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Theory of the hole subband dispersion in strained and unstrained quantum wells
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%'e use the spherical model to derive simple selection rules for the mixing and dispersion of
light- and heavy-hole subbands in both strained and unstrained quantum-well systems. The
valence-subband structure of such systems can display surprising features with, for instance, the

highest hole band being light-hole-like in the well plane near the zone center and strongly nonpar-

abolic at larger wave vectors. %e use the infinite square-well potential to show how these and

other unintuitive features in the valence-subband dispersion can be understood in terms of interac-
tions between the two highest heavy-hole subbands and the highest light-hole subband. Finally,
we give guidelines for optimizing the valence-subband structure for specific applications: first to
achieve maximal light-hole behavior and second for a highly nonparabolic band structure for non-

linear devices.

There is an increasing interest in the valence-subband
dispersion of quantum wells and superlattices. It has been
shown experimentally' that the highest hole band in a
strained-layer superlattice can have an anomalously low
effective mass. Theoretical calculations show the highest
hole band to have a low effective mass in both strained and
unstrained systems2 and, in addition, show a highly non-
parabolic subband dispersion near the valence-band max-
imum. This low effective mass and nonparabolic disper-
sion have many potentially significant device applications.
The low effective mass is of potential benefit in fast com-
plementary logic devices and for reducing threshold
current and increasing To in semiconductor injection
lasers, s while the strong nonparabolicity offers the poten-
tial of large nonlinearities for optical switching devices. 3

In this Rapid Communication we examine the origins of
this novel behavior and show how it can be explained using
effective-mass theory and simple selection rules.

We use the Luttinger-Kohn (LK) Hamiltonian7 in the
spin ——', basis, and a spherical model~ for the band struc-
ture. This model ignores the conduction band and the
spin-split-off band and treats the highest valence bands as
isotropic parabolas with dispersion relations given by
E (k ) —

(y~
—2y)k for the doubly degenerate heavy-

hole band and E+(k) —(yt+2y)k for the doubly de-
generate light-hole band, with the valence-band maximum
taken as the zero of energy. We take h, 2m 1, with the

I

Bohr radius as the unit of length and energies in rydbergs.
The effective masses for the heavy- and light-hole bands
are then mt', (yt -2y) ' and mt (yt+2y) ', respec-
tively. The true bands are of course anisotropic, but the
anisotropy factor, given by (y3 —yz)/y3 in the LK Hamil-
tonian, is generally only of order 10%-25% for the III-V
systems of interest and can be ignored. We examine the
dispersion of this Hamiltonian first in a strained bulk
semiconductor, where we recover the results of Pikus and
Bir. 'o We then consider a general quantum well. We
derive selection rules for hole-band mixing away from I,
the two-dimensional Brillouin-zone center, and then apply
these selection rules to the case of a strained infinite
square-well potential. Finally, we show that the important
features in the band structure can be explained using a
small subset of the selection rules and give general guide-
lines for optimal band structures for specific applications.

In the spherical model, the LK Hamiltonian for a bulk
strained semiconductor can be decoupled into two
equivalent 2X2 matrices. We choose the z axis as the
quantization axis for angular momenta and apply a uni-
form axial strain along the x axis. The strain splits the de
generacy of the valence-band maximum at I. The band
structure is symmetric about the y-z plane so we can set
k, 0 without loss of generality. The Hamiltonian then
takes the form

E„,+b —(yt+ y)(k'+k') 3't'[y(k„—ik, )' —b)
H(k„,k )-

3't'[y(k„+tk, )' —bl E„,—b —(y, —y)(k.'+k,'), '

where E„ is the mean energy of the valence states at I, and
46 is the strain-induced splitting of the valence-band max-
imum. The resulting band structure is anisotropic. The
bands along the strain direction (k» 0) have the same
dependence on k„as in an unstrained crystal with

E+(k„)-E„,+2b —(y, +2y)k„',
E (k„)=E„,—2b —(y, —2y)k„'.

t

At small k» the bands perpendicular to the strain axis are
given by

E (k, )-E,, +2b (y, y)k,', — —

E —(k») E„,—2b —(y)+ y)k»

Thus the band which is heavy along the strain direction
[m* (yt —2y) '] is comparatively light perpendicular
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to that direction [m' (yl+ y) '] and vice versa. This
anisotropy follows from the lifting of the degeneracy of the
valence-band maximum and can be understood via k. p
theory. ""

For quantum-&sell structures, ~e choose the growth
direction along the x axis. The mean valence-band max-
imum energy and strain-induced splitting now vary along
the growth direction as E„,(x) and b(x), respectively. We
replace k„by i—8/8x and rewrite the Hamiltonian as the
sum of two terms, the first of which Hp( ia-/ax, 0) is the
Hamiltonian at the center of the twoMimensional Brillouin
zone, while the second term Hl( i 8/—Bx,k») includes all
terms involving k», the wave vector in the well plane. For
a potential without a plane of inversion perpendicular to
the x direction, the two LK Hamiltonians are no longer
equivalent' and we must replace k» by —

k» in the second
2X 2 matrix.

The Hamiltonian Hp can always be decoupled to give
states at the zone center whose character is purely light-
hole-like or heavy-hole-like when viewed along the growth
direction. The eigenfunctions of Hp with energies E —are

V+f+(x) for light holes nd p V f (x) for
heavy holes, where V+ —,

' ( l) and V —,
' (~l) and

f are solution—s of the Schrodinger equation

(y, ~ 2y)a'f.-+/ax'+ [E„(x)~ 2b(x) jf.~ (x)

The normalization chosen is such that &f (f—) 1.—
We calculate the bands away from I" by examining how

Hl mixes the zone-center states. The interactions between
zone-center states are as follows:

(2)

This contribution to the dispersion in the well plane is
identical to the dispersion found perpendicular to the
strain axis in a strained bulk material. It is due to the lift-
ing of the degeneracy of the valence states and we shall
refer to it as the splitting-induced dispersion.

(3)

Light-hole states do not interact directly with other light-
hole states nor do heavy-hole states interact directly with
other heavy-hole states.

(iii) &y
—(Hl(y„+&- + 2%3yk&f (8/8x (f,~&

+%3yk &f
—(f, & . (4)

In a general potential, interactions of order k and of order
kz are possible between all light-hole states ( p~) and all
heavy-hole states (p„&. In a symmetric potential where
tllc clgcllstatcs ( f ) arc of cvcll (odd) parity for m cvcll
(odd) the first term in (4) vanishes when m and n are of
the same parity and the second term vanishes when m and
n are of different parity. For a symmetric potential, we
can therefore say the following. (iv) There is an interac-
tion of order k between hght-hole state ( p~ & and heavy-
hole state ( p„& when m+n is odd. (v) There can be an
interaction of order kz between light-hole state ( p~ & and
heavy-hole state (p„& when m+n is even. This interac-

+&3''b.„. (5)

The band effective masses at the zone center can then be
calculated using second-order perturbation theory and are
given by

1 - —(y +ly)+
Pl+ g m

(m+n odd)

NlPl

Pfl ll

E ——E+
n m

192y' /L

The infinite sum in (6) can be calculated using the
Sommerfeld-Watson transformation, ' and it can be
shown that the effective mass for 8 0 is identical to that
derived by Nedorezov

1 ~ 2
3[cos(nlrro —)+(- I)"+'j +yl~2y ' +m +, (n lrro —) sin(n neo —)

where ro
— [(yl + 2y)/(yl + 2y) l'i . Equation (6) indi-

cates the relative importance of different interactions in
determining the dispersion at small k. For the highest hole
band with y~ 6.85 and y 2.58 (values appropriate to
GaAs ) the splitting-induced dispersion gives an effective
mass within 16% of the exact value of equation (7), while
including the interaction with the second light-hole band
reduces the error in calculated effective mass to less than
1%.

We propose that the valence-subband dispersion for
most structures can be modeled by considering only the in-
teractions between the highest light-hole band LH1 and
the two highest heavy-hole bands HHI and HH2. We il-
lustrate this in Fig. 1, where we present the band structure
of an unstrained GaAs infinite square well with L 100 A.,
calculated (a) exactly using the spherical model and
(b) considering only the splitting-induced dispersion—(yl +. y)k and the interactions between LH1 and HH1,
3'i yk2, and between LH1 and HH2, (16/3'i ) yk/L. Fig-
ures 1(c) and 1(d) show the equivalent results for b 6
meV. The main features in the exact results are repro-
duced in Figs. 1(b) and 1(d). In particular, the initial
anomalous dispersion of the LH1 band is due to the strong
interaction between LH1 and HH2.

Finally, we can examine the character of the ~ave func-
tions with increasing k. This is illustrated in Fig. 2 for the

tion is zero in an infinite square well unless m n, so it is
expected to be small in the general case for m An

Use of these selection rules allows us to understand the
hitherto nonintuitive features of the valence-band disper-
sion in quantum-well systems. As an example, we consider
the band structure of an infinite square well with uniform
strain b. The zone-center states are at E„=——(yl+ 2y)
x(nx/L) + 2b, where L is the well width and the en-
velope wave functions are given by f~ (x) —(2/L)'
&sin(mnx/L). The interaction between p and p„ is
given by Eq. (4) as
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FIG. 2. Character of highest hole band as a function of k. At
small k, the wave function is heavy perpendicular to the well

plane. At large k, the wave function tends towards 25% HH1
character and 75% LH1 character, appropriate to a state which

is heavy in the well plane. Significant band mixing occurs at in-

termediate k. The contribution from bands other than HH1,
HH2, and LH1 never exceeds 5% in total and is omitted from
the figure.
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FIG. 1. Valence-subband structure of a l00-A GaAs quan-
tum well with (a) and (b) 8 0 and (c) and (d) b 6 meV. (a)
and (c) are the exact bands in the spherical model, as derived by
Chang (Ref. 3), while (b) and (d) are calculated by considering
the interactions between the three highest bands only. The zero
of energy is taken as the mean of the bulk light- and heavy-hole

band edges.

highest hole band HH1 for b 0. The wave function at
small k describes a state with heavy-hole character per-
pendicular to the well. At large k the interactions of order
k are dominant, and we approach a state with 25% HH1
character and 75% LH1 character, i.e., a state with
heavy-hole character in the weil plane. Strong mixing
occurs in the intermediate-k region as the state changes
over from being heavy perpendicular to the well direction
to being heavy in the well plane.

We draw the following conclusions concerning the sub-
band dispersion in strained and unstrained quantum wells.

(1) The highest heavy-hole band HH1 always has a low
effective mass for small wave vector k parallel to the well
plane. The effective mass will always be larger than that
found in a strained bulk semiconductor perpendicular to
the strain direction. This increase in effective mass is due
to interactions with the light-hole bound states and
valence-band resonances.

(2) For complementary logic applications5 we need to
maximize the light™hole behavior at the valence-band
edge. This can be achieved by maximizing the splitting

between the highest heavy-hole band HH1 and the next
subband HH2 or LH2. A large splitting is expected in

narrow wells with a substantial valence-band offset be-
tween the well and barrier regions so GaAs-A1As may be a
good complementary logic system. The HH1-LH1 split-
ting can be further enhanced by a built-in biaxial compres-
sion in the wells, as in GaAs-InAs.

(3) The most important interaction for a nonparabolic
band structure is that of order k between LH1 and HH2.
The second highest hole band will have an upwards disper-
sion (electronlike effective mass) when the LH1 energy is
close to or equals the HH2 energy. This condition can al-
ways be met in an unstrained quantum-well system for
which mP )4mi*. For wide wells HH2 then lies above
LH1. In sufficiently thin wells, only one light and one
heavy bound state are expected, so LH1 must rise above
HH2 at some intermediate well width. The inclusion of
strain gives an extra degree of freedom to specify the ener-

gy splitting between HH1 and HH2 at which the crossover
occurs.

(4) For a well with built-in biaxial tension, e.g. , as in
A1Sb-GaSb, LH1 can become the highest hole band. In
this case the highest valence band will be heavy in the well

plane even at small k. In exceptional circumstances it may
even be possible to get an upward dispersion (electronlike
effective mass) at the zone center.

(5) We note that the "heavy"-hole effective mass for
two-dimensional excitons will be the effective mass in the
well plane averaged over a small region of k space near the
zone center. This averaged effective mass will depend
strongly on the band dispersion near I, and for sufficiently
large splitting between HH I and the next highest band
should approach the band-edge effective mass given by Eq.
(6) and (7).

(6) Finally, as yt =
2 (1/mt +I/mf ) and y 4 (I/m&*
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—I/rrts ), y will be largest in materials with a small light-
hole effective mass mi. As most of the interactions and
effects described here depend on 7, the most significant ef-
fects may be found in materials with a low effective mass,
such as InAs or even InSb, especially if a barrier material
can be found to give deep valence-band confinement wells.
The expressions describing intersubband interactions here

were calculated assuming infinitely deep confinement
wells, but the method can be readily extended to finite
square wells or, indeed, wells of arbitrary shape.
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