change when an (even very weak
extema1 driving ie is af ld

'
dded on the right-hand side (rhs)

of (5):

U, —U +(1+—,
' ~x )sinU =icos(Qt), e ~~1,tf

-20

T=4SQ T=600

d r sonant regimes are investigat: Q-Q~.
and 10) be-Then, due to the resonance, inequahties (8) and (

come inva i wit ime.1'd 'th time. The effect of the confining po-
tential {6) onto the soliton may no longer be consider as

rturbative one, and two basic questions arise.a pc uf
(') I th oliton still stable when it enters s g pstron ertur-1 s cs

cr K is notb t' imes in which its potential energy ~y,„'bation regimes
small compared to its rest mass~

(ii) If so, what are its new dynamics. T

The present paper answers these two quesuestions by using

FIG. 2. A time sequence shows the stab' '
ystabilit of the adiabatic-

(0)=8,kink-like profile ( 13) for x =0.09, m=0, a=, y
'(0) =0 k'(0) =0 and, (a) k (0)=[1+ay

r ~aves on Fig 2|b) isk (0)= 1. The presence of stationary lines
due to the strong departure of k(0) fromom k see (23e)] and can-

I the resent collective-coordinatenot be accounted or in e
~ 4

cribed b the formalism sketched in Sec.method. They are descri y
IV. The sixth panel of each sequence displays the in ynam-
ics y vs t.
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k (t) = k(y(t)) =
'

1 j21+ 4K/

1 —(y')'
(16)

Formulas (15) and (16) clearly display the nonlinear char-
acter of the frequency shift Q~ —Qti. Hence, adding a
small damping term a U, on the left-hand side (lhs) of (11)
affects this shift through its dependence on the amplitude
of the kink oscillations. Indeed, it leads to the additive
term ay, on the lhs of (15), and the answer to question (ii)
in the dissipative case is an oscillation whose resonance
frequency is given by

QR ——Qtt(e, a,«) . (17)

We illustrate such a relativistic nonlinear resonant
dynamics of the kinklike wave (13) in Sec. II.

Inasmuch as the forced dissipative partial differential
equation (PDE)

Concerning question (ii), we show that the dynamics of
the kinklike profile (13), undergoing the external driving
force icos(Qt), is equivalent to that of a forced oscillator
of variable mass. Actually, the "instantaneous'" Lorentz
contraction

(14)

maps the dynamical problem (ll), onto the following
forced-harmonic-oscillator dynamics:

y + —,
'

ay = a—ek(t (r))cos[Qt (r)] .
4 (15)

As a consequence, the (relativistic) resonance frequency
Qti may significantly differ from the Newtonian value (7).
Choosing typical values @=10, x=0.09, we obtain
Qtt -0.127 instead of Qz ——0. 15. System of Eqs. (14) and
(15) is closed by [cf. (13)]:

U« —U +[1+—,
' V(x)]sinU=icos(Qt) —aU, (18)

II. TO%'ARD A DISCRETE
T%'0-DEGREES-OF-FREEDOM

DYNAMICAL SYSTEM

The present theory is restricted to the case (6) for the
sake of simplicity. In the Appendix we generalize it to a
wider class of confining potentials V(x), satisfying (3).

By direct substitution of the ansatz (12) into (18) we ob-
tain;

is an appropriate model for the propagation of the phase
difference U between the two macroscopic wave functions
of each superconductor layer of a long inhomogeneous
Josephson junction, the result (17)—where ~ measures an
average spatial curvature of the maximum Josephson
current density dip —gives some hope for experimentally
checking the present theory. Indeed, there are two param-
eters which may easily be varied: the amplitude of the ul-

trahigh frequency (Q is in the GHz range) ac bias e and
the amplitude of the damping a through its strong depen-
dence over the temperature of the junction [a increases by
an order of magnitude when T varies from 2 to 4 K (Ref.
9)]. The main technical problem is the buildup of a junc-
tion with a Josephson current dip satisfying (3).

The intent of this experiment is to elucidate the non-
linear resonances of value (17) in the fluxon dynamics and
it is currently being worked on in collaboration with other
experimentalists. ' The underlying idea is the construc-
tion of a low-noise uhf Josephson fluxon oscillator, which
could be of interest for an uhf detection device in millime-
ter radioastronomy. "

1

1+—,'~y +k [(y') —1]+2og y'k' — y + ~ —+(k')z Us
4k ki 4

+ crky" +cr(2k'+ak)y'+ ~(k"+ak') Us coos(Q——t}, (19a)
k

where

Us(g}=4tan 'exp),

g= —hark (t)[x —y(t)],

o = —1 for a kink; o.=+1 for an antikink,

(19c)

(19d)

and the prime stands for a derivation with respect to the
argument. Projecting both members of (19a) onto the

soliton translation mode fi, (g) =(—a l2v 2) Uz(g) leads to
the equation of inotion of the degree of freedom y (t):

ky" +k'y'+ aky'+ =—o.e cos(Qt),
4k 4

while the behavior of the remaining degree of freedom
k(t) is determined by the projection of (19a) onto any
mode orthogonal to fi, (g): for instance fi (g). We obtain

2

3k k' 4
(k"+ak') — —+(k')z —4 1+—y +k [(y') —1] =0.

L
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The system (20) can be recovered in the Hamiltonian
case (a =0) by substituting the ansatz (12) into the Hamil-
tonian density defined by (9)—with the additional term

[—Uecos(Ar)] —, then by integrating over space:

H= I h(U(y, y', k, k'), t)dx

3k'
—+(k')' + +4k[1+(y')']

l l l l

(21a)

and by writing the Hamiltonian equations for the canoni-
cal moments

l I l

2m~k'
P =8ky', Q =

3k

Indeed, P'= —BH/By gives

+ 2m or cos(At),2K/

k

while Q'= —BH/Bk gives

1 pi 9k
16k~ 4n

"I

1
)

K

k2 k2 4k

(21b)

(22a)

(22b)

We check that the system (22) is equivalent to (20) in the
case where a=0. This system is the reduction of the
problem (18) with an infinite number of degrees of free-
dom to a two-degrees-of-freedom dynamical system. Its
(obvious) numerical simulation shows a perfect agreement
with the direct numerical simulation of the original par-
tial differential equations (6) and (18): see Fig. 3. In Fig.
4, we display the resonance effect in a typical nondissipa-
tive case.

410

III. THE FINAL REDUCTION
TO A ONE-DEGREE-OP-FREEDOM

DYNAMICAL SYSTEM

In the conservative case, Eq. (20a) admits the invariant:

1 vn
~p(yo) 1+ 1+

2 4 f(yo)

' 1/2 1/2

(y') + y =const,
4k

and then a particular solution of system (20) is

y (r) =yocos(A, r)

k(t)= k =const,

(23a)

(23b)

(23d)

(23e)

0 410 T
FIG. 3. A typical resonance obtained either by direct numeri-

cal simulation of the original PDE (1S) with: x =0.09,
0=0.055, a=0.01, a=0. 1, or by numerical solution of the cor-
responding two-degrees-of-freedom system (20). The initial con-
dition is given by (2) with o =+1. Top panel: the value of the
slope BU/Bx at U =m versus time. In terms of the ansatz (12),
this slope is equal to —2k(t). Note the huge increase of (rela-
tivistic) energy; indeed the "average" Lorentz factor k increase
by a factor of the order of 3 for t & 400. Middle panel: the kink
position versus time defined at U=m. In terms of the ansatz
(12), this position is given by y (t). Bottom panel: the kink velo-

city obtained from the ratio —[BU/Bt]/[BU/Bx] at U=m.
versus time. In terms of the ansatz (12), this velocity is y'(t).
We insist on the fact that both numerical solutions of the PDE
(18) and of the system (20) give exactly the same plots within the
scale precision.



RELATIVISTIC DYNAMICS OF SINE-GORDON SOLITONS. . .

I I I

-O.S-
0 200 0 200 0 200 t

FIG. 4. Resonance effect about 0=0.127 for x=0.09, a=0,
@=0.01, obtained by numerical simulation of either the PDE
(18}or the ordinary differential system 4',20}.

with

k 2+ — »Qs [«(23d)]
4k

(24b)

We note the order of magnitude separating the period
of the high-frequency (HF) oscillations of the degree of
freedom k(t) [cf. (24a)] from that of the low-frequency
(LF) oscillations of the position y(t) [cf. (23b)]. Accord-
ingly, one may average over the rapidly oscillating k vari-
able in (20b} and extract the following relation:

k [(y') —I]+I+ —,'ny + =0,
16k

which gives the only acceptable solution:
' 1/2 1/2

k (t) = k(t) = y(t)cop(y) I+ I+v'2 4P GPp

(25a)

(25b)

where

y(t)= 1

[ I (y~)2]1/2
(25c)

The physical meaning of (25} is transparent. The factor
y~q is the adiabatic or instantaneous —in the LF time
scale—adaptation of the kinklike profile (12) to

(i) its velocity y'(t) through a Lorentz contraction
k ~ [I—(y') ] '/ [ef. (25c)].

(ii) its local plasma frequency [I+ ,'ay (t)]'/ —through

where

cot (y)=(I+ —,'ay )'

An initially static adapted kink [i.e., the initial condi-
tions are y(0)=yo, y'(0)=0, k(0)=k, k'(0)=0] oscil-
lates with a frequency Qs [see (23d)] equal to Q1v/k: see
Figs. 1 and 2.

Besides the above kink oscillations (23b), an initial stat-
ic kink (2) also sees its width k oscillating. Indeed, in
this case, an expansion of (20b) in terms of ( I —k )/k gives

'2

k =k I+ cos(cot)+0, (24a)
1 —k 1 —k

k k

the dependence iso:(I+ —,'ay )' [cf. (23f)]. This is im-

mediately seen from (2) by transforming the Ihs of (5) into
the Ihs of (I)—the dimensionless SG equation —thmugh
the local change of variable: t =[I+ —,

' V(x)]t;
dx = [I+ —,V(x)]dx, then by using the separation of
length scales (3).

The departure of k from unity [cf. (25b)] means an
overall contraction of a static kink at the bottom of the
potential well (6) due to the increase of energy
XP =an/12. [when k —I:cf. (21a)]. In the highly ener-
getic case, i.e., y' & I and ay » I, it may be neglected (see
Fig. 2) and one is left with the adiabatic solution (13).
The trajectory y(t) is checked by the numerical siinula-
tions of the system (20a) and (25b). The agreement with
the previous results obtained in Sec. II is perfectly within
the scale precision: in the case corresponding to Fig. 3,
we recover exactly the kink dynamics displayed by Fig. 3:
middle and bottom.

IV. BEYOND THE ADIABATIC CASE:
OPEN PROBLEMS

When the external frequency Q is high compared to
Qg p 1+co)

Q & co & I [cf.(24b)], (26)

an adiabatic response like (12) is no longer possible; the
external field oscillates too rapidly to allow the kink to in-
stantaneously adapt its profile according to the local plas-
ma frequency and to its velocity. As shown in Ref. 12,
the exhaustive description of the kink confining potential
system needs an infinite discrete series of degrees of free-
dom. Indeed, the external field excites stationary eigen-
modes of the Schmdinger type inside the potential and the
soliton appears, in this situation, as a perturbation of such
an eigenproblem. By numerical integration and theoreti-
cal work (linearization) on Eq. (18), the authors have es-
tablished that the discrete eigenfrequency spectrum of the
solution U(x, t) splits into two independent eigenfrequen-
cy spectra. One spectrum describes the internal vibrations
of the kink and is referred to as the odd (or vibrational)
spectrum (i.e., the eigenmodes are odd functions of the
space variable x and describe the internal vibrations of the
kink). The second spectrum, called the even (or dynami-
cal) spectrum, determines the motion of the kink under
the action of both the potential V and the external driving
icos(Qt). Resonances are possible only when the external
frequency Q is tuned on even eigenfrequencies.

Tuning the external frequency Q on the fundamental
eigenfrequency n =0 (which belongs to the even spec-
trum) corresponds to the LF resonance. The next even
eigenfrequency n =2 is greater than 1 and gives rise to
the so-called high-frequency (HF) resonance.

In this HF resonance, a quite different behavior of the
system is observed, namely, strong HF internal vibrations
develop [i.e., the first (n =I) and second (n =3) odd
eigenmodes are strongly excited] together with oscillations
of the soliton position described by the n =0 and the
n =2 (original driving} eigenmodes. This might be
translated in terms of usual spectroscopy as follows:
when "pumping" on the n =2 level, one observes both the
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(stronger) "Stokes" satellite feature n =1 and the (weaker)
"anti-Stokes" satellite )i =3, together with the (LF) beat-
ing frequency n =0 which describes the motion of the
kink. As a matter of fact, the observed mechanism can be
compared to a stimulated Brillouin effect in an excited SG
kink, but more work is needed before going further into
this analogy.

APPENDIX

8 +~
d

V(x)
2cosh [k(x —y)]

P 9k z 4
1

16k 4m k

(A 1)

V(x) be proportional to a small parameter a. Assuming
the conservative case, if we are interested in recovering a
quasi-adiabatic expression for k, let us first see what be-
comes of Eqs. (22a) and (22b):

Let us consider a wider class of confining potentials
V(x) with the only restriction that V(x) increase suffi-
ciently slowly at both infinities [in fact V(x} should in-
crease less rapidly than exp(2

~
x

~
) at infinity] and that

V(x)
2 cosh [k (x —y) ]

(A2)

If V(x) is Taylor expandable everywhere we may write

V(x)
2coshz[k (x —y)]

V(y) " V'&'(y) 1 + ~ z'P
+ dz

k
p i

k'p+) (2p)! —" 2 coshzz

82
V(y) " V' P'(y) 1 (2 P —2br=

k +& k"- (2) 2"

where Bzp's are the Bernouilli numbers.
Let us provide some insight into the oscillatory

behavior of k. The equilibrium solution kQ of Eq. (A2) at
y =0 (y'=k'=0} is given by

ce V)2P)(0)
4(1 —kQ)+ V(0)+ g z Ap =0, (A4a)

p i kQ

~ = 2&+' ""-"W
~a, ~

.
(2p)! 2'p 2p

Linearizing (A2) about y =0 and k =kQ yields

where

V(0) 1 ~ V"P'(0}

Hence we get a frequency Q) such that

V(0) " V"P'(0)
co = 2+ + g z (2p+2)Ap

p —i 4kQ

k "= (k —kQ} 1 —3kQ+
6 V(0)

1 V'zP)(0)
(2p —1)Ap

p —i kQ

(ASa)

Obviously, for a wide class of potentials (typically even
potentials), co is still much greater than Qq [Qz being
proportional to V' '(0}which is assumed to be small com-
pared to unity]. Therefore we may still separate the time
scales of y and k as long as y still exhibits low-frequency
phenomena compared with the rapid oscillations of k and
Eq. (25a) is generahzed to

For small [1—(y') ], one deduces from the above formula

' 1/2+ Vu )~4 +0 I [1 ( ~)2])/2I
1 —(y')'

As previously mentioned, the adiabatic modulation of the
kinkhke profile is even more effective as the soliton
reaches relativistic velocities.
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