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Solid helium. I. Ground-state energy calculated by a lowest-order constrained-variation method
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The ground-state energy of solid helium is calculated by means of a modified variational lowest-

order constrained-variation (LOCV) method. Both 'He and He in the bcc, fcc, and hcp structures,
as well as two possible spin configurations for 'He, are considered, and the calculations are done for
five different two-body potentials. Theoretical results for the ground-state energy per particle are
—0.3 to + 1.8 K for solid He at a particle density of 0.42o ' or a molar volume of 24 cm'/mol,
and —6.1 to —3.2 K for sohd He at a particle density of O.SOo. ' or a molar volume of 20
cm /mol, where o.=2.556 A. The corresponding experimental results are —1.0 and —5.6 K,
respectively. For higher densities, our theoretical results are in even better agreement with experi-
mental results.

I. INTRODUCTION

Solid He and He are of interest as quantum solids, but
quantum crystals such as helium cannot be treated by the
classical theory of lattice dynamics. ' The two-body po-
tential has a very strong repulsion at small distances,
which produces strong short-range correlations and a rela-
tively large zero-point motion because of the small atomic
mass and the relatively weak attractive part of the interac-
tion. The zero-point energy is comparable to the potential
energy, and the root-mean-square deviation of an atom
from its equilibrium position at a lattice site is not small
compared with the nearest-neighbor distance or the lattice
constant. Anharmonic effects are important, even at zero
temperature, and not only does the usual theory of lattice
dynamics converge poorly, but the harmonic approxima-
tion simply breaks down.

Some early attempts ' to study quantum crystals were
made by anharmonic theory, and calculations were in fair
agreement with experimental results. Many approxima-
tions were used, however, making the results unreliable.
Bernardes and Primakoff then made the first attempt
to include correlations in a partly variational, partly
phenomenological calculation of the ground-state energy
of solid He, using spherically symmetric Gaussian
single-particle wave functions. They replaced the true in-
teraction by a one-parameter effective interaction at small
distances by introducing a cutoff in the potential to avoid
the singularity problem when the relative interparticle dis-
tance r ~0. The cutoff parameter was determined
phenomenologically by fitting the ground-state energy and
the root-mean-square deviation of the atoms from their
lattice sites for solid He. Bemardes and Primakoff, how-
ever, underestimated the kinetic energy, overestimated the
exchange integral, and found a rather large root-Inean-
square deviation.

Saunders then calculated properties of solid He, using
Jastrow-type wave functions and including correlation ef-
fects and the lattice syinmetry. He derived an approxi-
mate differential equation for the correlation function, but
a single-particle function could be shown to diverge and

the equation for the correlation function was solved in-
correctly. Saunders's approach was analyzed by Garwin
and Landesman, who made some improvements. They
found, however, that his approach breaks down complete-
ly for He. The usual approach for solid helium has later
been to apply variational methods, assuming that we can
make cluster expansions as suggested by Van Kampen, 9

using a trial ground-state wave function containing short-
range Jastrow correlations.

The methods of Nosanow et al. ' ' and Brueckner
et a/. ' ' were then based on an approximate expression
for the energy expectation value obtained by a cluster ex-
pansion which had to be truncated and then varied to give
an estimate of the ground-state energy. A localized wave
function, i.e., a product of short-range two-particle corre-
lation functions and Gaussian single-particle functions
centered about the lattice sites, was used. The cluster ex-
pansion of Nosanow is grouped in terms of increasing
numbers of intercorrelated particles, i.e., he proceeds from
one term to the next by adding a particle at a time and the
derivation is given for a general wave function. The ex-
pansion of Brueckner and Frohberg' was ordered by in-
creasing the number of factors of the correlation function,
i.e., they assume the Jastrow function from the beginning
and derive an expansion whose successive terms differ by
the inclusion of a single additional correlation factor. The
relationship between the two expansions has been studied
by Trickey. ' Starting with Gaussian Jastrow trial wave
functions, Massey and Woo' ' also made calculations
where they reordered the Nosanow expansion so that par-
ticles outside the cluster had the particle correlations of
the liquid.

Most of the theoretical work on the ground-state energy
of solid helium has been variational calculations, using a
correlated trial wave function. Iwamofo and
Namaizawa, ' Brandow, and gstgaard, ' however, used
self-consistent methods similar to the reaction-matrix
Breuckner theory for nuclear-matter calculations, which
produced an integrodifferential equation, similar to the
Bethe-Goldstone equation, to be solved to give the effec-
tive interaction or reaction-matrix elements. But the ac-
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curacy of their methods is not known, so their agreement
with experimental results may be a coincidence.

Guyer and Zane ' and Glyde and Khanna also pro-
posed methods based on cluster expansions of the
ground-state energy, using model Hamiltonians. They
also derived a two-particle equation similar to the Bethe-
Goldstone equation, and described the motion of a pair of
particles in the average field produced by the remaining
lattice. No self-consistency follows, however, from the
Guyer theory. Also, Horner and Ebner and Sung have
introduced a time-dependent formalism similar to the
Brueckner theory but expressed by Green functions.

Finally, using wave functions with Gaussian single-
particle functions in Monte Carlo calculations, Hansen
et al. ' and Ceperley et a1. have obtained lower
ground-state energies in better agreement with experimen-
tal results for solid helium. We now want to calculate the
ground-state energy, the pressure, and the compressibility
of solid helium by means of a modified variational
lowest-order constrained-variation (LOCV) method.

E=(q
(
a

~
e&/(e

~
e&, (2.1)

where H is the total Hamiltonian for the syste~ and 4' is
the total wave function. Following the idea of Van Kam-
pen, we can obtain the energy as

(2.2)

H ( I n I )= —(fi /2in ) g V'g + Q V; (2.3)

and this series will hopefully converge so fast that it is
sufficient to keep only the first two terms when two-body
correlations are the most important correlations in the
system.

We define a wave function 4„(t n I ) and a Hamiltonian
H„( I n ) ) depending on the coordinates of a set of n parti-
cles, i.e., Vi(I11) is a single-particle wave function, and

+2(I2J) is a two-particle wave function. The Hamiltoni-
an is

II. THE CLUSTER EXPANSION

To obtain the equation of state for a system of X parti-
cles (in statistical mechanics) we generally expand the
configuration integral Q~ as a series in the fugacity. Al-
ternatively, Van Kampen has given a cluster expansion
for Qn, where Q~ is represented by an infinite product
instead of an infinite series (i.e., infinite in the sense
N ~ ao ). Nosanow" has used this idea to obtain a cluster
expansion for the energy.

The energy for a system of particles is given by

Ei= g &0'i(r ) IHi(r')
I
+i(r )&/(ei(r )

I
+i(r )&

i =1

= QC, (i), (2.4)

where VJ is a two-body potential.
Since we are going to keep only one-body and two-body

terms, we truncate the expansion (2.2) and calculate E
from

Ez —— gg (0'2(r;, ri) (Hi(r;, rJ)
~
%z(r;,rj)&/(42(r;, rj)

~
%i(r;,rj)& —Ci(i) —Ci(j)

1pi &jpjttt

g C2(ij), (2.5)

where the factor —,
'

prevents double counting. The cluster
expansion for the energy is then

E= g Ci(i)+ —,
' g C2(ij)+ (2.6)

III. GENERAL THEORY

Equation (2.6) is the basis for a method of lowest-order
constrained variation (LOCV) suggested by Pandhari-
pande, ' and the LOCV method applied to a liquid
phase has been treated and explained elsewhere. ' If we
assume that the interactions in the system are mainly
two-body interactions between pairs of particles, we may
in general approximate the many-body wave function
'P(1,2, . . . ,X) by a Jastrow function:

r

g fi(r)P ' A g P;(r),
i( &j) I I

(3.1)

where the ellipsis represents higher-order terms, and these
expressions are the basis for (both liquid and solid phase)
many-body LOCV calculations.

I

where we choose the correlation function

f(r)= g f~(r)P ' (3.2)

in a variational calculation to minimize the two-particle
contribution to the energy. Here, r is the relative distance
between the interacting particles, I is the orbital angular
momentum quantum number of the correlated pair ij, I' '

is the projection operator for the 1th partial wave, A is a
symmetrization or antisymrnetrization operator to ensure
the proper wave function for bosons or fermions, and
P;(r; ) is the uncorrelated single-particle wave function.

Before evaluating the energy expression (2.6), however,
we have to make some assumptions concerning the lattice
structure in the solid phase, the single-particle wave func-
tions, and the interparticle potential. %e shall calculate
the energy assuming a bcc, fcc, or hcp lattice. Both bcc
and fcc structures are likely at high densities since they
permit a close packing of particles. The hcp structure is
similar to the fcc structure, and calculations seem to give
approximately the same energies for hcp and fcc lattices.

The single-particle wave functions P (r;) are taken to
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be Gaussians centered around the lattice site m, i.e.,

(r;)=(v/m) exp[ ——,
'

v(r; —R ) ], (3.3}

and the uncorrelated two-particle wave function is

pz(ij) =[/ (r;)p„(rJ )+(—1)'p (r/)p„(r; )], (3.5)

if we let s be the quantum number for the total spin of
two particles and M, the projection of this spin.

We then introduce relative and center-of-mass coordi-
nates, i.e.,

where r; is the distance and direction from an arbitrary
origin to the particle i, R is the distance and direction
from the origin to the lattice site m, v is a variational pa-
rameter giving the amplitude and spread of the wave
function, and the energy is to be minimized with respect
to this parameter. We assume that the long-range correla-
tions in such dense systems determine the single-particle
wave functions completely and that there are no deforma-
tions in the crystal structure, i.e., we assume the same un-
correlated two-particle wave functions in all 1 and s states.
No partial wave expansion ls then nec&3sary and Cz(/j}
will be on the same form in all states.

From (3.3) we get the correct normalization„ i.e.,

(P.(r;) ~4.(r, ))= f d" ~y. (r, ) ~'=1, (3.4)

P( —r) =(v/2n )'~~exp[ ——,
'

v( —r —R„„)]
=(v/2~)exp[ ——,

' v(r+R „) ] .

From (3.5), (3.8), and (3.11) we get

Pz(ij) =@(R)P(r)+ ( —1)'@(R)P( —r)

=4(R)$,(r),

(3.12)

(3.13)

or

P, (r) =P(r) + ( —1)'P( —r) .

The correlated two-body wave function is given by (3.1},
t.e.,

0= g f „(r)A gP (r;),
(3.15)

+z(ij)=4(R)f „(r)p,(r) .

The expectation value C, (i) in (2.4) is determined by

Hi(r;) = —(R /2m)V;,
(3.16)

C)(i)=($~(rg)
~

(fi /2m)—Vg
~
p~(r;)) = ,'(fiz/rn—)v,

C;(i)= -„' Ace,

a) =(I/m)v .
r=r —r

C J (3.17)
R= —,

' (r;+r~ ),
R~n =R~ —R.
5= —,

' (R~+R„}, Hz(r;, rj ) = (fi /rn)(V—; +VJ )+ V(
~
r; —r

~
),

(3.18)
Cz(ij) =

& +z(ij)
1
Hz(ij)

I
'Pz(ij) &

where r =
~

r
~

is the relative distance between particle i
and particle j, and 8 „=

~

R „~ is the distance between
lattice site m and lattice site n. The relation X(+z(ij)

~
+z(ij)) —C](i)—C/(j),

(3.6)
The two-body contribution (2.5) to the energy is given by

R =(r;)
deflznes m.

Using (3.6) we get

(r; )P„(r,)= (v/m )'~zexp[ —v(R —5)z]

xexp[ ——,
' v(r —R „)z]

=4(R)$(r} .

(3.7)

(3.8)

where Hz(r;, rj) is defined by (2.3), and 4z(ij) may be
written

+z(ij) =f „(r)[p (r; )p„(r )+i( —1)'$ (rj)$„(r;)] .

(3.19)

Transforming to center-of-mass and relative coordinates
we finally obtain

The normalization is taken to be

(WR) i e(R)) =1,

4(R) =(2v/m ) exp[ —v(R —5) ],
P(r)=(v/2n. )

~ exp[ ——,
' v(r —R „) ) .

(3.9)

(3.10)

Cz(ij) = —(R /rn)(I&/Iz) —, Ace+(Iz/Iz), —

I) ——(P, (r)f (r)
~ f(~)V'

~
P(r) ),

Iz ——(P, (r)
~
f(r)

~
f(r)P(r)),

I3 —( P (r)f (p)
~

V(p)f (p )

—(R'/m)[V'f (r)+2Vf (r)V]
~
P(r) ) .

(3.20)

(3.21)

%'e also obtain

P~(r )P„(r;)=(v/n ) exp[ —v(R —5)

——,'v( —r —R „) ]
=C&(R)P( —r), (3.11)

The two-body contribution to the energy now contains
three integrals, I&, I2, and I3. In the numerical calcula-
tions we want to include all terms, even when Cz(ij) 1s

dominated by I3, i.e., by the potential V(r). The boun-
dary conditions for the correlation function f ( r) are
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(
& v/3/ )i/3 (3.23)

and for the fcc and the hcp crystal we get

f(r)d)=1,
f(r =0)=0,
f'(r =d)=0,

where the "healing" distance d is to be determined later.
If we choose an arbitrary particle i to be located at the

lattice site m, the other particles will be grouped in
"shells" as if particle i were at the center. A shell then
corresponds to a set of particles having the same average
distance from the lattice site m. For the bcc crystal we
obtain a nearest-neighbor distance a as a function of the
particle density p, i.e.,

are given in Table I in units of a. Energetically favorable
symmetric spin configurations for solid He are also indi-
cated, i.e., the spin configuration in the kth shell is given
relatively to the particle i. The arrow to the left symbol-
izes the z component of the spin of the particles in the
kth shell. The symbol —,

' (t t+ t 1) means that one-half of
the particles in this shell have the same z component as
particle i, while the other half of the particles have a z
component in the opposite direction.

IV. THE LOCV METHOD

The two-body energy contribution from the kth shell,
C2(ij ), is given by (3.22). It will be an average sum over s
if we take spins into account, and it is dependent on 8 „,
which is the distance to the kth shell, i.e.,

a = ( v 2/p) '/',

where

(3.24)
Cq (ij ) = Q C2 (ij ),

C'z (ij ) = —(i'�/m )(I;/I q ) —,' fico+ (I—q/I q ),
(4.1)

p =Qo/No, (3.25)

when Qo is the molar volume and No is Avogadro's num-
ber. The distances to the 12 nearest shells for bcc and fcc
structures and to the 17 nearest shells for hcp structure

where g, is to be understood as an averaged sum over s
for a given M, value. The corresponding correlation
function f ( r) is then determined by our LOCV method.

We want to minimize Cz(ij) with respect to f(r} and
we then approximate Cq(ij ) by

Cz(ji)—I) —(y (r)f (r)
~

I/(r)f (r) —(iri /m)[q f(r)+2@'(r) P']
~
y(r}) . (4.2)

Iq then depends upon the angle between r and R „
through P, (r) and P(r). The 8 dependence in Iq is in-
tegrated out since the interaction is spherical symmetric.
Using the simplified notation

cos8~x,
iii /m~P,

we obtain

(4.3)

TABLE I. Number of particles (nk) in the kth shell and the distance 8 „(a) to the different shells expressed by the nearest-
neighbor distance a for bcc, fcc, and hcp crystal structures. Indicated are also symmetric spin configurations which should be ener-
getically most favorable for solid 3He.

I

2
3

4
5

6
7

10

12
13
14
15
16
17

8 „(a)

v 4/3
v'S/3
v 11/3

v 20/3
vs

v'32/3

v'35/3

8

6
12

24
8

6
24

24

32

Spin
configuration

Tl

TT

TT

8 „(a)
1

v2
v3

2
v5
v6
v7
vs

v io
vii
vi2

fcc

12

6
24

12
24

8

48

6
36

24
24

Spin
configuration

—,(TT+»)

—,(»+»)

—,(TT+»)

—,(TT+»)
TT

&(TT+Tl)

~ (TT+ Tl)

hcp

8 „{a)
1

v2
v S/3
v3

v'1 i/3

v5

v6
v 19/3
v 20/3

v 22/3
V'25y3

v'29/3
vio

12

6
2

18
12

6
12

12

6
12
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Is 2 2 V 2 tf

=En+( —1)'Ex .

The direct term in I3 then is

ED ——4ir(v/2m) i J dr(2vrR „)
Xr ([Vf pff—" (2P—/r)ff'jtexp[ —,'v(r ——R „)2]—exp[ ——,'v(r+R „)2]J

+2Pff'I [(2r) '+ —,
' v(r —R~n )]exP[ ,' v(r ———R~n)2]

—[(2r) '+ ,'v(r+R—~n)]exp[—,'v(r+—R~n)2]j) .

We introduce a new wave function 4(r), defined by

4(r)=(v/2ir) ~ (2vrR „) '~ (exp[ ——,v(r —R „) ]—exp[ —, v(r+—R „) ]I'
and hence

Elt f d r——I Vf Pff" —(2Plr—)ff' 2P[ln4—(r)]'ff']42(r) .

The exchange term in I3 is

EE=(v/2~)' ' J d'r[Vf' Pff" —(2P«)f—f'+Pv&ff']exp[ 2v«'+—Rmn)] .

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

We define 4'(r) to satisfy the condition

4'(r)4(r)=(v/2m) ~ exp[ —,'v(r +—R~n)],

and we introduce 4, (r) by

4, (r) =4(r)+( —1)'4'(r) .
Using (4.6) and (4.9) we find

4'(r) =(v/2m) exp[ —,
' v(r +R~„)—]/@(r)

(4.9)

(4.10)

2 3p $J 2 2

—pt [in', (r) j'+[in@(r)]'Iff')
)& C, (r)4(r)

where

V ff
——Vf' pff" (2p—lr)ff—

(4.13)

(4.11)

and hence

= [lnC (r)]'+ [in@'(r)]'= vr, —

—p[e'(r)/e(r)+C "(r)/@'(r) jff']

=[vrR „/sinh(vrR „)]4(r),
@'(r)/@(r) +@"(r)/& '(r)

—pI [In@,(r)]'+ [In@(r)]'Iff' . (4.14)

A variation without extra conditions does not work, as
in the liquid phase, because we cannot find a "physically
acceptable" correlation function. We therefore add an
auxiliary potential or Lagrange multiplier —A, to V(r),
which we hope will represent the inany-body effects in the
system. %e write

I3 ——(4, (r)
~

( V &)f' Pff" —(2P«)f—f'—
X4(r)@'(r) .

Our expression for I3 may be written

(4.12) —PI [In@,(r)]'+[1n@(r)]'Iff'
~
4(r) ) . (4.15)

The value of I, is determined by a variation of (4.15) with
respect to f, i.e.,

5I3 ——5 dr r t(V —A)f 4n(r)4(r) Pff"4n(r)4(r) (2—P/r)ff'4, (r)4(—r) P[4n(r)4(r)+Cn(—r)4'(r)jff'I =0,
0

(4.16)
( V —~)f' —Pff' —(2P«)ff' —Pl [»~"( )j'r+[»@«)j'Iff'=0

V,rr Af =0. —
The expression for the effective potential Vdr then is

Af for r &d,
V(r) for r &d .

Dividing (4.16) by fwe obtain the variational equation

( V A)f p(f"+ (2/r)f—'+ I [ln—@,(r)]'+ [in@(r)]'If') =0 „

(4.17)

(4.18)
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which by a proper definition of d determines A, and f self-consistently. We rearrange (4.18) and write

( —(A' /m) I
V' + [Win@, (r)+ Vln@(r) j V}+ [V(r) —A])f (r) =0,

which is simplified to

I
—(fi3/m)[V +2Vln@(r) V]+[V(r) —k] }f (r) =0,

for a Boltzmann solid.
We want to solve (4.19) numerically, and we need an explicit expression for [in', (r)]' and [in@(r)]', i.e.,

[in@,(r)]'+[in@(r)]'= v(r—+[(vr) ' —R „/tanh(vrR „)]11 —( —1)'vrR „/[sinh(vrR „)+(—1)'vrR „]}).
The expression for I3 finally becomes

I3 —(4 (1)
~

V ff ~

4(r))
= v'v/2~R „' f dr ref texp[ —,'v(r ——R„) j ex—p[ —,'v(r+—R „)']}

+v' v/2~ R „' f dr rV(r)Iexp[ —,'v(r —R~—„)']—exp[ ,
' v(r—+—R~„)']}

+( —1)'I2vv'v/2nexp( —, vR „)—fdrr Af exp( —,'vr )—
+2vv'v/2mexp( —,'vR~—„)f drr V(r)exp( ——,'vr )},

(4.19)

(4.20)

(4.21)

(4.22)

which for Boltzmann statistics reduces to
d

I3 ——v'v/2'~„' f dr ref Iexp[ —,'v(r —R „)—] exp—[—,'v(r+R „)—]}

+& v/2m. R „' f drrV(r)Iexp[ —,'v(r —R—„)j exp[ ——,'v(r+R—„)]} . (4.23)

To ensure a reasonable convergence of the energy expansion we have to consider the short-range correlations to be
mainly two-body correlations, and we make the assumption that each particle occupies an average volume which is
spherically symmetric with radius ro, such that

3 GATI'op= 1
4 3 (4.24)

The mean-square displacement of particle i from the lattice site m is given by P (r;), i.e., the root-mean-square devia-
tion is

R', =(P (r;) ~(r; —R )'~P ( r))= 15 /v,
(4.25)

If the range off ( r), i.e., the correlations, is much longer than 2ro R„more than t—wo particles will be simultaneously
correlated, and we choose our "healing" distance d to be

d=2ro —R .=2ro —(1.5/v)'".
The two-body contribution to the energy is finally given by (4.1), where the integrals I'& and I'z become

dI
&

————,
' v —v v'v/2nR~„' f dr r(1 —f ) ( [ ,' v(r —R~„) ——l]exp[ —,

' v(r —R~„) ]—

(4.26)

—[—,
' v(r+R „) —1]exp[ —,'v(r+R „)j}—

d
+( —1)'exp( ——,

'
vR „)I——„'v+ ,'v R „2v v'v/—2' f d—r r (1 f )[ ,'v(r +R „—) ——,']—exp(—,'vr )}, —

I2 ——1 &v/2nR~„' f —drr(l —f )Iexp[ —,'v(r —R „) ]—exp[ —,'—v(r+R „)3]}—
(4.27)

+( —1)'exp[ —2vR „] 1 —2vv'v/2m' f drr (1 —f )exp( —,'vr )—
which for Boltzrnann statistics reduce to

d
I, = ——,'v —v v'v/2rrR „' f drr(1 —f )[ [ , v(r —R „) —1]exp[ —,'v—(r—R „)]—

—[ ,'v(r+R „)~—1)exp[ ——,v(—r+R,) )}
d

I2 ——1 Vv/2nR „' f drr(—1 —f )Iexp[ —,'v(r —R „) j——exp[—, v(r+R „) )} . — (4.28)



The integral I3 is given by (4.22), and we obtain the equation for f and I, from (4.19) and (4.21), i.e.,

f"=[(& —A)/(A /m)]f+[v(r+ [(vr) ' —R „itanh(vrR „)]
X Il —( —1)'rvR „/[sinh(vrR „)+(—1)'vrR „]j)—(2/r)]f' .

For Boltzmann statistics 4, (r)~4{r), and we get the corresponding differential equation as

f"=[(V—A)/(fi /rn)]f+(v[r+[(vr) ' —R „/tanh(vrR „)]j—(2/r)}f' .

(4.29)

(4.30)

The Lagrange parameter A, and the correlation function f
are obtained self-consistently with the condition that the
range of f is determined by the healing distance d which
is taken from (4.26), and the boundary conditions for f
are stated in (3.22). Cz(ij ) is then calculated from the in-

tegrals in (4.22} and (4.27).
The tv'-bmiy contribution to the energy in the kth

shell, Cq(ij), is dependent on R „which is the distance to
the kth shell, C2(ij) will be small for large R „, i.e.,
when the two particles are far apart in average, due to the
short range of the interaction. This implies that it is suf-
ficient to sum the energy contributions from the 6 nearest
shells, where

is then equivalent to defining a localization parameter

A=( —', mr())/( —', ERG) =(vro/2. 5) i2,

and require

A~1.0.

(4.37)

(4.38)

We see that the parameter A is proportional to v~~2.

There are, however, two "weak" points in this procedure.
The average volume occupied by the zero-point motion is
determined by "classical" considerations and the probabil-
ity density

~
P~(r)

~

is set equal to 1.0 everywhere inside
the sphere with radius RG. The quantum-mechanical ex-
pectation value of this volume is given by

~
C2(ij ) ( (e, for k =6 . (4.31)

and (r ) is chosen to be R ~, and hence

R, =(2 5/r)'". .

To set

(4.34)

(4.35)

{4.36)

In the numerical calculations s is chosen to be 0.01 K.
We always find 6 ~12, indicating that the maximum er-
ror in the final energy due to this boundary value should
be small compared to the total energy.

The expression (2.6) then is modified to

E/N = C i (i ) + —,
' g nk C2 (ij), (4.32)

k=1

with Ci(i) given by (3.16). The energy per particle is a
function of the parameter v and must be minimized with
respect to this parameter. The Boltzmann solid represents
a simplification of the spin-dependent problem and the
corresponding equations to be solved or calculated are
then given by (4.20), (4.23), {4.28), and (4.30).

The particles must be localized in the solid phase, i.e.,
one particle must occupy one lattice site and have a negli-
gible probability of occupying more than one lattice site.
We may postulate that the volume occupied by the zero-
point motion of the particle must be smaller than the
mean available volume per particle defined by (4.24), i.e.,

p=E/Q=( —', mr()) (4.33)

The volume occupied by the zero-point motion must be a
function of v which is the parameter describing the spread
of the wave function P (r;). Pandharipande has argued
that for a classical particle confined in a sphere with ra-
dius RG, (r } is given by

(4.39)

for a localized particle, this can be expressed as

A~0. 84 for the bcc structure,

A y 0.77 for the fcc or hcp structure .
(4.41)

V. CALCULATIONS AND RESULTS

The energy contribution from two-body correlations is
now calculated by means of the modified LOCV method,
i.e., we calculate the integrals and expressions (4.1), (4.22),
(4.27), and (4.29), or (3.20), (4.23), (4.28), and (4.30). The
total energy is then given by (2.6), i.e., by (4.32) when the
original cluster expansion is truncated after the second-
order term. Since the LOCV method implies a truncation
of the cluster expansion keeping only one- and two-body
terms, this should be compensated by the introduction of
the external potential A, to represent the many-body effects
and the recovery distance d defined by (4.26) to include
mainly two-body correlations.

We first solve the differential equation (4.29) for a
given I,, taking into account the boundary conditions
(3.22). The differential equation is solved numerically by
the Runge-Kutta-Nystrom method, which is a general
method for solving second-order differential equations,

Also, the packing fraction is different in a bcc and a fcc
(hcp) lattice, i.e., the fcc (hcp) lattice contains a greater
number of particles than the bcc lattice in the same
volume. This should be reflected in the lowest limit of the
localization parameter A" such that A~„~A~. The
nearest-neighbor distance a in both crystals is given by
(3.23) and (3.24), and if we require that

(4.40)
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and it is correct to fourth order in the corresponding Tay-
lor expansion for y and y' when we have the second-order
problem:

y"=f(x,y,y') . (5.1)

e, =10.22 K,
o.) ——2.556 A,

(5.4)

Having some boundary conditions

y(xo)=yo

y (xo)=yo
(5.2)

and r is measured in angstrom s. This is a semi-
phenomenological potential fitted by de Boer and
Michels to low-temperature second virial coefficients.
We also try a second Lennard-Jones potential (LJ2) given
by

V„,(«) =4s[(o,/«)" —(~, /«)'], (5.3)

and assuming that f has a unique solution in some inter-
val containing xo, we can obtain the solution by Taylor
expansions for y and y'.

The calculations are done for five different potentials
since the chosen two-body potential would have some in-
fluence on the results. The first one is a Lennard-Jones
potential (LJ1) given by

&Li2(«) =4s[(cr2/«)' —(a2 I«) ],
where

(5.5)

0

~2 ——2.62 A . (5.6)
According to scattering experiments by Cavallini et al. ,
the value (5.6) should be better than (5.4).

A potential given by Bruch and Mc Gee ' is the Frost-
Musulin FDD-1 potential

—s[1+C[1—(« /«)] jexpI C[(«I«—) —1]j for «&«i,
~FDD-i(«) —6 —SC6« —Cs« —for «) «2, (5.7)

where

F =12.53 K, C=8.00877,

r~ =2.98 A, C6 ——10210 A K,
r2 ——3.511 A, Cs ——27670 A K,

exp( —[D(«~/«) 1] j for «j—«~ &D,
F(«)= '

1 for «I« ~D . (5.10)

The parameters for the HFDHE2 potential are given by

A =544 850.4, c= 10.8 K,
determined by transport coefficients and second virial
coefficients. Another potential is the HFDHE2 poten-
tial"

o,'= 13.353 384, C6 ——1.377 324 12,
D = 1.241 314, Cs ——0.425 378 5,
rm =2 9673 A~ Cio =0 1781

(5.1 1)

1 HFDHE2(«) =s t 3 exp( a«I«)—
—[ C6(«~ I«) +Cs («~ /«)

+C,o(«~/«)' ]F(«)j, (5.9)

obtained from thermal conductivities and second virial
coefficients.

The last potential is the exponential-spline-Morse-
Morse-spline —van der Waals (ESMMSV) potential of
the form

A exp[ —a(x —1)] for «(2.079 A,
0exp(ai+(x —x&)[a2+(x —x2)[ai+(x —xi)a4]j) for 2.079&«&2.509 A,

exp[ —2P(x —1)]—2exp[ —P(x —1)] for 2.509&«&2.97 A,
l EsMMsv(«)=s&& '

0
exp[ —2P'(x —1)]—2 exp[ —P'(x —1)] for 2.97 & «( 3.416 A,
bi +(x —x3) Ib2+(x x4)[b3+(x—x4)b4] j for 3.4—16 & «(4.455 A,

(C6«+Cs«+Ci—o«
' )js for «&4.455 A,

(5.12)

wher e
a=10.57 K,
x =r/r
r =2.97 A
P=6.475,
P'= 5.964,
A =0.343,
o.' = 15.058,

a )
——3.4469,

a2 ———19.0218,
a3 ———28.067,
a4 ———362.002,
b] ———0.6500,
b2 ——1.4516,
b3 ———4.028 89,
bg ——4.51927,

x] ——0.7000,
x2 ——0.844 77,
x3 ——1.150 16,
xg ——1.5000,
x6 ——10140 A K,
xs ——27380 A K,
x„=99230 A "K,

(5.13)

I

given by scattering data.

VI. RESULTS FOR SOLID Hc

For a system of fermions, i.e., He atoms, we may as-
sume that a "parallel-spin" configuration is the most
favorable spin configuration in a bcc lattice. The lattice
then consists of interpenetrating simple cubes, where all
spins in each simple cube are parallel and the z com-
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ponents of the spins in an interpenetrating cube are all
antiparallel. In addition, we assume that a "mixed spin"
configuration is the most favorable spin configuration in a
fcc lattice. The atoms at adjacent corners of the simple
cubes then have opposite z components of the spins. The
face centers are also corners in other simple cubes, and
one-half of the particles in a shell may have the same z
component of the spin as the center particle while the oth-
er half may have a z component in the opposite direction.

If we let s be the quantum number for the total spin of
two particles and M, the projection of this spin, then

for a certain crystal structure, since g, is to be under-
stood as an averaged sum over s for a given M, value. By
this procedure Cz(ij ) will be an averaged two-body contri-
bution to the energy from the kth shell. In addition, in
the fcc crystal there is the possibility that one-half of the
particles in a shell has the same z component of the spin
as the center particle and the other half has a z com-
ponent in the opposite direction. This is indicated by the
symbol —,

'
( t t+ t t), and the two-body contribution to the

energy C2 (ij ) is then given by

(6.1)
C2(ij)= QC2 ——,'[C—2(ij)+3Cz(ij)]. (6.3)

2 [C2(&J)+C2(ij)] for M, =0,
Cz(ij)= gCz= '

C2(ij)
(6.2)

START

/ Read p. P and a constant C

/ Read A jtrj /
4

Find Rm„and Ms

F d f. Xad d

If M, =l then s =1, and if M, =0 we assume that one
half of the particles are in an s =0 state and the other
half in an s =1 state. This assumption gives the distribu-
tion with —, of the particles interacting in a singlet state
and —, interacting in a triplet state. (See spin configura-
tions indicated in Table I.)

For a system of He atoms we then calculate (4.1) as

The procedure, i.e., the scheme of energy calculations by
our I.OCV method, is shown in Fig. 1.

For each density p the parameter v in the wave function
or the localization parameter A is determined variational-
ly in the sense that we calculate the energy for various
values of v or A to obtain an optimum value for the ener-

gy for a certain value of v. The parameter A is propor-
tional to v and we look for a minimum in the energy
E/N with respect to A. (But if A is too small, i.e., A ~ 1,
the lattice structure is too diffuse and a crystal structure
probably does not exist. ) Energy as function of the varia-
tional parameter v is shown in Fig. 2 for a bcc crystal and
the HFDHE2 potential.

The energy contributions per shell for a bcc and a fcc
lattice at a certain density for the HFDHE2 potential are
shown in Tables II and III, and corresponding correlation
functions f(r) obtained from (4.29) are shown in Figs. 3
and 4. Total binding energy as function of density is
shown in Tables IV and V, and in Figs. 5 and 6.

No

Try new it! ! s=a
lk

0 70ci

No

Calculate tCt t'ij'i!
k . .

Caicutate EyrN-et $ nkct t rt I

t

k= k+1

Ob5cr 3

0 bOcr

0 45cr

0,35' g 040
3030cr+~ -W2Scr
I l I

000 050
I
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I

1
I

1 t
1

I
1

I

150 200 250 300 350
v(A ')

FIG. 1. The scheme of energy calculations in the LOCV
method for solid 3He.

FIG. 2. Ground-state energy E/X per particle for bcc He as
function of the localization parameter v for different densities
and the HFDHE2 potential (Ref. 42). o.=2.556 A.
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TABLE II. The two-body contribution E~/X to the energy per particle for a bcc structure with

parallel spins and the HFDHE2 potential (Ref. 42). [C,(i)=5.38 K and hence E/N = —0.64 K for
p=0.25cr, and C&(i)=32.33 K and hence E/N =25.99 K for p=0 75.o ].o =2.556 A.

P 2 Cz(ij) 2 Cz(ij) 2 Cz(ij) E2/X =
2 g nkC2(ij )

(o ) k (A) nk (K) (K) (K) (K)

0.25
(A = 1.2)

4.43
5.11
7.23
8.48
8.85

10.22

8
6

12
24

8
6

—0.2693

—0.0267

—0.3255
—0.3028
—0.0822
—0.0267
—0.0193
—0.0068

—0.2974
—0.3028
—0.0822
—0.0267
—0.0193
—0.0068

—2.3792
—4.1960
—5.1824
—5.8232
—5.9776
—6.0184

0.75
(A=5, 9)

1

3
4
5

6

8
9

10

3.07
3.54
5.01
S.88
6.14
7.09
7.73
7.93
8.68
9.21

8
6

12
24

8
6

24
24
24
32

1.7108

—0, 1617

—0.0277

—0.0092

1.7100
—1.2452
—0.4637
—0.1617
—0.1215
—0.0479
—0.0277
—0.0236
—0.0133
—0.0092

1.7104
—1.2452
—0.4637
—0.1617
—0.1215
—0.0479
—0.0277
—0.0236
—0.0133
—0.0092

13.6832
6.2120
0.6476

—3.2332
—4.2052
—4.4926
—5.1574
—5.7238
—6.0430
—6.3374

VII. RESULTS FOR SOLID 48e

The calculations for solid He become simpler than for
solid He since s =0 and it is not necessary to consider
different spin configurations. The procedure is, other-
wise, exactly the same as for solid He, and the scheme of
energy calculations by our I.OCV method is shown in Fig.
7.

Total energy as function of the variational parameter v
is shown in Fig. 8, and correlation functions f(r) are

shown in Figs. 9 and 10. Total binding energy as function
of density is shown in Table VI and VII, and in Figs. 11
and 12.

VIII. SUMMARY AND DISCUSSION

From Tables II and III we see that the two-body contri-
bution to the energy from different shells is quite different
in a bcc structure and a fcc structure. But we sum over
one more shell in the bcc structure, so the difference in

O i I I ~ I I l 8 l I l I ~ j l I i I i I a l a l r I I I s i g

g)
O

00
O

O
l

1
I

1
~

1
I [ I

1
I } c f ~

1
I

& 00 &,25 1.50 1.75 P.OO 2 P5 2.50 2.75 3.00 3.25 3.50
1 '

1
'

I ' l
'

I

1 00 1 25 1 50 1.75 200 2 25 2.50 2.75 3.00
r (A)

FIG. 3. Correlation functions f(r) for bcc He and the
HFDHE2 potential (Ref. 42). p=0. 25o. '. o =2.556 A.

FIG. 4. Correlation functions f(r) for bcc 'He and the
HFDHE2 potential (Ref. 42). p=0. 75o. '. o.=2.556 A.
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TABLE III. The two-body contribution E2/N to the energy per particle for a fcc structure arith mixed spins and the HFDHE2 po-
tential (Ref. 42). [C~(i)=5.38 K and hence E/N= —0.60 K for p=0 2.5cr ', and C~(i)=32.33 K and hence E/N=27. 14 K for
p=0. 75cr 3.) a=2.556 A.

0.25
(A =1.2)

4.55
6.44
7.89
9.11

10.18

12
6

24
12
24

—,
' Co, (~q)

—0.3350
—0.1585
—0.0454

—0.0070

—,C2(ij)

—0.2873
—0.1572
—0.0453
—0.01S7
—0.0070

—0.2992
—0.1579
—0.0453
—0.0157
—0.0070

E, /N = —,
' gnkC2(ij)

k

(K)

—3.5907
—4.5381
—5.6253
—S.8137
—5.9817

0.75
(A =5.9)

3.16
4.47
5.47
6.32
7.06
7.74
8.36
8.93
9.47

0.8698
—0.9359
—0.2606

—0.0491
—0.0275
—0.0169

—0.0077

0.8702
—0.9359
—0.2606
—0.1010
—0.0491
—0.0275
—0.0169
—0.0112
—0,0077

0.8701
—0.9359
—0.2606
—0.1010
—0.0491
—0.0275
—0.0169
—0.0112
—0.0077

10.4412
4.8258

—1.4286
—2.6406
—3.8190
—4.0390
—4.8502
—4.9174
—5.1946

the 8 „ for the last shell and in total energy becomes
quite small.

From Figs. 2 and 8 we see that the ground-state energy
does not depend too strongly on the parameter v or A.
The chosen A, however, depends rather strongly on the
particle density or the molar volume. It increases as the
volume decreases, corresponding to increasing localization
of the particles with increasing density. At higher pres-
sures the displacement of the atoms from their equilibri-
um positions is reduced, and there should be less penetra-
tion of the wave function into the strongly repulsive part
of the potential. This, however, is compensated by the
fact that the atoms now are close together, and the
ground-state energy actually becomes more repulsive ~ith
increasing density as seen in Tables IV—VII and in Figs.
5, 6, 11, and 12.

Since the calculated energy of solid helium depends
rather sensitively on the choice of two-body potential, it is
difficult to use our results to justify the methods being

used and the approximations involved. Only two-body
correlations are, in principle, included in the calculations,
and a small change in the potential can produce a large
change in the calculated ground-state energy because of a
rather delicate balance between kinetic and potential ener-

gy. %e see that for solid He the ESMMSV potential
gives approximately 1 K less binding than the FDD-1 po-
tential for a density p=0 25cr, an. d the ESMMSV po-
tential gives approximately 7 K less binding than the I.J1
potential. Some of our results are, however, very close to
experimental results as seen in Figs. 5, 6, 11, and 12.

For solid He, the calculated results for the binding en-

ergy vary from —1.25 K for the FDD-1 potential to
—0.23 K for the ESMMSU potential at a density
p=0.25o . For p=0 75cr, th. e calculated results vary
from 22.77 K for the LJl potential to 29.69 K for the
ESMMSV potential. For solid He, the calculated results
for the binding energy vary from —5.01 K for the FDD-1
potential to —3.96 K for the LJ1 potential at a density

TABLE IV. Energy per particle E/X for solid 'He as function of particle density p for the FDD-1
potential (Ref. 41).

0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

1.2
1.5
1.9
2.3
2.8
3.3
3.8
4.5
5.1

5.7
6.4

bcc
v (A ')

0.45
0.58
0.76
0.94
1.16
1.39
1.63
1.93
2.21
2.50
2.83

—1.25
—1.28
—1.19
—0.60

0.25
1.73
4.06
7.28

11.32
16.74
23.54

1.2
1.6
1.9
2.3
2.8
3.3
3.8
4.5
5.0
5.5
6.3

fcc
v {A ~)

0.45
0.61
0.76
0.94
1.16
1.39
1.63
1.93
2.18
2.44
2.80

E/X (K)

—1.21
—1.24
—1.08
—0.46

0.33
2.01
4.46
7.78

12.22
17.91
24.72
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TABLE V. Energy per particle E/N for solid 'He as function of particle density p for the ESMMSV
potential (Ref. 43).

0.25
0.30
0.35
0.40
0,45
0.50
0.55
0.60
0.65
0.70
0.75

1.2
1.S
1.9
2.4
2.7
3.2
3.7
4.3
4.8
5.4
6.1

bcc
v(A )

0.45
0.58
0.76
0.97
1.13
1.36
1.60
1.87
2.12
2.41
2.74

E/N (K)

—0.23
0.02
0.42
1.37
2.63
4.52
7.32

11.01
15.50
21.36
28.53

1.3
1.6
2.0
2.3
2.7
3.2
3.7
4.3
4.8
5.4
6.1

fcc
v(A )

0.47
0.61
0.78
0.94
1.13
1.36
1.60
1.87
2.12
2.41
2.74

E/'N {K)

—0.09
0.13
0.62
1.57
2.78
4.58
7.74

11.54
16.42
22.52
29.69

TABLE VI. Total energy per particle E/N for solid He as function of particle density p for the FDD-1 potential (Ref. 41).
cr =2.556 A.

P(0 ')

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

1.5
1.9
2.4
3.0
3.6
4.3
5.1

5.8
6.6
7.4

bcc
v(A )

0.58
0.76
0.97
1.21
1.47
1.77
2.10
2.41
2.76
3.12

E/N (K)

—5.01
—5.74
—6.13
—6.38
—6.14
—5.18
—3.46
—1.06

2.63
7.57

1.5
1.9
2.4
3.1

3.6
4.3
5.1

5.8
6.6
7.4

fcc
v(A )

0.58
0.76
0.97
1.24
1.47
1.77
2.10
2.41
2.76
3.12

E/N (K)

—5.06
—5.69
—6.03
—6.31
—5.87
—4.80
—2.97
—0.20

3.75
8.71

1.5
1.9
2.4
3.1

3.6
4.3
5.1

5.8
6.6
7.4

hcp
v(A )

0.58
0.76
0.97
1.24
1.47
1.77
2.10
2.41
2.76
3.12

E/N (K)

—4.99
—5.64
—6.03
—6.06
—5.67
—4.78
—2.98
—0.25

3.69
8.92

TABLE VII. Total energy per particle E/N for solid He as function of particle density p for the ESMMSV potential (Ref. 43).
o =2.S56 A.

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

1.4
1.8
2.3
2.9
3.4
4.1

4.8
5.4
6.1

6.6

bcc
v(A )

0.56
0.73
0.94
1.19
1.42
1.71
2.01
2.30
2.62
2.89

E/N (K)

—3.96
—4.30
—4.23
—4.01
—3.29
—1.81

0.40
3.32
7.48

12.86

1.4
1.8
2.3
2.9
3.4
4. 1

4.8
54
6.1

6.7

fcc
v(A )

0.56
0.73
0.94
1.19
1.42
1.71
2.01
2.30
2.62
2.92

E/N (K)

—4.02
—4.24
—4.13
—3.93
—3.04
—1.47

0.86
4.14
8.S3

13.90

1.4
1.8
2.3
2.9
3.4
4. 1

4.8
5.4
6.1

6.7

hcp
v(A )

0.56
0.73
0.94
1.19
1.42
1.71
2.01
2.30
2.62
2.92

E/N (K)

—3.95
—4.19
—4.12
—3.67
—2.82
—1.93

0.95
4.24
8.65

14.11
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PIG. 5. Ground-state energy E/N per particle for bcc 3He as
function of particle density p for different potentials. a =2.556
A.
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p=0.30a . For p=0.75o the calculated results vary
from 7.22 K for the LJ1 potential to 12.86 K for the
ESMMSV potential. From Figs. 5 and 11 we see that the
FDD-1 potential gives energies very close to experimental
values for low densities, and the LJ2 and the HFDHE2
potentia, ls give energies very close to experimental values
for high densities. The ESMMSV potential, which should
be the most modern potential, set@us to give too little

STOP }
FIG. 7. The scheme of energy calculations in the LOCV

method for solid ~He.
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FIG. 6. Ground-state energy E/X per particle for bcc and
fcc He as function of particle density p for the HFDHE2 po-
tential (Ref. 42). o.=2.556 A.

FIG. 8. Ground-state energy E/X per particle for bcc He as
function of the localization parameter v for different densities
and the HFDHE2 potential (Ref. 42). o =2.556 A.



SOLID HELIUM. I. GROUND-STATE ENERGY CALCULATED BY. . .

I i I ~ I a 1 i 1 i I r I a I

LJI
LJ2
FDD-I

HFDHE2:

ESMMSV: -- -----.
EXPT

s I a I a I a I a I I

I
I

I
t

I
i

I'

I

I .I
I

.I

I ' I '
I

'
I

'
I

'
I

' I
' I ' I

1.25 1.50 1.75 2,00 2.25 2,50 2.75 3.QQ 3.25

FIG. 9. Correlation functions f(r) for bcc He and the
HFDHE2 potential (Ref. 42}. p=0. 30o '. o =2.556 A.

I
' I ' I '

I
'

I
~

0.30 035 040 045 050 055 060 065 07Q Q75

ptuNiTS oF Cr ')

FIG. 11. Ground-state energy E/X per particle for bcc He
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binding energy at all densities for both solid 3He and 4He,

but it is possibly the best all-around potential since the
missing binding energy could be due to our LOCV
method.

The healing distance (4.26) is given by

d =2.0r„—(1.5/v)'i

r„=( 3/4np[o '])'~'cr,

o=2.556 A .

The localization parameter A or v will increase with in-

creasing density. The term 2r„will, however, decrease

I i I i I ~ I ~ I

faster than the term (1.5v)'~ so the healing distance d
will also decrease with increasing density, as can be seen
from Figs. 3, 4, 9, and 10. We also see that we get de-
creasing healing distance with increasing shell number for
a certain density.

From Tables IV—VII we see that we get most binding
energy for the bcc structure, and less binding for the fcc
(hcp) structure. The energy difference between the struc-
tures is, however, always rather small, varying from ap-
proximately 0.1 K at low densities to approximately 1 K
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FIG. 10. Correlation functions f(r) for bcc He and the
HFDHE2 potential (Ref. 42). p=0.75o. . o =2.556 A.
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and hcp He as function of particle density p for the HFDHE2
potential (Ref. 42). o =2.556 A.
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at high densities.
For each density p the parameter v in our calculations

or the locahzation parameter A is determined variational-
ly in the sense that we calculate the energy for various
values of v or A to obtain an optimum value for the ener-

gy for a certain value of v. Other earlier ' calculations
have given larger values for v corresponding to stronger
localization, i.e., 1.1 to 1.4 A instead of our values
v=1,0 A for solid He at a particle density of 0.42o
or a molar volume of 24 cm /mole, and 1.8 to 2.2 A
instead of our values v=1.5 A for solid He at a parti-
cle density of 0.50a or a molar volume of 20 cm /mol.
For higher densities, we get corresponding differences,
i.e., earlier calculations ' give values for v of 2.0 to 2.4
A 2 instead of our values v=1.7 A for solid 3He at a
particle density of 0.56o 3 or a molar volume of 18
cm'/mol, and 3A to 4.3 A 2 instead of our values v=2.9
A ~ for solid He at a particle density of 0 72cr. or a

molar volume of 14 cm3/mol.
Our theoretical results for the ground-state energy per

particle are —0.3 to + 1.8 K for solid He at a particle
density of 0.42o or a molar volume of 24 cm /mol, and
—6. 1 to —3.2 K for solid ~He at a particle density of
0.50o or a molar volume of 20 cm /mol. Correspond-
ing Monte Carlo calculations ' ' give +0.7 to +0.9 K
for He and —4.7 to —4.2 K for He, while the corre-
sponding experimental results are —1.0 and —5.6 K,
respectively. For higher densities, we obtain similarly
ground-state energies per particle of + 4.6 to + 8.0 K for
solid He at a particle density of 0.56cr 3 or a molar
volume of 18 cm /mol, and + 4.4 to + 9.4 K for solid
He at a particle density of 0.72a or a molar volume of

14 cm3/mol. Corresponding Monte Carlo calcula-
tions ' ' give + 5.1 to +6.4 K for He and + 5.6 to
+ 6.6 K for He, while corresponding experimental re-

sults are + 5.1 and + 5.2 K, respectively.

G. Leibfried and %'. Ludwig, in Solid State Physics, edited by
H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New
York, 1961),Vol. 12, p. 275.

2D. J. Hooton, Philos. Mag. 46, 422 (1955); 46, 433 (1955); 46,
485 (1955);46, 701 (1955); 3, 49 (1958).

3R. P. Hurst and J, M. H. Levelt, J. Chem. Phys. 34, 54 (1961).
~N. Bernardes and H. Primakoff, Phys. Rev. Lett. 2, 290 (1959);

3 144 (1959) Ph» Rev 119,968 (1960)
5N. Bernardes, Phys. Rev. 120, 1927 (1969).
6E. M. Saunders, Phys. Rev. 126, 1724 (1962).
~R. Jastrow, Phys. Rev. 98, 1479 (1955).
SR. L. Garwin and A, Landesman, Physics 2, 107 (1965).
9N. G. Van Kampen, Physica 27, 783 (1961).
~OL. H. Nosanow and G. L. Shaw, Phys. Rev. 128, 546 (1962).
' L. H. Nosanow, Phys. Rev. Lett. 13, 270 (1964); Phys. Rev.

146, 120 (1966).
~2J. H. Hetherington, %. J. Mullin, and L. H. Nosanow, Phys.

Rev. 154, 175 (1967).
~3%'. J. Mullin, L. H. Nosanow, and P. M. Steinback, Phys.

Rev. 18&, 140 (1969).
'4K. A. Brueckner and J. Frohberg, Prog. Theor. Phys. Suppl.

(1965), p. 383.
'5K. A. Brueckner and R. Thieberger, Phys. Rev. 178, 362

(1969).
~6S. B.Trickey, Phys. Rev. 166, 177 (1968).
17%' E Massey and C % %'oo Phys Rev 169 24l. (1969)
'SC.-%', %oo and %.E. Massey, Phys. Rev. 177„272 (1969).
~9F. Iwamoto and H. Namaizawa, Prog. Theor. Phys. Suppl. 37,

234 (1966);45, 682 (1971).
2OB. H. Brandow, Ann. Phys. (N.Y.) 74, 112 (1971).
'E. 6stgaard, J. Low Temp. Phys. 5, 237 (1971); Physica 74,

113 {1974).
2~K. A. Brueckner and J. L. Gammel, Phys. Rev. 105, 1679

(1957); 109, 1023 (1958).
23H. A. Bethe and J. Goldstone, Proc. R. Soc. London, Ser. A

238, 551 (1957).
24R. A. Guyer, Solid State Commun. 7, 315 (1969).
~5R. A. Guyer and L. I. Zane, Phys. Rev. 188, 445 (1969).
~6H. R. Glyde and F. C. Khanna, Can. J. Phys. 49, 2997 (1971).
27H. Horner, Phys. Rev. A 1, 1722 (1970).
28C. Ebner and C. C. Sung, Phys. Rev. A 4, 269 (1971).

J.-P. Hansen and D. Levesque, Phys. Rev. 165, 293 (1968).
3OJ.-P. Hansen, Phys. Lett. 30A, 214 (1969);34A, 25 (1971).
3 J.-P. Hansen and E. L. Pollock, Phys. Rev. A 5, 2651 (1972).
32D. M. Ceperley, G. V. Chester, M. H. Kalos, and P. A.

%%itlock, J. Phys. (Paris) Colloq. 39, C6-1298 (1978).
3 V. R. Pandharipande, Nucl. Phys. A217, 1 (1973).
34R. Mittet and E. Qstgaard, Nucl. Phys. A411, 417 (1983).
35V. R. Pandharipande, Nucl. Phys. A174, 641 (1971); A178,

123 (1971).
36V. R. Pandharipande and H. A. Bethe, Phys. Rev. C 4, 1312

(1973).
37E. Lunnan and E. Nstgaard, Physica 1018,22 (1980).
380. Forseth and E. 6stgaard, Phys. Scr. 24, 519 (1981).
39J. de Boer and A. Michels, Physica 5, 945 (1938).
~M. Cavallini, L, Meneyhetti, G. Scoles, and M. Yealhand,

Phys. Rev. Lett. 24, 1469 (1970).
~'L. %. Bruch and I. J. McGee, J. Chem. Phys. 46, 2959 (1967);

52, 5889 (1971).
~2R. A. Aziz, V. P. S. Nain, J. S. Carley, %. L. Taylor, and G.

T. McConville, J. Chem. Phys. 70, 4330 (1979).
~3A. L. J. Burgmans, J. M. Farrar, and Y. T. Lee, J. Chem.

Phys. 54, 1345 (1976).
~R. Feltgen, H. Pauly, F. Torello, and H. Vehmeyer, Phys.

Rev. Lett. 30, 820 (1973).


