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In vie~ of the failure of the Kagan dipole mechanism to explain the magnetic fielcf dependence of
the H+H+ H recombination rate in spin-polarized atomic hydrogen, me consider an additional pro-

cess, the so-called dipole-exchange mechanism. Two simple approaches to estimate its consequences

turn out to be promising but the question of the role of different and higher-order processes remains

open. %e therefore turn to in principle, an exact approach to the three-body recombination, includ-

ing all possible processes. The first numerical results of the approach are presented.

I. INTRODUCTION

In several laboratories experiments are being carried out
with the ultimate aim of achieving Bose-Einstein conden-
sation in spin-polarized atomic hydrogen (Ht). For these
attempts to be successful, it is of vital importance to
understand the d~y mechanisms in Hl samples. Former
belief that the decay at low temperatures found in
"precompression" experiments was due to two-body sur-
face relaxation' led to large discrepancies between theory
and experiment. Hess et al. first came up with the in-

teresting suggestion, that these discrepancies might be
resolved, if three-body processes were taken into account.
At high magnetic fields in the doubly polarized regime
(both electron and proton spins polarized), where only b
atoms (a,b,c,d are hyperfine levels of ground-state atom-
ic hydrogen in order of increasing energy) are present,
they found three-body rates of Ls =7.5(3) )& 10
cm s ' in the volume, and L, =2.0(6)X10 cm s ' at
the surface at 8=7.6 T, both decreasing slightly with
magnetic field 8.

Since it is now believed that this decay process
represents the main obstacle on the way to achieve Bose-
Einstein condensation, it seems worthwhile to find out by
which mechanism(s) it takes place. In Sec. II the Kagan
dipole mechanism, the first mechanism proposed for a
bbb three-body process is reviewed both for the volume
and for the surface. The absolute magnitude of L, is too
small by an order of magnitude, and, more important,
both Lg and L, have a field dependence different from
experiment. We therefore try to find an additional recom-
bination mechanism both for the volume and the surface
with a different 8 dependence, dominating the Kagan di-
pole mechanism for the volume and strongly dominating
in the surface case. The most promising approach would
be to first solve the volume discepancy. Once that recom-
bination process is understood, it may be easier to deal
with the surface. In Sec. III we therefore introduce a new
mechanism, the socaBed dipole-exchange mechanism, by
which we hope to resolve the discrepancy. We find, how-
ever, that a naive approach to calculate its contribution

leads to an overestimate by more than an order of magni-
tude. On the basis of this we then turn to an approach
which treats the three-body aspects exactly. This is
described in Sec. IV. In Se:.V the first numerical results
of this approach are shown. A discussion follows in Sec.
VI.

II. KAGAN DIPOLE MECHANISM

We consider the recombination of two H atoms in a
three-body collision, taking place in a strong external
magnetic field. As first discussed by Kagan et a1.,~ with
all three atoms doubly polarized, this recombination is
caused by an electron-electron magnetic dipole interac-
tion. The idea is that the electron spina of two atoms pre-
cess in the magnetic dipole field of a third H atom, thus
getting a total 5=0 component, whereafter recombination
is possible. The proton spins are unaffected during the
process. The third atom is not only needed for this so-
called spin flip, but also for conservation of the energy
released during the recombination:

2

E —2@~8 (—T~O) .
2( —,mH)

Here —EUI is the binding energy of the molecule in the f-
ina state with vibrational and rotational quantum num-
bers U and j, 2p&8 is the Zeeman energy needed for a sin-
gle spin-flip process, pti is the Bohr magneton and qf is
the relative momentum of atom (mass mH) and molecule.
%e shall restrict ourselves to T~O calculations. In Eq.
(1) and in the following we restrict ourselves for simplicity
to the socalled single spin-flip process. With some obvi-
ous changes, such as the replacement of 2@~8 by 4pti8,
similar expressions hold for double spin flip.

The most appealing feature of the calculation of Kagan
et aI. is its simplicity. The starting point is the exact
"post form, "

+4f g Vk+ g I'k ~+' (2)
2 SPA I|.
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for the scattering amplitude, ujm being the molecular
quantum numbers (rn is the magnetic quantum number),
while af is the final spin projection of the atom along B.
Here Vk and Vk are the dipole and central interactions be-
tween the atoms of pair k (particles m and n with m&k
and n&k). The initial state qI,+, symmetrized using the
symmetrization operator S (sum over six permutations
without normalization coefficient), is in the first instance
an exact scattering state of the total system, describing
three atoms approaching one another with momenta
which are considered to be small. The plane-wave part of

is normalized as an exponential with coefficient
(2M) '. In Eq. (2), Pf describes the free motion of atom
1 and the molecule consisting of atoms 2 and 3. Again its
plane-wave factor is the usual exponential with coefficient
(2W)-'".

In terms of the amplitudes (2) the rate constant Ls for
volume recombination has the fortn

Initial state

2'

~ vd

DipoIe interaction

~ yc

(o)

Recombination

2

-q) 3

9qf
Le —— g (2M) f dq f I f j~(qf) I

v,j,rncrf thermal
(3)

where the integral is an angular integral over directions of
qf. The corresponding expression for surface recombina-
tion has been given in Ref. 4.

Starting from Eq. (2) we now introduce the approxima-
tions of Kagan et al The am. plitude is calculated to first
order in the weak dipole interaction, which is only taken
into account in the form of the operator connecting initial
and final state. A far-reaching simplification for iII,+

would consist of replacing it by its exponential free part.
Instead Kagan et al. introduce some of the distortions,
but in such a way that the final expression can still be
handled fairly easily. Insofar as the initial state is operat-
ed upon by Vz, they consider the distortions of the rela-
tive motion of atom pair 2 as essential, as well as the dis-
tortion of the pair 1, since this pair is bound as a molecule
in the final state. With this in mind they write the free
exponential as a product of two exponentials in the corre-
sponding relative coordinates and subsequently replace the
exponentials by the corresponding distorted waves %', .
The term with V3 is handled similarly. The contributions
of the two terms cancel for j=even and are equal for
J =odd.

Using these approximations the amplitude separates
into two spatial matrix elements:

f.j(qf)=CJ&+.J Ie" I+t&i&qf I

V' I+i&» (4)

where V represents the spatial part of the dipole interac-
tion: F2 i(r)/r or —2' 2(r)/r for cr= ——,

' or
o = + —,', respectively, while

lniticl state Dipole interaction Exchange interaction Recombination

FIG. 1. (a) Graphical representation of the Kagan dipole pro-
cess. The long arrows represent the momenta of the particles
after the various stages of the process displayed. The short ar-
rows represent spin angular momenta. (b) Graphical representa-
tion of the dipole-exchange process. Long arrows: momenta.
Short arrows: spins.

The first factor describes the corresponding momentum
change of particles 2 and 3 and the overlap with the final
molecular state. A graphical representation of this so-
called Kagan-mechanism is given in Fig. 1(a). Momenta
are indicated by long arrows, spins by short arrows. In
contrast to the equations in this paper, Figs. 1(a) and 1(b)
illustrate double spin flip, which is somewhat easier to
visualize.

The dipole interaction turns out to introduce only small
momentum changes. Since qf goes down with increasing
8, the rnomenturn mismatch decreases, leading the ampli-
tude to increase in magnitude with 8. The approach of
Kagan et al. leads to a volume rate of Ls ——8.5&(10
cm s ' at 8=10 T and T=O, increasing with 8 by a
factor of 3 from 4—9 T.

The rate of this Kagan mechanism was also calculated
for the surface case by de Goey et al., who found
I.,=1.3&10 cm s ' at 8=7.6 T and T=0.4 K, in-
creasing by 70% from 4 to 9 T. The increase of these
rates as a function of 8, contrary to the experimental field
dependence, has led us to investigate other mechanisms
with non-negligible rate.

pgp, g Pl H

(15~')'" (5)
III. DIPOLE-EXCHANGE MECHANISM

The subscripts to the matrix elements in Eq. (4) indicate
the particle pair to which each of the matrix elements ap-
plies. The second factor describes the action of the dipole
interaction among particles 1 and 3 (1 and 2) giving rise to
final momentum qf. The free relative state

I qf ) is again
normalized as an exponential with coefficient (2+art)

An essential feature of the Kagan dipole mechanism is
that the two particles, interacting via the dipole interac-
tion cannot recombine, because this interaction only per-
rnits 5=1 to 5=1 transitions. The idea behind the
dipole-exchange mechanism is that recombination be-
tween these particles is made possible, after that one parti-
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cle has meanwhile changed its spin state by interaction
with a third one via a strong exchange (triplet or singlet)
interaction [see Fig. 1(b)].

We have estimated the rate for this process in two
ways. The first one is a Kagan-like approach, the second
one is an impulse-approximation-like calculation. We will
discuss them in this order.

The idea of the first approach is to follow the approach
of Kagan et al. for exchange recombination, e.g., for aab
scattering, but to consider dipole distorted states for the
recombining atoms instead of hyperfine distorted states.
We write the amplitude again as Eq. (2), but now we con-

sider the remaining part of the operator consisting of the
central interactions. The initial state +,+ is now approxi-
mated to first order in the dipole interaction. Following
Kagan et a/. we replace ql,+. by a product of two triplet
wave functions. The triplet function describing the initial
motion of the recombining particles, is distorted with a
dipole interaction. This changes 4, into %', and produces
the necessary spin fiip(s), but no change of S. The subse-
quent spin exchange due to the Vz and V3 operators en-
ables atoms 2 and 3 to recombine.

The amplitude for single spin fiip (o'f —
2 ) cail now

be written as [cf. Ref. 3 and Eq. (4)]

fujm ('qf) 2Cj&q»~ [e 'j
Iq~&i&'qf

~

V
( Pt&2

=2cj 1 ~p&q'»~ I 2qj+p&i&qf I
V'Iq'~&2

(p /mH)+2ps8

ere &qf I
V

I
ql~ &2 and &p I V~ I qIt &i represent the ac-

tion of central and dipole interactions, leading to final
momenta qf and p, respectively. Furthermore,
&'p„j

~

—,
'
qf+p&, is the overlap of the resulting state with

momentum —,'qj+p of the recombining atom pair with
the final molecular state. The energy denominator
represents the free propagation in between the interac-
tions. Figure 1(b) illustrates this approach, except for the

p contribution to the momenta of the atoms 2 and 3,
which for the time being is left out in the V' matrix ele-
ment. In a way, therefore, the present approach deals
with the dipole and exchange interaction as parallel pro-
cesses in sofar as the spatial degrees of freedom are con-
cerned. For the spin degrees of freedom the order of the
processes is as indicated in Fig. 1(b). Results for Ls are
given in Fig. 2(a).

To introduce the second approach we first note that the
V' matrix element in Eq. (6) can be written as

&qf I
V'I q'~&2 &'qf Ir'10&2 (T (7)

Writing it in such a way it indeed becomes clear that the
momentum change of particle 3 in the dipole process is
not taken into account in the subsequent exchange pro-
cess. With this in mind we replace the t' matrix element
by &qf+ z p I

r'I z p&2:

Of ——1/2f., (ef)= i, J~p&q'.j I-,'qf+p&i

«qf+-,'
p I

r'I —,
' p»

X , &pl V". Iq, &, .
(p /m H ) +2@s8

The replacement of ~0& by
~

—,p& in«oduces high«par-
tial waves. For even (odd) partial waves contained in

~
—,p &, r' is effectively a triplet (singlet) r matrix. As we

shall see in Sec. IV this expression (8), with
~
9', & replaced

by the free state
~
0& in the V" matrix elemelit, would be

obtained as one of the first-order terms in the expansion
for the exact transition amplitude in powers of t'. How-
ever, we do not base our analysis on such an expression,
since replacing ~%', & by ~0& would lead to a strong un-

physical increase of the amplitude: the triplet repulsion
does no longer damp the small-distance 1/ri dependence
of V . Figure l(b), now with the p contributions includ-
ed, is a graphical representation of this second approach
(8) for the dipole-exchange mechanism. The resulting Ls
is presented in Fig. 2(b). The field range in this case has
been restricted to 0—10 T. Note that the energy argument
of the r ' matrix in Eq. (8) is the energy
—A&8 —p /2mH of the free intermediate state for pair
2, whereas in the first approach it has value 0. It thus be-
comes clear that the exchange process in the first ap-
proach does not take advantage of the relative momentum
—,
'

p acquired by the atoms 1 and 3 through the dipole in-
teraction. As a consequence only the s-wave part of the
relative pair 2 wave function participates in the exchange
process. In addition the Zeeman energy for the spin
fiip(s) is produced by the dipole pair only, contrary to the
second approach, where it is produced by all three parti-
cles.

These differences explain the much higher rate for the
second approach. At a field of 8 T we find Ls ——2.8

~10 ~ cm6s ' and L s4. 0)&10 cm s ' for the
first and second approach, respectively.

Turning from the absolute magnitude to the field
dependence, we repeat that the dipole interaction can in-
duce only small momentum changes. Therefore the in-
tegrals in Eqs. (6) and (8) are restricted to small p. Be-
cause of this we expect the rates to decrease with the field,
mostly due to the denominator of the free propagator in
Eqs. (6) and (8). This indeed appears to be the case.
However, this field dependence is distorted in the first cal-
culation by an additional zero of the exchange matrix ele-
ment at 8=6 T for the double spin-fiip process and at
8= 12 T for the single spin-flip process [see Figs. 2(a) and
2(b)].
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nothing happens with the other one, before the dipole in-
teraction takes place. But this is very unlikely, especially
for small qf. The atom collides most probably with the
molecule as a whole. In other words, rescattering process-
es, which are higher order in the t matrix, are important.

The shortcomings of the simple approaches (one un-
derestimating the rate, caused by the approximations in-
volved, the other giving rise to an overestimated rate,
pointing to the fact that higher-order rescattering effects
are important) force us to conclude that we are in need for
a more exact three-body calculation, with all mechanisms
and higher-order terms included. On the other hand, the
field dependence found here gives us hope that the exact
calculation will also give rise to a decreasing field depen-
dence (higher-order rescatterings give rise to more free
propagators with field 8 in the denominator). Such an
approach is discussed in the remaining sections.

IV. EXACT THREE-BODY CALCULATION

l~
CLJ

ih

C7l

FIG. 2. {a) Three-body recombination rate Lg as a function
of magnetic field 8 for the Kagan-like approach of the dipole-
exchange process. The dashed curve represents the single spin-

flip contribution, the full curve the sum of single and double

spin-flip contributions. {b) Three-body recombination rate I. as
a function of 8 for the impulse-approximation-like approach of
the dipole-exchange process. The dashed and dotted curves
represent the contributions of the @=14,j=3 and v=14, j=l
final states to the total rate, respectively. The total rate is

displayed by the full curve.

In this section we describe a method for carrying out a
three-body calculation of the bbb dipolar recombination
process based on the Faddeev formalism, 6 in which the
three-body aspects are dealt with exactly. In this calcula-
tion we take into account the strong central (singlet and
triplet) interactions to all orders. The dipole interaction,
however, only to first order. This is a very good approxi-
mation, because of the weakness of this interaction.

Doing this, we can write the transition amplitude as

0 mH/54f„j(qf)= i S+f g Vk S%',+.

21rfl2 k=1

Here,
I 4; & and

I
qlf & are the initial and final states

of the process, with central interactions taken into
account to all orders, normalized as in the previous sec-
tions. We define the Faddeev components

I XJ & as

Go(E)VJ'(1+P)
I
4&, j=1,2,3,

Ie&=(1+P») Iq,+&

for the initial state and

It may seem surprising that the rate of the second cal-
culation is so large, roughly a factor of 5 larger than that
of the Kagan dipole calculation. (This factor of 5 even in-
creases to a factor of 20 if also other dipole-exchange
terms are taken into account where the dipole interaction
takes place between pair 2 if exchange occurs between pair
3 and vice versa. ) Such large discrepancies seem to be
common for calculations based on the impulse approxima-
tion. This can be understood as follows. Considering the
time-inversed process, i.e., the break-up process of a mole-
cule colliding with an atom with relative momentum
—qf, our impulse-like approximation means that the
atom collides only with one atom of the molecule, while

IX&= Iy&+Go(E)tt(E)PIX&, (10)

ti(E) being the central interaction t operator for pair 1.
The driving term

I y& =(I+P»)
I +~j~qfof &1 des~ribes

the free motion of the molecule (pair 1) and atom 1

in spin state of with relative momentum qf, when
Eq. (10) is the Faddeev equation of the final state. For

for the final state, Pzt, standing for a permutation of parti-
cles j and k and P for Pi2P2i+PiiP» (see Ref. 8). Also,
Go(E) =1/(E —Ho) is the free propagator, Ho being the
free Hamiltonian, and E the total energy, both including
Zeeman energy. The states

I XJ & obey the Faddeev equa-
tions. For identical particles these equations reduce to
equations, identical for all components. For

I
X& =

I XJ &

this equation reads
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the Faddeev equation of the initial state
~ P )

=(1+P23)
~ po qo5bb ) i, describing pair 1 to be in a cen-

tral interaction scattering state with momentum po and
atom 1 moving freely with momentum qo relative to pair
1. As usual the + sign describes outgoing wave boun-
dary conditions at infinity. For T~O, the momenta po
and qo go to zero. The symmetrized states S

~

4',+) and
S

~ waif ) in Eq. (9) can finally be found from the corre-
sponding Faddeev components by operating with 1+8.

To solve the above-mentioned two versions of Eq. (10)
it is useful to introduce the angular-momentum basis

~ pqa)~ =
~
pq(IA, )LML(s —,

' }SMs)J, where p represents the
magnitude of the relative momentum p of pair j, 1 their
relative angular momentum quantum number, s their to-
tal spin quantum number, q the absolute magnitude of the
relative momentum q of particle j with respect to pair j
and A. the associated angular momentum quantum num-
ber, while LMI SMs stand for orbital and spin quantum
numbers of the total system. Unless stated otherwise, this
basis will be used with j equal to 1. For simplicity we
therefore in general suppress the subscript l.

In this basis the r operator for pair 1 in the three-
particle space becomes

(pqa i
ii(E)

i
p'q'a')

3' 5(q —q')= r„p,p', E 2—t,aM—s, 5.. .
4mB

where tf, (p,p', z ) is the r matrix in tlie two-particle space:

(plmism,
~

t'(z)
~

p'I'mjs'm, ')

=5ii5,5 5,re(p, p', z) . (12)

(13)

The functions ti', can be calculated with the Lippmann-
Schwinger equation

II 2

&i:(p p' z) = Vi:(p p')+ f 4 "
z —(p") /mH

X Vi', (p,p")ri', (p",p', z), (14)

Vi', being the "Fourier transform" of the singlet or triplet
interactions normalized according to an equation analo-
gous to Eq. (12). For energies z(0, which are the only
values appearing in the Faddeev equations for our initial
and final states (T +0), the inte—gral in Eq. (14) is regular
and causes no problems. This one-dimensional integral
equation can be solved by matrix inversion. When the en-
ergy z=E (3q /4m—H) 2p&BM—s equals the energy E„~
of a two-particle bound state U,j=l, the t matrix has a
pole in the singlet case (s=O). We come back to this
problem shortly.

In the angular-momentum basis the particle permuta-
tion operator P in Eq. (10) has the representation

The basis t ~
plmism, ) I with mi and m, denoting orbital

and spin magnetic quantum numbers, is normalized ac-
cording ta

(pIm, sm,
I
p'I'mis'm, ')=, 5ii 55(p —p')

5(~, —p) 5(~,—p')
(pq& ~P )p q & ) =i(pq& ~pq & )2+i(pqa ~p q a )i dx ——i,, G (q, q', x),

p
i +2

(p
~

)
I'+ z

with ~, = [(q'}'+(q'/4)+qq'x]'~', ~,= I q'+ [(q')'/4]+qq'x I
'~' and

Cg

G (q, q', x)= g Pi, (x) g g q
' 'q' ' 'g

k=0 ll +12=i l ) +12 ——l'

(15)

(16)

3g Zoamfs
4mB

kl ) l )l212The functions Pk(x) are Legendre polynomials of the cosine x of the angle between q and q' and g ~ is the so-
called geometrical factor, a comphcated expression in terms of 3-j and 6-j symbols, for which we refer to Glockle s
monograph'.

The remaining operator Go(E) in Eq. (10) has a simple form in the basis
~ pqa ):

(pqa ( Go(E)
~

p'q'a') = E 5(p —p') 5(q q')-
6 (17)

low temperatures, the energy E= (p 0/m H )

+(3qo/4m H )—3iuii+ &0 approaches the energy for three
polarized electron spins. Therefore for the final state,
where M& ——+ —,', the energy factor in large parentheses in
Eq. (17) is nonvanishing. For the initial state, on the
other hand, the denominator vanishes when p +3q /4
=po+3qo/4. This leads to singularities in the kernel of
the Faddeev equation (10). For T~O, however, the con-
tribution of the singularities goes to zero continuously.
We mill come back to this problem shortly.

Equation (10) is a two-dimensional integral equation.
The dimension of the kernel Got']I' is tao large to salve
the equation by matrix inversion. Instead, we solve it by
iteration (if the Neumann-series diverges, it is summed us-
ing Fade's method' }. The successive terms in the series
build in scattering correlations between the particles.
Note that the final state

~ Pf ) in our previous discussion
of the Kagan dipole mechanism [see Eq. (2)] is just the
driving term

~ P) of the Faddeev equation for the final
state. The first iterated term Got'iP

~ P) is the state on
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the left-hand side of the dipole interaction in the treat-
ment of the dipole-exchange mechanism (Sec. III).

The advantage of the Faddeev equation is that its ker-
nel is compact so that it has a unique solution. " The
driving term ~P), however, in general contains 5 func-
tions, which one cannot discretize. Therefore, instead of
working with

~
X) we use another state

~
X). For the fi-

nal state we write
~
X ) =

~
X) —

~ P), which obeys

~
X) =G, r', P

~
p)+G, r', P

~
X) . (18)

The driving term in this equation no longer contains 5
functions. The driving term of the Faddeev equation of
the initial state may be written as

10 & =( I+Gpr i )( I+P23) I kp &

=(I+Gpr t)(1+P23) I ppqpbb& &

where
~

tI)p) describes the free motion of three polarized
atoins. We now define

~
X) as

~
X)—(1+P23)

~ PQ)
—Gptt&

~
Pp& and find

~

X) to obey the Faddeev equation

I
X& =Gpr'iPGpi P I kp&+Gpt iP

I
X & . (20)

Once again 5 functions have been eliminated from the
driving term.

In Eqs. (18)—(20), Gp and r; have energy arguments E.
Because of the poles of the t matrix (ll) for l=j at
(3q /&mH)=E E„I—2pa—BMs, the kernel of the Fad-
eleev equation (18) for the final state is irregular. These
poles also occur in the solution

~
X ). The physical mean-

ing of these poles in the solution is that they are associat-
ed with waves extending to infinity in all open (elastic and
inelastic) channels corresponding to the possible molecular
states uj. The poles are handled in the following way. We
define a new state ~X) by sphtting off the pole factor
from iX):

&pqa ~X&=&pqa ~X)

x g E— —E„i—2paBM$ —l e, (21)3(t(I

4mB

following Faddeev equation

I
X & =r'iPGpr 4 I Wp&+r iPGp I

X & (23)

For T~O, the well-known singularity lines in the kernel
of this equation disappear.

z =-100K

V. FIRST NUMERICAL RESULTS

In this section we present the first results of an ap-
proach based on the method described in the preceding
section. These calculations have been carried out by
means of the local Eindhoven computer, with some excep-
tions for which we turned to the Cyber vector-array com-

in which the product runs over all bound states with ener-

gy E,i gE 2paBMs for a certa—in angular momentum l.
The poles in the driving term of Eq. (18) are eliminated in
this way, but those in the kernel in the new integral equa-
tion for

~
X) are not. The latter, however, can be handled

by writing its kernel as a sum over individual pole terms
and subsequently dealing with a pole at a specific q value
q' by means of the following equation:

f (q) " f(q) f(q')—
dq 2 2

= dg
q —(q') i e p — q —(q')

+f(q') J dq
q —(q') —ie

(22)

for some regular function f(q). Here the integrand of the
first integral in the rhs is regular and the second term is
easily calculated to be f(q )vl'i/2q . —

The propagator Gp in the initial state equation (20)
gives rise to a singular behavior. Therefore we introduce
a state

~
X ) =(E—Hp )

~
X) for which we finally have the

Cl
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1

t/l
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FIG. 3. (a) "Fourier transform" of the I =0 triplet potential
Vt', {p,p') as a function of final and initial moments p and p'; {b)
I =0 triplet t matrix t~{p,p', z) as a function of p and p' for en-

ergy z= —100 K.
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FIG. 4. (a) "Fourier transform" of the /=1 singlet potential VL, (p,p') as a function of p and p'; (b) /=1 singlet t matrix
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puter of s&RA in Amsterdam. The first step is the calcu-
lation of the functions Vf, (p,p'), the "Fourier transform"
of the triplet and singlet potentials. These are shown in
Fig. 3(a) for s =1, I=0 and in Fig. 4(a) for s =0, I = l.
The second step is to calculate the r matrix with Eq. (14)

matr1x 1nvers1on. As gr1d points we used Gauss-
I.egendre points. For the triplet case 75 grid points were
sufficient. For the singlet case we used 121 points. A
maximum momentum value of 35 ao ' turned out to be
necessary. For the triplet potential, a value of 10 a 0

' ap-
peared to be sufficient. Special care has to be devoted to
the choice of the "central" Gauss-Legendre point in the
singlet case, due to the more complicated structure. As
can be seen in Figs. 3(b) and 4(b)—4(e), where we present
tf, matrices for s =1, I =0 and s =0, I = 1, respectively,
we need more points for the singlet case, again because of
the oscillations as a function of p and p'. For very low
energies the oscillations disappear and less points are suf-
ficient. However, energies near z =0 are likely to be more
important for the solution of the Faddeev equations. We
also calculated the residues r 'i, (p,p', E,r) of the tf, (p,p', z)
functions at the pole energies with the help of an addition-
al equation:

2.0

O {)

CF'

CL

C5

CI

FIG. 5. Solution of the Faddeev equation (23) for the initial

state, multiplied by q, i.e., q J (p, q) as a function of p and q
for channel a= I I=A=L =0,, 5= —, , Mq= ——, ).3 3

(24)
the basic correctness of our method and also its feasibility
when applied to atomic hydrogen.

I pimps) being the orbital part of the states Ipimrsm
with normalization corresponding to Eq. (13). The results
of this calculation were in accordance with results from
matrix 1nver81on.

As a check on our program for solving the Faddeev
equations we calculated the phase shift of elastic neutron-
deuteron scattering at an energy E~,b ——3.26 MeV for a
single a channel (I=0, A, =O, L=0, s=l, 5= —', „Ms——', ,
and isospin c(uantum numbers for pair 1 t =0 and total
system T= —,). We took this nuclear physics example,
since similar calculations for atomic hydrogen are not
available in the literature. The results were in accordance
with results presented previously.

To start with we did a one-channel calculation for the
initial-state Faddeev equation (23), for which we needed
40)&40 (p, q) grid points and found convergence after 20
iterations with Padh's method. We chose the most impor-
tant I=A, =L=0, S=—', „Ms————', charmel. Bo:ause of
the 1/q behavior of the driving term of Eq. (23), the
solution X (p, q)=(pqa IX) also displays a 1/q depen-
dence. This I/q factor is cancelled by the q phase-
space factor of the matrix dement in Eq. (9). For this
reason and to see the underlying structure we plotted

q X~(p,q) as a function of p and q in Fig. 5. This func-
tion is purely real, because of the disappearance of the
singularities for T~O, and obeys the "one channel"
Schrodinger equation. %e indeed checked that it fulfills
that equation.

Furthermore, we did a preliminary one-channel calcula-
tion of the final state with 40X50 (p,q) points, in which
we included eight poles of the kind mentioned in Eq. (21).
We found convergence with Pade's method after 25 itera-
tloris. Clearly, the flirst results glveri iii this sectloli sliow

VI. DISCUSSION

Anticipating a more complete approach extending the
previous one-channel calculation, we now present some
general considerations regarding the number of a chan-
nels to be taken into account. For the Faddeev equation
of the initial state for T~O, we have s= 1, 5= —', ,
Ms ———,', L =0, and I =A, ; so if I values ranging from 0
to I are to be included, we need about I,„/2channels
(see Table I), because only even I values are possible. This
is because of the fact that pairs of ground-state hydrogen
atoms should have even I+s+i for identical-particle
reasons, where i is the total nuclear spin. With three b
atoms in the initial state, i =1 for each atom pair In our.
recombination process proton spins are unaffected.

For the final state the Faddeev equation is not as easy
to solve, because we need a far greater number of chan-
nels. In Table I we see the number of channels needed as
a function of the maximum I value I,„.We now have
both singlet and triplet channels. From the denominator
of the propagator, the energy argument of the t matrix
and the fact that the geometrical factor is independent of
Ms, it can be concluded that the transition amplitude for
the Mz ——+ —,

' channel (crf =+ —,
'

) can be obtained from
the Ms= ——,

' (of ————,
'

) channel by doubling the mag-
netic field 8. We have an additional factor of —2 from
the spin matrix element of the dipole interaction in Eq.
(9):

f,j~ (8)= 2f„JI (28) . — (25)

As a consequence there is no need to calculate the field
dependence for both Ms channels. In interpreting Table I
it is of importance to point out that even and odd I+A,
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TABLE I. Number of coupled channels as a function of the
maximum angular momentum /,

„

for the initial- and final-
state Faddeev equations.

Initial
Final

1 1 2 2 3 3 . . [1,„/2]+1
1 3 6 9 12 15 - . . 3/~,

„

channels are uncoupled. This simplification of our three-
particle problem follows from the diagonality of t' and

Go with respect to l and A, and from the fact that the
geometrical factor does not couple even and odd 1+A,.
Furthermore, the initial state has even angular momentum
quantum numbers l =I, (otherwise not understandable)
and the dipole interaction couples triplet channels only.
As a consequence, only the 1+1, even channels are possi-
ble both for the initial and final states. From the conser-
vation of total angular momentum J=L+S, we would
have both L= 1 (i.e.,

~

l —1
~

&A, &l+1) and L =2 (i.e.,
~

l —2
~

&A, &l+2) channels. However, the dipole in-

teraction transferring angular momentum
~

b L
~

=
~

b,S
~

=2' from spin to spatial degrees of freedom,
only L =2 is allowed. These considerations lead to the di-
mensions of independent sets of coupled channels given in

Table I.
From the considerations in Sec. III we may conclude

that our so-called dipole-exchange mechanism is a poten-
tial candidate for solving the existing discrepancies of
present theory and experimental recombination kinetics.
In Sec. IV devoted to the principles of an exact approach,
we have demonstrated that the building blocks of the Fad-
deev scheme, the potentials and t matrices with their com-
plicated structure (see Fig. 4), can be controlled numeri-
cally. We have also shown that Faddeev equations can be
solved under simplifying assumptions. The exploration of
the rich content of physics contained in the process of
recombination of three H atoms, including more and more
channels, is under way using a vector-array computer.
This should also answer the question whether three-body
recombination is sufficiently suppressed at fields larger
than about 25 T to allow Bose-Einstein condensation to be
achieved in a compression experiment.
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