
PHYSICAL REVIEW B VOLUME 34, NUMBER 9

Theory of condensates in superfluids

1 NOVEMBER 1986

A. C. Olinto
LgbOPaiOPlo XQCE017Ql de C017lpQrQ)QO CleiiilflCQ,

Caixa Postal 56G18, 22290 Bio de Janeiro, Rio de Janeiro, Brazil
{Received 5 June 1986)

A gauge-symmetry-breaking parameter associated with the fluctuation of the zero-mode particles
renders a source term to the continuity equation of interacting Bose systems. As a consequence, ad-

ditional terms appear in the generalized %ard identities, which modify in an essential way the rela-

tion between the superfluid and condensate densities. An energy gap results as a function of the

syrnrnetry-breaking parameter and interatomic potential. The general results are worked out in the

shielded potential approximation, and an equation for the condensate fraction no(T) is obtained in

closed form. At absolute zero the condensate fractions in dilute Bose systems and superfluid He

are found to be no ——0.438 and no ——0.126, respectively.

I. INTRODUCTION

Since London' proposed that the unique properties of
superfluid He might be related to the phenomenon of
Bose-Einstein condensation, the problem of demonstrat-
ing, theoretically and experimentally, the existence of con-
densate in liquid helium has been of continuing interest.
In the present paper we use generalized %ard indentities
to obtain an equation for the condensate fraction as a
function of the superfiuid density. Those identities have
their origins in the field-theoretic formalism of Gavoret
and Nozieres, which has extensively been used in the
study of the excitations and response functions of con-
densed systems. Charged and neutral Bose gases at zero
temperatures have been investigated by Ma and Woo, and
Wong and Gould, respectively. Talbot and Griffin4 have
studied the response functions at finite temperatures and
Szepfalusy and Kondor the dynamics of the phase transi-
tion. In this formalism the Dyson-Beliaev one-particle
matrix propagator and the density-density correlation
function are expressed in terms of irreducible and proper
diagrams, the so-called regular contributions. Generalized
Ward identities, which relate regular contributions of the
one- and two-particle Green's functions, are direct conse-
quences of the equation of continuity. However, this con-
servation law is no longer satisfied if one uses the Bogo-
liubov prescription of treating the zero-mode amplitudes
as c numbers. In this regard the equation of continuity is
usually imposed on the problem Talbot .and Griffin
have circumvented this difficulty by adopting another
well-known procedure, also due to Bogoliubov, of intro-
ducing into the Hamiltonian an infinitesimal symmetry-
breaking term. As a result, the continuity equation is
satisfied to within an infinitesimal term.

In this paper we consider still another approach to the

breaking of the gauge symmetry which consists in defin-
ing the zero-mode amplitude as

together with the following condition on the ensemble
averages,

&uo)=&uo)=0, (1.2)

so that

(1.3)

The annihilation and creation operators keep their usual
commutation relation, [ao,ao] =1, No is a finite fraction
of the total number of particles, even in the thermo-
dynamic limit, and g a real parameter that can take on
values in the interval [0,1]. The parameter g may be inter-
preted as the probability of finding particles with negligi-
ble fluctuation in the k =0 state.

In Sec. II the generalized %ard identities are derived
for the case of a source term in the continuity equation.
General expressions for the superfluid density and the en-

ergy gap are determined from the Ward identities in Sec.
III. In Sec. IV we illustrate the results of the preceding
sections by considering a dilute Bose system. %e discuss
our results in Sec. V.

II. GENERALIZED %PARD IDENTITIES

Consider a system of bosons of mass m enclosed in a
volume V=I. , d being the space dimension, and in-
teracting via a two-body potential U(x). The continuity
equation of the system where (1.1) is taken into account
has already been derived for a hard-sphere potential. The
generalization to an arbitrary potential is trivial and we
obtain

B,n(x, t;g)+V J(x,t;j)=iS(xt;g),

~(x i;4)= ~ f d'x'd'x"«x' —x")[0 (x.i k)I W(x" r 4)l 'W(x' r 4)—&'(x' r k)I 0(x" r P I
'4(x i &)]

(2.1)

(2.2)
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where the density, longitudinal-current„and source opera-
tors are given, respectively, by

pk
——gazaz+k bo——ak+a kb + g a a +, (2.4)

p (+0)(-k]

Jk =—g (p + , k)apa—p+k,
k 1

k =
p kp+q—p q p q p+q k

p, q

(2.6}

with the convention that a zero-mode amplitude implies
bo or ho, as illustrated in Eq. (2.4).

From (2.4)—(2.6) one can define several correlation
functions that have the general structure,

Xgs(k, q) = ——( T,Ak(r)Bk ),I

V

Cq(k, v)—:— (T,Ak(r)ak„) „
1

p,

(2.7}

(2.8)

where T, is the r-ordering operator, Ak and/or Bk stand
for the operators pk, mJk, and Sk. The Bose amplitude in
(2.8) obeys the standard convention

Qk, P=+
Qkp= '

Q k, P=

The usual procedure to obtain equations that relate the
various correlation functions among themselves consists
of three steps: (i) take r derivatives of (2.7) and (2.8) so
that inside the ensemble average only the density operator
is involved in the differentiation, (ii) substitute Bpk/Bq' ac-
cording to the continuity equation, and (iii) expand the re-
sult in finite-temperature Fourier series. ' The distinc-
tion of the present procedure resides solely in the fact that
we do not neglect the source term, however small. It is
straightforward to obtain the following equations,

X„„(k, )=—X „(k, )+—([p,p ])—X „(k, ),k 1
nN & N &

V

(2.9)

where i}'j is the boson field, n and J are the number-density
and current operators, respectively, and the Hermitian

operator iS is the source term that depends on g and the
interaction (we set vari= 1 throughout this paper). It is con-
venient to Fourier transform Eq. (2.1) in terms of the

imaginary time ~=it,

(2.3)

similar to that of Ref. 4 we have denoted by n, instead of
p, the sub- or superscripts related to the density. On the
other hand, we have dropped the I superscript associated
with the longitudinal current. ) The frequency co is the an-
alytic continuation of the Bose frequency 2min/P, where
P= 1/ks T is the inverse temperature.

Clearly, Eq. (2.11) is absent from previous works, ' and
Eqs. (2.9), (2.10), and (2.12) differ from those by the pres-
ence of the parameter g and correlations involving the
source term. In addition, the cornmutators now read

[Pk Pk]=kakak ak—a k}, (2.13)

Therefore, the commutator (2.13) does not vanish, as it
usually does, and (2.14) is such that the total particle den-
sity, n=N/V, is no longer equal to n =m([Jk, pk])/kV.
Only in the normal phase ((=0) the values of (2.13) and
(2.14) become identical to those obtained previously.

%e proceed now to determine the Ward identities. An
analysis similar to the dielectric formulation for the densi-
ty and longitudinal-current response functions ' shows
that the new response functions, the ones that depend on
the source term, may also be expressed in terms of irredu-
cible contributions denoted with overbars,

Xsn(k, co) =X'�(k,co)/e(k, co), (2.15)

Uk
Xsj(k, co) =Xsj(k,co)+Xs„(k,m) X~(k,co), (2.16)

Uk
Xss(k, co) =ass(k, co)+Is„(k,a)) X„s(k,co), (2.17)

C„(k,co) =C „(k,co)+Xs„(k,co) C „"(k,co), (2.18)

where the dielectric function is defined by

k(k, co)=1—UkX„„(k,co} . (2.19)

Equations (2.9)—(2.12) remain valid when the correlation
functions X„s and C„"are replaced by their corresponding
irreducible parts gA~ and C„". In order to express these
equations in terms of regular (irreducible and proper) con-
tributions only, one must introduce density, longitudinal-
current, and source vertex functions, A„", defined by

[Jk pk]= bobo+ (akak+a —ka k)+ g ara&
m 2

p (+0)

(2.14)

cog„(k,a)) = XJJ(k,co)+—([—Jk,pk] ) Xsg(k, ro), —k tPl

m
'

V

C „"(k,co) =A„"(k,co)G„„(k,cu), Ak pk, mJk, Sk, ——.(2.20)

(2.10)

coXs„(k,co) = XsJ(k,co)+—([S—k,pk) )—Xss(k, to),k
m

'
V

(2.11)

where 6 & are the irreducible Beliaev-type Green's func-
tions and the summation convention over repeated indices
(p, v=+, —) is assumed. Equations (2.20) allows us to
split the irreducible Xzs's into regular (proper), X qs, and
improper contributions, viz. ,

co C„"(k,co) = C„(k,co)+ (gn —0)'i P„C„(k,co), (2.—12)
+AB AvGvp+p++ AB~ ~kq~k Pk~ nJks~k

A 8 R (2.21)

where P&
—sgnp and n NO/V0. (To keep the notation

Substituting Eqs. (2.21) into the irreducible version of
Eqs. (2.9)—(2.12), we finally obtain
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x „'„="—x,"„(-g.;)'"p„A„"+ '—
& [p, ,p„'] & x-;„,

(2.22)

aux Jn x JJ (Eno) ppAp+ &[Jk pk]& xsI

(2.23)

where ns and nz are the superfluid and normal fiuid den-
sities, respectively, while the condensate density, no, and
the noncondensate density, n, are defined as follows,

no ——(hobo&/V, n = g (a&a~ &/V, V~00 . (3.7)
p (~0)

Talbot and Griffin have shown that the most general def-
inition of the normal fluid density is given by the zero-
frequency and long-wavelength limit of the regular part of
the longitudinal c-urrent correlation function, i.e.,

coA„"= A—„+(/no)'~ P„G,„'—A„.

(2.24) n~(T): —li—m m 'Xgg(k, O) .
k~O

Also notice that Eqs. (1.3), (2.14), and (3.6) yield

(3.8)

Equations (2.22)—(2.25) are the generalized Ward identi-
ties which follow from the continuity equation (2.3).
They become identical to those obtained previously '

when g= 1 and Sk ——0.

III. ENERGY GAP AND SUPERFLUID DENSITY

5=—lim [X++(k,O) —X+ (k, O) —p],
k-+0

(3.1)

where p is the chemical potential (not to be confused with
the indices) and X&„(k,ro) are the irreducible self-energies
defined through Dyson's equation

G„„'=(G„„) ' —X„„.
G„,is the unperturbed Green's function given by

(32)

Gpv=&pv[(sgnp) ek+p]

where ek ——k /2m is the free-particle energy. From Eqs.
(3.1)—(3.3) the gap reads

(3.3)

b, = lim —,'P„G„„'(k,O)P„.—
k-+0

(3.4)

By comparing the zero-frequency and long-wavelength
limit of the Ward identity (2.25) with (3.4), we obtain

b, = lim —,'(/no) '~ P —A (k,O) —A (k,O)

J

Up to the one-loop approximation the first term in (3.5)
vanishes ' so that the source vertex function is solely re-
sponsible for the energy gap in the excitation spectrum of
the Bogoliubov propagators.

We now use the Ward identity (2.23) to derive an exact
expression for the superfluid density. The starting point
is the following relation in the thermodynamic limit

n =no+n =ns+n„, X, V m, X/V =n, (3.6)

The analysis of a Bose system at temperature T =0 K
carried out by Gavoret and Nozieres displayed several in-
frared divergences, which they removed by introducing a
fictitious energy gap b at (k,ro)=0. Talbot and Griffin
have shown that this gap may be accounted for the infini-
tesimal positive energy of the symmetry-breaking term in-
troduced into the Hamiltonian. We consider next the en-

ergy gap within the context of the g formalism. For the
Bogoliubov propagator the energy gap is defined by

lim m ( [J;,pk] &/kV=n +g(aoao &/V .
k~O

(3.9)

where the thermodynamic limit is implied. The first term
on the right-hand side of (3.10) equals the one obtained by
Talbot and Griffin for g= 1, while the other two are due
to the source in the continuity equation.

IV. WEAKLY INTERACTING BOSE SYSTEMS

To illustrate the general results of the preceding section
we consider a dilute hard-sphere Bose system with in-
teraction constant Uo ——4n. /am and diluteness parameter
(na~)'~2~&1, a being the s-wave scattering length. For
such a system the shielded potential approximation (SPA)
is well founded. ' Basically, it amounts to evaluating all
regular functions in the noninteracting Bose gas approxi-
mation. The Dyson-Beliaev matrix propagator is that of
(3.3) and from previous SPA results, ' '

(4.1)

In the SPA either Eqs. (3.1) and (4.1), or Eqs. (3.3) and
(3.4), show that b, = —p. Therefore, Eq. (3.5) provides a
consistent way of determining the chemical potential
within the g formalism. Since the longitudinal-current
vertex function does not contribute to p, we proceed to
evaluate the source vertex function. Let Ak in (2.8) be the
source operator (2.6), namely,

Cq(k, r) = g [ (T ap(r)aq(r)ap+q(q)aI, (r)apq &

V

—( T a k(r)ap+q(r)ap(r')aq(r)ak„&] .

(4.2)

The ensemble average of a r-ordered product in the SPA
factorizes in pairs of unperturbed Green's functions. As
(4.2) has an odd number of amplitudes, an odd number of
these must necessarily correspond to the k =0 mode (bo
or bo). By singling out these modes in the double sum-

Combining Eqs. (3.6)—(3.9) with the hydrodynamic limit
(co =0, k~0) of the Ward identity (2.23), we finally have

ns= lim j[((no) ~ PEA@(k,O)+X'(k, O)]/k]
k~O

(3.10)
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mation of (4.2) it is straightforward to show that the (ir-
reducible) Fourier transform becomes

C„(k,co) = g—Uo(gn o
)'~ —[/No+ 2(1 —g) (&pao }+ 2N ]

n, = lim (by, &/V=gn,', g~o
V~ oo

and the chemical potential becomes

p=gUo(no —2n}, $~0 . (4.7)

)& [G+„(k,co) G—„(k,co)] . (4.3)

By comparison with the vertex function definition (2.20),
Eq. (4.3) yields immediately

A„= P„g—Uo(gn o)' (2n gn —o ), (4.4)

where use has been made of Eqs. (3.6}. Substituting (4.4)
in (3.5), we finally have

p=gUo((no —2n) . (4.5)

For g & 0, one has p ~ 0, and the noninteracting distribu-
tion (aouo) does not diverge. Consequently, from (1.3)
the condensate density is

In the Bogoliubov limit (/~1) the first term on the
right-hand side of Eq. (4.7) coincides with the value of the
chemical potential furnished by the usual field-theoretical
treatment of dilute Bose systems. The second term is new
and on account of it p, is negative. On general grounds
one cannot determine the sign of the chemical potential of
interacting bosons below T~. %e do know however that
p&0 in noninteracting systems and also that superfluid
helium has negative p since it coexists with its vapor
which is a Boltzmann gas. '

We now turn to the superfluid density (3.10) in the
SPA. After factorization of the r-ordered product, the
source-longitudinal-current correlation function defined
through Eqs. (2.5)—(2.7) reduces to a simple expression,
1

1.e.s

XsJ(k, r) = —m ( T,Sk(r)Jk )/V

gUok [(T,a, (1-)a„)(T,b, (r)b, )+(T,a „(7-)a )( T, b(1-) b, )]y (0 a ),fJ'2
IP

(4.8)

where the k =0 propagator is given by

( T,b (r)b ) =(1—g)[1 e" ~'~"—] 'e"
lim [N (ek) —N (0)]=—g(1 —g)k~0

(4.9) which, combined with (4.6) and (4.12), gives

(4.15)

Hence, Eq. (4.8) corresponds to a proper and irreducible
diagram whose Fourier transform reads

Xsq(k, co)= gUonk(VP)

Xg [ G ~+ (k, co'+co)G++ (O, co')

+G++ (k,co')G++ (O,co'+co)], (4.10)

»m k -'X sJ(k, o)=—2Uonnop,
-' . (4.16)

k~0
On account of the chemical potential (4.7) the last term in
(3.10) proportional to the nomnteracting distribution
(ciocio) vanishes in the thermodynamic limit. Substitut-
ing the vertex functions (4.1) and (4.16) in Eq. (3.10) and
considering Eq. (3.6), we finally have

ns no( 1 —2—Uonp, —') . (4.17)
where, from (4.9),

G++ (O, co) =(1—g) [co+(1—g)p] (4.1 1)

Notice that (4.17) requires a negative-definite p in order

Performing the frequency summations (actually, co

~2nin /P) by standard techniques, ' and carrying out the
analytic continuation (2@in /P~co), we find

Xsj(k,co)= (1 g)(UonkV '[N —(ek) —N (0)]

(4.12)

C

a
C

with the Bose distribution functions given by

N'( )=[ '" "—1] '=( '

N'(0)=[e " &'Ii' —1] '=(1—g) '(b b }

(4.13)

(4.14)

Clearly, the second equality in both (4.13) and (4.14) is
true only in the SPA. Considering now Eq. (1.3), one can
easily show that

FIG. 1. The ratio nzlns, Eq. {4.18), as a function of the pa-
raineter g, for T =0 {condensate fraction, ns n), and T=——Ti
( ng, no —+0).
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FIG. 2. Superfluid fraction nq, Eq. (4.21), and condensate
fraction no, Eq. (4.19), for /=1 and n =1, as a function af the
reduced temperature T/Tq.

and as long as nsln =1 at T =0 K, then the condensate
fraction (4.20} should hold for each of these systems. A
test on the theory might possibly be carried out with a
low-density He system' and, hopefully, with spin-
polarized H, .

In spite of the fact that the results of Sec. IV were ob-
tained in the SPA, we shall see below that Eq. (4.19) is a
convenient expression to fit high-density superfluid He
data. We present first some theoretical arguments that
may justify that otherwise surprising result.

The next step past the SPA consists in calculating the
vertex functions and regular parts of the correlation func-
tions by means of one-loop diagrams and Bogoliubov
propagators. Although this latter approach is more
reahstic, particularly in the case of strongly interacting
systems, Talbot and Griffin have pointed out that the
SPA contains some of the same physics as the one-loop
approximation. In fact, Payne and Griffin have shown
that for a dilute Bose gas the one-loop approximation
gives only small corrections to the SPA.

We now attempt to estimate the effect of the source
contribution to the continuity equation in both dilute and
dense cases. Accordingly, let us introduce the dimension-
less quantity

n, =nc[1+2(2—no/n) 'g '] (4.18)

As T~Ti„, both ns and nc approach zero and Eq. (4.18)
gives nclns ——gl(1+)'), as shown in Fig. 1. To determine
the condensate fraction we solve Eq. (4.18) for nein and
the allowed root of the quadratic equation is

nc (2g)——'(2+'(2+ ns )g I [2+—(2+ns )g] —8$2ns I
'~') .

(4.19)

This central result expresses the condensate fraction nc
(hereafter we set n =1) in terms of the superfluid fraction
ns and g. In Fig. 1 we plot nu at T =0 K (ns 1) as a-—
function of g. In particular, this value in the Bogoliubov
limit turns out to be

nc ——0.438, T =0, (=1,
corresponding to the largest condensate fraction. This is
to be compared with nc=-l, that results from field-
theoretic perturbation treatments of dilute Bose systems. "

In order to determine nc( T) in the whole range
0 & T & Tq, we approximate the superfluid density by the
noninteracting Bose gas formula,

that ns & nu, and this is precisely what we have found in
(4.7). Upon this replacement, Eq. (4.17}reads

Ir(g)=ksT/gUcn =[( akT')/(, na )' ] /2$, (5.1)

x(g) »1, T = Ti .

Therefore, in dense systems one has

g « ks Ti /Ucn « 1 .

(5.2)

(5.3)

Let us estimate g in (5.3). The dilute parameters of the
weakly interacting superfluid He are aA, r

' ——0.029 and
(na )'~ =0.013, T =Ti (Refs. 13 and 14) and Eq. (5.1)
gives

where A, z is the thermal wavelength. The numerator and
the denominator inside the square bracket are the usual
parameters that specify the dense and dilute states of the
system. The quantity a(g) is a convenient way of estimat-
ing the contribution of the source constant, gUc, at a
given temperature. For definiteness we consider the sys-
tem at the transition temperature. Dense and dilute Bose
systems are characterized by ks Ti, /Ucn « 1 and
k~Ti/Ucn &&1, respectively. In dilute systems, where
the Bogoliubov prescription holds, one has s(g= 1)»1.
It is then natural to extend this condition to dense sys-
tems, in order to keep small the contribution of the source
term. Hence, we assume that (5.1) must satisfy in general
the condition,

ns(T) = 1 (T/Ti ), n =1— (4.21) a.(/= 1)=2.5, Ti =10 mK, (5.4}

which is quite reasonable an approximation for dilute,
weakly interacting systems. In Fig. 2 we compare no
and ns given by Eqs. (4.19) and (4.21} in the Bogohubov
limit.

V. MSCUSSION

If the Bogoliubov prescription (/=1) is an adequate
description of weakly interacting Bose-condensed systems,

while for the usual bulk superfluid He, ak, r ' ——0.43 and
( na ) 'i =0.61, ' so that

c(pl}=0 25/g, Ti.=2.17 K . (5.5)

From Eqs. (5.4}and (5.5) we obtain the g' value that makes
the source contribution in the dense case equivalent to
that of the dilute system, namely,

)=0.10 .
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Hence, if g—=0.1, the source contribution in strongly in-
teracting systems may be regarded as a small perturba-
tion.

%'e now turn to the analysis of the experimental data.
In recent years condensate fractions have been extracted
from the momentum distribution in superfluid He
through high-momentum neutron scattering at standard
vapor pressure. ' ' These measurements, shown in Fig.
3, were analyzed by Sears in terms of the following
heuristic expression

0.16

O. 12

0.06
C'

a, oe .

no(T)=no(0)[1 —(T/Ti, ) ] . (5.7) 0.04

A least-square fit to the data gives no(0)=0. 133+0.012
and +=4.7+1.2, and is represented by the dashed curve
in Fig. 3. Sears argues that according to Josephson the
condensate fraction is expected to have the form '

0.0 2

I L

0 02 0 1 08 08 10 12 (4 18 1B 20 22

no(T) =—(Tt, —T)'t', (5 8)

as T~Ti, . A least-square fit of (5.8) for T&1.8 K
yields 2P=0.5+0.2 and corresponds to the dotted line in
Fig. 322

Equation (5.7) does not depend on ns(T) and, as point-
ed out by Sears, has no actual justification for superfiuid
He. It should be regarded as a convenient way of

parametrizing the data and of estimating the condensate
fraction ( n o =0. 133) at absolute zero. On the other hand,
if we use in Eq. (4.19) the real values of ns(T) derived
from normal fluid-density measurements at the saturated
vapor pressure, and in addition determine the parameter

by a least-square fit to the data, ' ' we obtain
/=0. 154 and the corresponding smooth curve represented
in Fig. 3. This curve has three interesting features: (i) it
depends on the superfiuid density ns(T), (ii) it resembles
that of Eq. (5.8) as T~Tt, (the dotted curve in Fig. 3),
and (iii) it furnishes a lower condensate fraction at T =0
K, namely no ——0.126, as expected from theoretical esti-
mates. In fact, the first calculation of the condensate
fraction at absolute zero is due to Penrose and Onsager
who found no ——0.08 by assuming a plausible ground-state
wave function. More recent calculations have yielded
values of the condensate fraction that vary from 0.09
to 0.119, depending on the interatomic-force and calcu-
lation method.

Recently, Griffin revised the usual approach of ex-
tracting no(T) from neutron scattering experiments. By
reanalyzing some experimental data, ' ' Griffin found

T (K)
FIG. 3. Condensate fraction versus temperature. Solid curve

is Eq. {4.19) for (=0.154; dashed curve, Eq. (5.7); and dotted
curve, Eq. (5.8). Solid circles are experimentally determined
values in superfluid He from Refs. 16—19.

condensate fraction values that are approximately half the
original ones. A least-square fit of Eq. (4.19) to these new
values, ' together with actual liquid-helium superfluid
density ns(T), gives (=0.059 and, correspondingly,
no=0. 054 at T =0 K.

Finally, we remark that the g values found in both
least-square fits above are consistent with (5.6). This calls
to mind an argument given previously that Bose'systems
might have two ordered phases: with (g= 1) and without
(0 & g «1) Bose-Einstein condensation, the former typi-
cal of weakly interacting systems and the latter of strong-
ly interacting ones. The condition 0 & g « 1 was meant to
imply that g ought to be infinitesimal based on the re-
quirement that the source constant (Ue should be small
for the continuity equation to hold to within an infini-
tesimal term. The result (5.3) does in fact confirm that
0&/«1 in strongly interacting systems. However, as
shown explicitly for superfluid He, Eq. (5.6), the parame-
ter g need not necessarily be infinitesimal. Therefore, in
the case of dense systems that display the phenomenon of
Hose-Einstein condensation, the condition 0 & g « 1 must
be extended to allow for small, yet noninfinitesimal,
values of the parameter g.
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