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A low-energy electron which reflects off a crystal surface couples to particle-hole excitations
through the Coulomb interaction. This leads to a contribution to the electron-energy-loss spectrum
peaked about the specular direction. It is pointed out that if the material is a ferromagnet, a spin
dependence of the near-specular loss spectrum occurs as a consequence of interference between the
direct Coulomb matrix element, and the non-spin-flip portion of the exchange coupling of the in-
cident electron to the particle-hole spectrum. It is suggested that this interference effect, and not
spin-flip scattering, is responsible for the spin-dependent feature reported by Kirschner, Rebenstorff,
and Ibach in their study of the near-specular electron-energy-loss spectrum of the Ni(110) surface.
In principle a direct experimental test of this proposal is possible.

I. INTRODUCTION

Electron-energy-loss spectroscopy has evolved into an
important technique for the study of elementary excita-
tions on and near-crystal surfaces.! The analysis of the
vibrational normal modes of adsorbed species and of
atoms in the crystal surface are a primary application of
the technique, but electronic excitations may be studied as
well. In the near-specular scattering geometry, the long-
ranged direct Coulomb interaction between the incoming
electron and those in the sample allow electron-hole exci-
tations (and collective modes) to produce a feature with
loss cross section peaked near the specular direction,?~>
reminiscent of dipole scattering from vibrational modes.

Recently, it has proved possible to produce spin-
polarized electron beams sufficiently monoenergetic to al-
low study of loss spectra, and spin-dependent effects in
these features, from ferromagnetic samples. The spin of
the scattered electron may also be detected; this allows ex-
plicit study of the spin-flip contribution to the loss spec-
trum. An example is provided by the recent work of
Kirschner, who studied off-specular losses from electron-
hole excitations in Fe, with both the spin of the incident
and scattered electron resolved.®

In this paper, we wish to discuss aspects of the
particle-hole contribution to the electron-energy-loss spec-
trum in the near-specular regime. The discussion is
motivated by earlier data reported by Kirschner, Reben-
storff, and Ibach.” These authors explored the loss spec-
trum for scattering of a spin-polarized beam off the
Ni(110) surface; only data taken on the specular was re-
ported, and the spin of the scattered electron was not
resolved. The authors see a spin dependence in the spec-
trum, with a larger loss cross section when the incident
electron spin is antiparallel to the magnetization of the
sample. The spin-dependent contribution to the cross sec-
tion (after averaging over a range of incident energies) is a
broad feature, peaked at 300 meV.

Following Yin and Tosatti,® Kirschner et al.” argue
that spin-flip processes with origin in exchange scattering
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are responsible for the spin dependence of the loss feature.
The spectrum then provides a measure of the exchange
splittings in the d bands near the X point of the Brillouin
zone of ferromagnetic Ni; the wave-vector dependence of
the exchange splitting was assumed responsible for the
very substantial width of the loss structure.

In this paper, we suggest that an alternate mechanism
may lead a feature such as that reported by Kirschner and
collaborators. Consideration of spin-rotation invariance
requires the presence of a non-spin-flip contribution to the
exchange scattering amplitude, in addition to the spin-flip
portion. There is then interference in the loss cross sec-
tion between the scattering amplitude produced by this
term, and the direct Coulomb coupling of the incident
electron to the non-spin-flip electron-hole excitations. As
we shall see, this produces a spin-dependent feature in the
data that is expected to be distributed over a broad region
of energy loss. We point out that through a suitable ex-
periment in which the spin of the scattered electron is
resolved, with spin-polarized beam incident, one may
discriminate clearly between the mechanism discussed in
Refs. 7 and 8, and that explored here.

The outline of this paper is as follows. In Sec. II, we
discuss the reasons we seek an alternate explanation of the
data, and introduce the process explored here. In Sec. III
we present a model calculation which illustrates some key
features of the interference mechanism, and general dis-
cussion is in Sec. IV. Concluding remarks appear in Sec.
V.

Before we turn to the topic of this paper, we note that
an interference effect similar to that explored here pro-
vides the dominant source of longitudinal magnetoresis-
tance of dilute magnetic alloys.” Also, in an early discus-
sion of exchange scattering of electrons from magnetic
surfaces, Vredevoe and de Wames!® recognized the pres-
ence of the non-spin-flip portion of the exchange scatter-
ing amplitude, and explored implications of interference
between it and the direct Coulomb term in the elastic
scattering from magnetic surfaces studied in low-energy
electron diffraction (LEED) studies of ferromagnets.
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II. GENERAL DISCUSSION

The peak in the energy-loss data reported by Kirschner
et al. occurs at 300 meV, after averaging over a range of
incident beam energies, as remarked in Sec. I. This is a
value close to the exchange splitting of the Ni d bands, as
inferred from spin-polarized photoemission data.!!

However, it is not obvious how other features of the
data may be accounted for, on the basis of the exchange
scattering mechanism proposed by Yin and Tosatti.® In
Ref. 7, it is pointed out that the intensity of the entire loss
spectrum, including the spin-dependent portion, decreases
markedly as one moves off the specular direction.
Kirschner comments that the decrease in intensity is
several orders of magnitude.'?

It is well established that the direct Coulomb coupling
between the incoming electron, and (non-spin-flip)
particle-hole excitations leads to such behavior in the loss
cross section.! The particle-hole excitations produce fluc-
tuations 8p(x,?) in the charge density of the substrate, and
these charge fluctuations generate long-ranged fluctuating
electric fields in the vacuum above the crystal. Such
long-ranged fluctuating fields lead to a strong peak in the
loss cross section at small-momentum transfer,’* a
phenomenon familiar from other physical situations
where a charged particle scatters from long-ranged fields.

An exchange process, which involves an electron many
volts above the vacuum and a second one in an occupied
state in the substrate, necessarily involves a matrix ele-
ment of the Coulomb interaction evaluated at large-
momentum transfer. The dependence on the momentum
transfer suffered by the beam electron is thus very weak
when small-angle, near-specular scatterings are con-
sidered. In these circumstances, quite similar to those of
interest to de Wames,!® the exchange scattering may be
viewed as an effective short-ranged interaction, with the
coupling constant dependent on beam energy. Spin-flip
scattering by such a coupling will not produce a contribu-
tion to the loss cross section peaked near the specular
direction.

Kirschner et al. were fully aware of this point, and sug-
gest’ that in Ni, the electron energy bands are nearly
parallel over an appreciable fraction of the relevant parts
of the Brillouin zone. A consequence is that as one moves
off the specular direction to scan large momentum
transfers, the appropriate loss function will fall off very
rapidly with increasing wave-vector transfer. From the
viewpoint of the present author, it is unlikely that a spe-
cial topological property of the energy bands can account
for the dramatic decrease reported.

There is not only the spin-flip contribution to the ex-
change scattering amplitude, but, in addition, there is
necessarily a non-spin-flip portion proportional to s,S;,
where s, is the spin of the beam electron, and S, that of
the electron in the solid which participates in the scatter-
ing event. This connects the same initial and final state as
the direct Coulomb term, and as a consequence there is an
interference term between them in the non-spin-flip chan-
nel. As we shall see, this interference term has a sign
dependent on the orientation of the spin of the beam elec-
tron relative to the host magnetization. We find that its
contribution to the cross section is also peaked around the

specular direction, because the direct Coulomb matrix ele-
ment has this property. More precisely, let ¢ be the angle
between the inelastically scattered electron and the specu-
lar direction. The direct Coulomb term has a contribution
to the scattering efficiency per unit solid angle which falls
off as 3, as one moves off the specular direction. The
interference term falls off as y~2, the same angular varia-
tion found for scattering off the vibrational motions of a
monolayer of dipole-active adsorbates.!*

Kirschner et al. also find substantial variations in the
shape of the spin-dependent loss feature, as the electron
beam energy is varied, and also for small variations in an-
gle of incidence.”> As we shall see, the interference mech-
anism allows for such variations, for reasons discussed
below. It is a difficult matter to reproduce the variations
found in the experiment, with the simple model that
forms the basis of the present discussion.

If the mechanism explored here is indeed responsible
for the spin-dependent energy loss explored on the specu-
lar direction by Kirschner et al., then the peak in the
energy-averaged loss spectrum is unrelated to the Stoner
splitting of the d bands. Examination of the complex
band structures proposed for Ni near the X point of the
Brillouin zone shows many allowed transitions in the
range of 100—500 meV, so the energy averaged spectrum
is a complex average over these. Agreement of the peak
with the Stoner splitting is then fortuitous if the mecha-
nism explored here is dominant, though clearly the largest
contributions to the loss cross section will come from this
energy range.

It is difficult to envision a fully quantitative analysis of
the interference effect explored in this paper for a realistic
model of Ni. Fortunately, there is a clear experimental
test of the proposal that the interference term is respon-
sible for the loss features reported in Refs. 7 and 15. As
remarked earlier, the experiments on Ni(110) employed a
spin-polarized primary beam, but the spin of the scattered
electron was not resolved. If the spin is resolved, and the
interference term rather than spin-flip scattering is re-
sponsible for the near-specular, spin-dependent losses,
then there should be a near-specular peak only in the two
non-spin-flip channels; there should be only a modest an-
gular variation in the spin-flip channel and, in fact, the
spin-flip intensities should remain rather weak on specu-
lar, as they are off specular. Thus, the Ni(110) experiment
should be repeated, if possible, but with spin-polarized
primary beam, and the spin of the scattered electron
resolved. While Kirschner has explored electron energy
loss from Fe surfaces with spin of both incident and scat-
tered electron resolved,® he unfortunately reports no data
taken on the specular.

The mechanism of Yin and Tosatti provides a natural
explanation for the sign of the asymmetry in the cross sec-
tion. The interference term can have either sign, in prin-
ciple. In fact it is possible, again in principle, for the sign
of the asymmetry to change as the beam energy is varied.
The reader-shall appreciate the fact that it will prove dif-
ficult to predict the sign unambiguously from theory.

III. A MODEL CALCULATION

When the direct Coulomb coupling to particle-hole ex-
citations is explored theoretically, a simple and schematic
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description of the elastic scattering of the electron from
the substrate proves fully adequate?!* for quantitative
purposes. The reason, as remarked in Sec. I, is that the
charge fluctuations ©&p(x,z) produce a long-ranged
Coulomb field seen by the electron as it approaches or ex-
its from the crystal; the electrons suffer small-angle in-
elastic scattering when they are quite far above the crys-
tal, and the role of the elastic scattering from the sub-
strate is simply to turn the electron around, to cause it to
reemerge near the specular (or a Bragg) direction. This
may be described by appending the appropriate elastic
scattering amplitude, calculated from LEED theory, to
the description of the inelastic event.!'

Exchange scattering is described by an effective interac-
tion of short range,'® and a consequence is that the inelas-
tic events occur after the electron enters the crystal, and
while it is engaged in the sequence of multiple (elastic)
scatterings that turn it around, to reemerge into the vacu-
um. A fully microscopic description which incorporates
the loss event with multiple scattering (elastic) from the
substrate atom cores is required for a proper description
of such processes. Such a theory would be similar to that
which has been developed and implemented to describe
the scattering of electrons from surface phonons in the
off-specular (impact) regime, where long-ranged fields are
unimportant.!® The exchange matrix element, an object
considerably more complex than the electron-phonon ma-
trix element employed in the theory of electron—surface-
phonon scatterings, must be constructed and included in
the theory.

In view of the complexity of developing a proper theory
of exchange coupling to the particle-hole manifold, we
shall explore the nature of the interference term of interest
in a simple model which employs a phenomenological
description of the exchange matrix element, and which
does not take explicit account of the multiple scattering of
the electron off the atomic cores. From our view, the
model is sufficiently complete to provide an outline of the
principal qualitative features of the interference term of
interest here; these will survive in a fully quantitative
theory.

The crystal is viewed as semi-infinite in extent, residing
in the lower half space z <0. The charge fluctuations
8p(x,t) produced by the particle-hole excitations generate
a potential'3

d3x’82(x't) 3.1)
7<0 | x—x'| '

¢|(X,I)=e

seen by the electron as it approaches or exits from the
crystal in the vacuum z >0, and while the electron is in
the crystal it experiences the exchange coupling

b2(x,1)=O(—2)V,Js-S(x,1) , (3.2)

where s is the spin of the beam electron, S(x,?) the spin
density of the electrons in the substrate, and V. is the

d?Q,da

Ylkyw;2) =¢o(kyw3z)+ [ (2

volume of the unit cell, inserted so J has the units of ener-
gy, and O(x)= +1 when x >0, and O(x)=0 when x <O0.

We also include the inner potential Vy(z)=V,0(—2z),
where V), is complex, the imaginary part describing the
attenuation of the electron beam as it enters the crystal.
We should take explicit account of the presence of the ion
cores, possibly in a muffin-tin description, but this com-
plication we set aside for the moment.

Following an approach outlined earlier,’* we analyze
the Schrodinger equation of the beam electron, in units
with fi=1,

v? .0
~3m + Vo(2)+d(x,1) |P(x,t) =i o P(x,t) . (3.3)

Here, ¢(x,t)=¢(x,t)+d,(x,t), and we shall treat the in-
fluence of this term in the Born approximation.

As in earlier treatments,'? it is useful to perform a par-
tial Fourier transform of the wave function, with the sub-

script || denoting the projection of a vector onto a plane
parallel to the surface:

d’k,d iKxn
¢(th)=f—(2“—):)1/}(k||w;z)e K %ilg —iar 3.4)
¥
We also write
d’Q,dq Qx
8p(x,t)=f—(§u)3——p(Q”Q;z)e Q% i , (3.5)
T

with a similar relation for the spin density S(x,z). Then
after some algebra, the Schrédinger equation is
transformed to read

TIPS W GRPR A I
2m 2m dz? 0 I
d’Q,dQ . .
=f oy QDU —Qo—Qi2),  (.6a)
where
Y - z—-2'
¢(Q||Q;z)=% " dzre O p(Q52)
Il -
+O6(—2)V,JsS(Q2) . (3.6b)

We proceed, as earlier, by introducing a Green’s func-
tion which satisfies
2
ki 1 d?

om —w-EE+VO(Z) Gk w;zz')=8(z —2') ,

(3.7

and boundary conditions appropriate to the scattering
problem. Then, if ¥y(kw;z) is a solution of Eq. (3.6a)
with ®=0, arranged to describe an electron incident on
the surface, we have

+ o
[ a2 Gk w;z2)10(Qi2 Wik — Qo — 1;2') . (3.8)
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A Born-approximation description of the (weak) inelas-
tic scattering is generated by inserting 1o(kw;z) in the
second term on the right-hand side of Eq. (3.8).

The function ¥y(k;w;z) describes an electron with a
given spin-orientation incident on the crystal. We assume
the electron spin is either parallel or antiparallel to the
bulk magnetization. Then we shall explore here only
scatterings in which the spin of the scattered electron is
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spin parallel to the bulk magnetization, and when o= —1,
it is antiparallel. If S,(QQ;z) is the operator which de-
scribes spin fluctuations parallel to the bulk magnetiza-
tion, we define

0+ - z—27'
¢(Q,,n;z)=2—Q"5 [ dze ™11 7 Qi)
T

parallel to that of the incident electron, i.e, we examine +3V, JoO( —2)5;(Q;2) . (3.9
non-spin-flip processes.
We label the direction of the spin of the incoming elec-
tron with an index o. If o= +1, the beam electron has The scattered wave, ¥;(k ;z) is then
|
d Q”dQ ) ,
In our mixed representation, the incident wave to be inserted into Eq. (3.10) has the form!?
e«—ik(l”z R(i)eik(l”z], 250
Yotk w;2) = (27)8(k — ki )8( —E'") ity (3.11)
TV 1% 2 <0.

In Eq. (3.10), E¥
the surface. Then

k(l])____[sz(I)__(khI))Z]l/Z

is the energy of the incident electron, and kh’ ' the projection of its wave vector on a plane parallel to

is the component of the electron’s wave vector normal to the surface, in the vacuum above the surface, and

K" =[2m(ED—Vy)—(k{)?]'/?

is the (complex) wave vector of the incident electron, normal to the surface, when it is in the crystal. We always choose
K " 5o that Im(K} yso. Finally, R( ) is the reflection coefficient of the electron off the surface and T” ) that for the
transmission through it, when the electron is incident on the surface from above.

The form of the Green’s function is found in earlier papers.!>!* Here we only require its form when z >0, since we
need the scattered wave function as z— . We have, with k&, and K, the wave-vector components normal to the sur-
face for an electron of energy w and wave-vector projection K, onto the surface plane,

G(kjoizz)=i7e" oz e T +R e rO(—2 )—T e~ (3.12)
1
f
In Eq. (3.10), T_ is the amplitude which describes field, and define
transmission of the electron through the surface, when it ) ( 1)
is incident from below, within the crystal. Ak, =k —k] (3.13a)
When Eq. (3.11) and Eq (3.12) are inserted into Eq. K, =1k K(”
(3.10), the integrations on z' may be carried out, while we 2 * s (3.136)
may also let z— «. If we append the superscript s to the R, (R“) +R(1 ), (3.13¢)

variables which refer to the scattered electron, invoke the
set of approximations used earlier!® to evaluate the small-
angle scatterings produced by the long-ranged Coulomb

J

ik(s)z 4rmeR

(s) .
o (kw;z)=lie
vo ki Q2 +(Ak))

”n Q
2] dz"e"I” p(Q,,

where T _ describes the amplitude for transmitting an
electron wave through the surface, when it is incident
from below.

We may now use the amplitude of the scattered wave in
Eq. (3.14) to form an expression for the scattering effi-

then we have for the amplitude of the scattered wave in
the non-spin-flip channel

(V4
oJV, mT{'T' [ a
5 —————-K(f) _ e

—2iK 2"

T
ciency per unit solid angle, per unit energy loss, i.e.,
we form the quantity [d3S/d2Q(k;)dw], where
[d3S/d*Q(k,)dw]d*Q(k,)dw is the probability the elec-
tron is scattering into the solid angle d ZQ(I?S ), with ener-
gy loss in the range # to fiw + fidw (% added).
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We express the result in terms of certain correlation
functions, defined as follows. Let A4(x,t) and B(x,t) be
the Heisenberg operators which represent two dynamical
variables. To be explicit, we write these as A4 (x)z,?) and
B(xz,t). Then we introduce the correlation function

FAB(QHQ;Z'Z): f dzx”dteiQ“'xH

where ( - -+ )1 denotes the ensemble average of the en-
closed operators, over the statistical ensemble at tempera-
ture T.

To simplify the answer, we overlook the small differ-
ence in the incident and scattered electron energies, in
quantities that vary slowly with this variable, i.e., a prod-
uct like T'/'T'? is replaced by simply 7', T _. Then after
some calculation, we find

Xe ' A(x,z',0B(0z;0)) 7 , (3.15)

|
d3s m*(k'P)cos6;
420k, )do (2m)?
1677'282|R> |2 0+ 0+ Q(z+2")
dz dz'e”! I, (QQ;z'z)
kIQ +(Ak )T o). i
2mrealV, R, TIT* .o 0 i2K*2' Q)2 RIT, T,

d d ' 1 1l r Q, ’ ) —z Z =

Tk | k! J o dz [ dee e T Qi+ =

VT, |?| T |?
41K |?

The result in Eq. (3.16) is the central result of the
present paper, expressed in its most general form. We
write this as

d3S dZS(a) dZSv(b)
20k, do  d*0R)de  d*Qk,)dQ
2¢f(e)
S S (3.17)
d2Q(k,)dw

to emphasize that the second and third terms in Eq. (3.16)
have a sign dependent on the orientation of the spin of the
beam electron relative to the substrate magnetization.
These have their physical origin in the interference be-
tween the direct (long-ranged) Coulomb coupling to the
density fluctuations produced by particle-hole excitations,
and exchange coupling between the electron and the longi-
tudinal fluctuations in spin density (to which spin flips do
not contribute).

The first term in Eq. (3.16), involving I, is precisely
the contribution explored earlier.>!3 For scattering near
the specular direction, they may be related to the long-
wavelength, complex dielectric constant €({}) of the sub-
strate. One finds

d’s  4e’m’Q|R, [’n(Q)
d*Qk,)do  mcos(6,)[ Q7+ (Ak, )*]?

XIm (3.18)

—1
1+€e(Q) ] ’
where n(Q)=[exp(#Q/kgT)—1]"! is the Bose-Einstein
function.

0 0 —i2K 2" +i2Kz
f_wdz f_wdz’e e "Iy, (Qs2'2)

0 0 —i '
Xf_ dZ f—wdzle IZKlzeQ”z rpSZ(QHQ;z,Z)

(3.16)

Let 1 be the angle between the scattered electron beam
direction, and the specular direction, with ¥z =#Q/2E",
and let k'Y be the wave vector of the incoming electron.
Then one finds that!*

QF +(Ak P=(k AP +yF) .

As one moves away from the specular direction (¢ >>v),
Q| ~1, so the cross section displayed in Eq. (3.18) falls
off as 2.

The fourth term in Eq. (3.16) describes the inelastic
scattering from longitudinal spin fluctuations, produced
by the short-ranged exchange coupling. All quantities
which enter this expression vary smoothly, as one scans
through the specular direction, so there is no tendency for
these to be a prominent peak in the intensity of this por-
tion of the loss cross section near specular, such as that
which we see in Eq. (3.18). We shall not explore the prop-
erties of this term further.

We shall not discuss scattering by spin-flip processes
explicitly in this paper, but will comment briefly on their
contribution to the loss cross section. Spin-flip scattering
is produced by the s, S_ and s_S, terms in the ex-
change interaction. If, in the present model, we analyze
these, of course there is no interference with the density
fluctuation scatterings. The contribution to the cross sec-
tion by spin-flip processes is given by an expression very
similar to the fourth term in Eq. (3.16), but I's 5 is re-
placed by the correlation function FS+ s_» which describes

the transverse fluctuations in spin density.

In our model, the study of near specular losses probes
the response function at large momentum transfer, since
scattering off the spin fluctuations must “turn the elec-

(3.19)
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tron around,” so it reemerges near the specular direction.
A full description, including multiple scattering off the
ion cores allows the sequence of elastic scatterings experi-
enced by the electron redirect it to specular; it may then
emerge near the specular by a small-momentum-transfer
inelastic event. Such events were assumed dominant in
the discussion presented in Refs. 7 and 8. But small-
angle, spin-flip inelastic scatterings probe the response
function ' s,s_at small wave vectors, and here a collec-

tive description of transverse spin fluctuations must
necessarily be employed. The use of the single-particle
picture, such as that invoked in Ref. 8, is qualitatively in-
correct here. In the long-wavelength regime, spin waves
very nearly saturate the sum rule on the spectral density,
and the Stoner excitations make a very small contribution
as a consequence.!” This has been known for many
years,18 and in the view of the present author raises addi-
tional difficulties with the interpretation of the kind of
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sion.

The prefactor in the spin-dependent terms falls off
more slowly far off the specular than that in
d3S'? /d?Q(k,)dw; we see a 2 variation, rather than
the ¥~ dependence discussed above. The former is in
fact identical (when ¥ >>vz) to the angular variation
displayed by the loss cross section for scattering off of a
dipole active monolayer of vibrating adsorbates. Quite
clearly, from the experimental point of view, the prefactor
in d2S®/d0(k,)dew falls off rapidly enough for the
spin-dependent loss feature from the interference term to
be sharply peaked near the specular direction.

We now turn to further study of the interference term.
We shall be concerned with its general structure here, then
turn to model descriptions in Sec. III.

From the general structure of the correlation function
in Eq. (3.15), one may show that

data offered in Refs. 7 and 8. FSZP(QHQ;zz’):[FPSI(Q”Q;z'z)]* . (3.20)
We now turn to the second and third terms in Eq.
(3.16), which are the primary focus of the present discus-  Upon collecting prefactors together, we have
J
d3s® em3JVCu(1) R R;T> T< fO dz dz’ Q7 —i2Kle (QQ;z'2) 3.21)
= e zdz'e " e ;2'z .
d2Q(k,)do 270} +(Ak, ) K, — pS el

Here, v'? is the velocity of the incoming electron.
We shall wish to explore the properties of
[ys,(Q€);2°z).  First, consider the Fourier transform

I 45(Q) of the correlation function (4 (¢)B(0)). We have
L= die* ¥ 4(nB(0)) . (3.22)

It is well known that we may relate I 43({2) to the Fourier
transform X ,5(Q) of the susceptibility

X 4p(t)=—iO(t){[A4(1),B(0)]) , (3.23)
where
dQ _;
Xap(t)= [ S =e % 45(Q) . (3.24)

One finds, in the present notation, with n({}) the Bose-
Einstein function encountered earlier,

I‘Ag(ﬂ)=—%—n(ﬂ)[XAB(Q+i17)—XAB(Q——in)]. (3.25)

The physical interpretation of X 4p(t) is as follows.
Suppose we add to the system Hamiltonian the term
AAexp(—iQt)+H.c. (in the Schrodinger representation),
then calculate the expectation value of the operator B at
time ¢ =0, after the perturbation is switched on adiabati-
cally from time t = — . Then, in essence, AX 45(Q) is
equal to {(B) at t =0.

We then see that Iy is found by considering the densi-

ty fluctuation induced by an oscillatory magnetic field ap-
plied parallel to the z axis, parallel to the magnetization of
the sample.

If we consider a paramagnetic, itinerant electron gas in
zero dc magnetic field, then T pS, vanishes identically. In

[

essence, the up- and down-spin electrons reside in identi-
cal energy bands; the up-spin electrons respond exactly
180° out of phase with respect to the down-spin electrons
(in linear response theory), and no density fluctuation is
induced by such a magnetic field.

However, if we consider a spin-polarized, itinerant elec-
tron gas, then by virtue of the exchange splitting, the up-
and down-spin Fermi surfaces differ, the response of the
up- and down-spin electrons differ in magnitude and pos-
sibly in phase. A consequence is that application of a
longitudinal magnetic field induces a fluctuation in densi-
ty. Low!? presented the first discussion of static distur-
bances in both charge and spin density produced by an
external perturbation applied to a spin polarized electron
gas, and a more complete discussion appears in the subse-
quent work of Cullen,? and of Kim et al.?!

Thus, the interference term vanishes for scattering off a
paramagnetic substrate as it must, of course, since there
can be no dependence of the loss cross section on the in-
cident spin direction. The reader should keep in mind
that the fourth term in Eq. (3.16), denoted as
d38'9/d?Q(k,)de in Eq. (3.17), is nonzero even for the
paramagnetic case. The spin-flip amplitude is also
nonzero, for scattering from a paramagnetic gas, quite
clearly.

In the discussions of Refs. 7 and 8, it is assumed that
since the exchange scattering takes place while the elec-
tron is inside the material, and at the beam energies used
(5—20 eV), the electron penetrates several atomic layers,
the loss cross section probes bulk properties of the materi-
al. We follow by replacing I';s (Q2;2z") by a bulk form
that depends on only the difference (z —z’). Noting the
relation in Eq. (3.24), we write with Q=Q,,+2g,,
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[Xps (Q,Q—Hn)—xps (Q,Q—in)]. (3.26)

The integrals on z and z’ which remain in Eq. (3.21 ) may then be carried out, to give, after writing K| =K 4k,

d3s® em3JV v Pn(Q) RIT, T,

+ dql

[q} +iQ, 2K (" —iK?)]

= e "
d2Q(R,)do  271Q0 +(AKk, )] iK,

To cast Eq. (3.27) in the form stated, we have assumed
Xps,(Q,Q2%im) is an even function of g,, for fixed Qy, an

assumption valid under the conditions of interest.

Under typical experimental conditions, where near-
specular loss sPectra are explored, we expect Q‘l
cm~!, while K{V=10® cm~! and k¥ =10" cm~". For
these estimates, recall that /, the depth of penetratlon of
the electron beam into the material, is / =(K?)~!. A
|

d3s®  em’JV'"'n(Q) RIT, T,

-« 2m [¢}+0%1l(q,

><[XPSZ(Q,Q+in)—Xpsz(Q,Q—i17)]

—2K{ P +(K )]

(3.27)

I
study of the integrand under these conditions shows that
the region of small gq,, where g, =Q),, makes a modest
contnbutlon The dominant piece comes from the region
g1 =2K'" where, by virtue of the fact that K2 «<K'",
the mtegrand is pcaked We may ignore the factor
||(2K —IK (2)) in the numerator, and replace
qi/(q} +QH ) by unity with little error. Then

+ o dih [XpSz(qlrQ+”7)—XPsz(q_|_,Q—l1])]

= Re -
d2Qk)de 270 + (8K )] iK,

In Q=Q+2g,, we also ignore the small quantity Q.

At large wave vectors, we expect X5 (q,,2%7) to vary
slowly with g, over a region whose wxdth is K. We
thus replace ¢, by 2K'" here, and then the integral on ¢q,
is elementary. With [ -(K {2)=! the penetration depth of
the electron beam into the substrate, we have

d3s® em >V 0'n(Q)
2k de  2mPRIQf +(Ak, )]
RIT T, o )
X Re —————[XS(ZK ,Q+in)

lKl

—X,s,2K1V,Q—in)] | . (3.29)

The remainder of this paper will be based on Eq. (3.29).
The reader may be disturbed to see a single factor of the
electron charge e in the prefactor. Keep in mind that
here, p is the electron charge density, so the correlation
function X5, also contains a factor e. The scattering effi-

ciency is then proportional to e2, as expected. We have
also inserted # explicitly into Eq. (3.29).
We discuss the consequences of Eq. (3.29) in Sec. IV.

IV. GENERAL DISCUSSION

The response function in Eq. (3.29) is evaluated at
large-momentum transfer, 2K (1 ’, which is typically a
large wave vector, the order of that at the Brillouin-zone
boundary. It is then evident that Eq. (3.29) describes a
large-momentum-transfer inelastic loss. After the elec-
tron enters the crystals, it is the inelastic event, not elastic

—w 21 (g, —

(3.28)

2K+ (K'Y

I
scattering from the ion cores which “turns it around,” so
it reemerges near the specular direction.

Of course, a proper theory which takes due account of
multiple scattering from the ion cores will include multi-
ple elastic scatterings which can turn the electron around.
Near specular, electron-loss spectroscopy generally probes
inelastic events in which the momentum transfer experi-
enced by the electron is very small. In the discussion of
Ref. 7, it was assumed that such small-momentum-
transfer inelastic events were being probed, and then to
understand the large width observed in the energy aver-
aged loss spectra, it was necessary for the authors to in-
voke the presence of a large wave-vector dependence in
the exchange splitting in the d bands of ferromagnetic Ni.

We shall argue below that, at least in regard to the loss
mechanism explored here, the contribution from large-
momentum-transfer inelastic events will dominate that
from small-momentum-transfer inelastic scatterings, as-
sisted by elastic scattering that turns the electron around.
Our crude model describes the former adequately, in our
opinion.

To continue, we require the form of the correlation
function X5 (¢, +i7n). Before we begin, we note that in

addition to the papers mentioned earlier,’~2! which ex-
plore only simple models, Callaway and co-workers have
discussed the structure of such response functions for real
metals,?? although his primary attention is directed to the
study of spin-wave excitations. We begin with a general
discussion of its structure, for the case where we have
simple bands of noninteracting electrons, spin polarized as
in an itinerant ferromagnet. We can suppose we are
describing the system in the density functional formalism,
and after the wave functions and effective energy bands
are obtained, we calculate the dynamic response function
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as if the ensemble of electrons experience nothing other

than the crystal potential, supplemented by the appropri-

ate static (spin-dependent) exchange and correlation po-

tential. This will allow us to appreciate the general struc-

ture of the correlation function, and we turn to further

consequences of the electron-electron interactions later.
Such electrons are described by a field operator

Yx,D= 3, dyjo(X)Cyj exp] —iE,(kj)],
k,o0,j

(4.1)

|

Xps (@0 —im)=—i [ d*x [ " dted¥ == @=imi([p(x,1).5,(x',0)]) .
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where ¢y,(x) is the relevant Bloch function, E,(kj) is its
energy, while the wave vector k lies within the first Bril-
louin zone, j is a band index, and o is a spin index. We
assume ¢ normalized so f d’x |¢|?=1. In this discus-
sion, we ignore spin-orbit coupling, so ¢;;,(x) is an eigen-
function of S,, with eigenvalue o /2, where o is +1.

Then X,5,(q,22—i7n) is defined as follows, when the

substrate is viewed as a structureless entity as in the dis-
cussion of Sec. III:

(4.2)

If we employ real Bloch functions, as in Eq. (4.1), then in our description of the energy-loss event, we are implicitly
recognizing structure in the substrate. The discussion in Sec. III may be extended to this case (with the elastic scattering
off the substrate treated as before), and the result is that X ps,(@,Q2—im) is replaced by

3 ' © . L .
Xps,(q, Q2 n)=—ifd—x;fl~fo dt '3l =i [5(x,1),5,(x",0)]) , (4.3)

a result which reduces to Eq. (4.2) when structure is ignored in the substrate, and the correlation function depends on

only (x—x’'). In Eq. (4.3), V'is the volume of the substrate. With

p(x,t)=e 2 2 2 ¢:ja(x)¢k+q,j',0ij,,Ck+q‘j',,, eXp{l[Eo(k])

k,qjj o
and a similar expression for S,(x’,0), we have?

72 2 (ki le™ 9 | k+q,)’ >|22

ku

<o>(q’Q+”])

—Eq,(k+q,j)]t}, (4.4)
[fok))—fok+q,j")] 4.5)
E,(kj)—E,(k+q,j')—Q Fin '

The superscript zero appended to X,s in Eq. (4.5) emphasizes the fact that we have ignored the role of electron-
electron interactions so far, with the exception of their role in mfluencmg the form of the crystal potential, through the

exchange correlation potential. We define the spectral density function A

ber of unit cells in the crystal,

edps, (q,0)= —V[x,‘,%’ q.Q+in)—X,5 (q,2—in)]

22 | {kj|e "% | k+q,j’ )IzE[fa kj)—fo(k+q,j)18(E,(kj)—E

k jj’

Upon noting that A(O) - (q,Q) is real, Eq. (3.29) becomes

a’s® __ &mv'"n(Q)
d2QR,)de  CmHEIQ]+(AK )]
RYT. T
X Re —% A8 2k10,0) .

4.7)

There are both intra- and interband contributions to the
loss cross section. Because the spectral function which
appears in Eq. (4.7) is evaluated at large-momentum
transfer, little can be said in general about the shape of
the loss cross section, without a rather detailed calcula-
tion. However, it is clear that both the scattering from
intra- and interband transitions will produce the sort of
broad loss structure evident in the data. Furthermore, in
Ni, the Fermi energy is sufficiently close to the top of the
d band, and the bands are sufficiently close together that

(q,Q) through the relation, with N the num-

o(k+q,j') —#Q) . 4.6)

the primary features will lie in the 100—500 meV range.

Suppose we wish to invoke the present mechanism,
within a picture that supposes that elastic scattering ex-
perienced by the electron when it is inside the material
turns it around, so the loss process is a necessarily small
angle, small-momentum-transfer event. Then in Eq. (4.6),
the wave vector q will be quite small (~10° cm™!), and
the matrix element which controls the strength of the in-
terband processes will be very small. As q—0, the matrix
element vanishes by orthogonality. Indeed, since the ma-
trix element vanishes as q—0, the leading contribution to
it will be proportional to components of q, and the
relevant contribution to the loss cross section will no
longer be peaked about the specular. For the case where
the inelastic loss turns the electron around, the matrix ele-
ment remains insensitive to angles near the specular, and
we retain the peak. Thus, if we wish to invoke the mecha-
nism explored here, insofar as interband processes are
concerned, it is the process contained within our simple
model that is of interest.
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We next turn to the contribution from intra-band
scatterings. The simplest case to consider is that of a sim-
ple band of electrons, with wave-vector-independent ex-
change splitting. If we use plane wave eigenstates, then

A;,%’z(q,ﬂ)=71:,-2{[f,(k)—f,(k+q)]
k

—[fik)—fi(k+q)]}

X8(E(k)—E(k+q)—Q). (4.8

The case of Ni is modeled by supposing) that the major-

ity of the up-spin band is filled, so for A;,sl(q,ﬂ) we have

A (4,0 =LSIf 1 (k+q)—f (k)]
k

X8(E(k)—E(k+q)—Q), (4.9

which is a well-known function, the imaginary part of the
particle-hole propagator. We again have a broad loss
feature in the large-momentum-transfer regime distribut-
ed over energies characteristic of the band structure.

Quite clearly, electron-electron interaction effects will,
and in some cases, in a dramatic manner, modify con-
clusions based on the free-particle description of contribu-
tions to the response.

One may appreciate this by noting that, as discussed in
Sec. III, X,s (g,{2) measures the amplitude of the distur-

bance in electron density, produced by a time- and space-
varying magnetic field parallel to the magnetization. The
resulting density fluctuation will then be screened by the
electrons themselves, with the result that, particularly at
small wave vectors, the amplitude of the density fluctua-
tion will be heavily modified.

One may explore this effect, within a random-phase-
approximation (RPA) description of a single band of elec-
trons which interact via the Coulomb interactions. We
omit a detailed description of the calculation, which is
straightforward. With exchange ignored, the result ob-
tained is precisely that expected from the remarks of the
preceding paragraph:

1
Xps, (@) €(q,Q)
where €(q,Q) is the frequency and wave-vector-dependent
dielectric constant.

At the large-momentum transfer 2K which enters
Eq. (3.29), the screening from the factor of e(g,Q) is of
modest importance, but if small-momentum-transfer pro-
cesses are explored, €(q,{)) may be replaced by €(0,Q) to
very good approximation. In the infrared frequency range
relevant to the experiments which motivate this work, for
Ni, €(0,{)) decreases rapidly with increasing frequency,
with both real and imaginary parts of comparable magni-
tude.?* It is difficult to make a definitive statement about
the contribution of small-angle loss processes to the cross
section in the Presence of screening, without detailed

knowledge of X p%)z(q,ﬂ) for the appropriate band struc-

X3 (9, Q) (4.10)
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ture. (Once again, such processes require multiple scatter-
ing inside the substrate to return the electron to the specu-
lar direction, so a small-momentum-transfer loss suffices.)
We have attempted to model the contribution of small-
angle losses to the cross section with the parabolic band
model, to encounter difficulty producing a structure simi-
lar to the data, when the factor of €(0,Q) is included.
Since €(0,)) decreases in magnitude with increasing € in
the infrared, with the d holes modeled by a parabolic
band, the loss feature increases with 2, with no tendency
to fall off. This, combined with the fact that for ¢ =0,
screening reduces the magnitude of Aps,, suggests that
small-angle intra-band inelastic processes are unimpor-
tant.

It is possible to extend the RPA description of
X Psz(q,ﬂ) to a real band structure, in a calculation that in-

corporates screening in combination with both inter and
intra-band processes. Such a calculation is beyond the
scope of this paper, and would prove most useful. What
is observed is a broad loss feature which extends from 100
to 500 meV, and the discussion here suggests that the
mechanism under consideration can provide such a
feature, though further theoretical study is required before
a clear conclusion can be reached on its shape.

V. CONCLUDING REMARKS

The interference effect explored here can account for a
number of features in the data reported by Kirschner, Re-
benstorff, and Ibach.” We have a means of accounting for
the peak in the angular variation of the spin-dependent
portion of the loss cross section near specular, and it is
clear that it will produce a broad loss feature in the
correct energy regime, though a quantitative theory of the
loss profile requires extensive calculations that go beyond
the scope of the present paper.

In the original data, there is a substantial variation in
shape of the loss cross section with both beam energy and
direction.!® In fact, at some of the energies used, the mea-
sured loss feature shows no sign of falling to zero with in-
creasing loss, for energy losses as large as 500 meV. Such
a dependence of the shape of the loss cross section of
beam energy and angle is contained in Eq. (3.29). We may
expect the complex phase of the product R{T T _ to
vary with both angle and beam energy while, as explained
in footnote (Ref. 20), the difference

L s, @ 04 im) X @ 2= im)]

is real only for special, simple models. The complex
phase of R: T, T_ will mix the real and imaginary part
of this last quantity in a manner that will vary with ener-
gy and angle, to produce a spin-dependent contribution to
the loss function which varies in shape with these parame-
ters of the scattering geometry.

Quite clearly, the phase of the product R% T T _ plays
a key role in controlling the sign of the asymmetry, as one
can best appreciate from Eq. (4.7). There is thus no
reason to assume the loss cross section is always largest
when the spin of the beam electron is aligned antiparallel
to the magnetization. Indeed, as a range of energy is
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scanned, the asymmetry may change sign, at least in prin-
ciple.

We remind the reader that in Sec. II, we proposed an
experimental study which will provide a clear test of the
present suggestion, in the absence of a detailed theory of
the shape and sign of the expected loss cross section.
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