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Comparison of electronic properties of qnasiperiodic and periodic lattices
in two and three dimensions
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The density of states (DOS) in two- and three-dimensional Penrose lattices with sites at vertices
of rhombi were calculated in a one-orbital, tight-binding model. The DOS for the two-

dimensional model showed much fine structure, indicative of the multitude of gaps thought to ex-
ist in quasicrystal spectra. The three-dimensional model showed a much smoother DOS, whose

bumps were well matched by those for a periodic Penrose-derived lattice. In all cases, all states
were quite delocalized. I conclude that the gross electronic properties of quasilattices are little in-

fluenced by their quasiperiodic nature, especially in three dimensions.

I. INTRODUCTION

Quasicrystals have suddenly become of much interest to
many investigators, now that some have been found in real
samples. ' 3 Much work has been done on their structural
properties, but comparitively little on electronics. One-
dimensional calculations confirm the intuition that the in-
finitely dense set of diffraction spots exhibited by quasi-
crystals gives rise to an equally dense set of energy gaps.
What experiments have been done have shown properties
very like those of amorphous metals, with no hint of the in-
teresting properties one might think a substance with an
infinitely dense set of energy gaps might have. What does
quasiperiodic order do to the electronic spectrum in two
and three dimensions'? In this paper, I report on calcula-
tions done on the simplest possible quasiperiodic models,
using the simplest method —one-orbital tight binding.
These calculations show some of the phenomena expected.

lattices described above, terminated with Bethe lattices, as
has been done for amorphous semiconductors. The sam-
ples contained about 2000 points.

The Hamiltonian is just

(2)
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where T~ is 1 for sites joined by edges, and 0 otherwise.
The Green's function is formed by adding terms corre-
sponding to the Bethe lattice terminations and inverting
the resulting complex N &X matrix, with N the number of
sites. The imaginary part of the diagonal elements gives
the local density of states (DOS), and the square of the
matrix yields the participation ratio, defined as
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II. METHODS

The lattices used are of the type examined by Elser, in
which the basic units are rhombi or rhombohedra, depend-
ing on dimension. The lattices were generated using
Elser's projection method. Sites were placed at the ver-
tices of the units, and hopping matrix elements assigned to
pairs of sites connected by edges. The projection method
allows the convenient construction of periodic Penrose-like
lattices, built from the same rhombic units as the original.
These lattices were natural choices for reference crystal-
line lattices, and were so used in the calculations. To rule
out systematic errors, the same procedures were used for
the crystals as for the Penrose lattices, so no advantage
was taken of the periodicity of the crystalline case. In two
dimensions, the crystalline pattern used was the one point-
ed out by Elser and Henley as the basis for A13Fe. In
three dimensions, one can construct a series of cubic lat-
tices by replacing the icosahedral basis set tl, +'r,0j, ~
with fF„,+ F„+~,0j, ~ ~here r is the golden ratio, F„ is the
nth Fibbonacci number, and c.p. stands for cyclic permu-
tation. I used as a reference the case where F„2,
F„+)=3.

The calculations were done on finite excerpts from the

This ratio is 1 for a completely delocalized state, and W for
a state localized only on one site.

The complex matrices were inverted using the sparse
matrix algorithms contained in the AT&T Bell Labora-
tories PORT-III package. The calculations were done on a
VAX 11/780, and consumed several hours of CPU for a
2000-site lattice with 50 values of energy.

III. RESULTS

The DOS for the two-dimensional Penrose tiling, aver-
aged over the inner 1000 sites (out of 2000) is shown in
Fig. 1 as the solid line. This DOS is much like that ob-
tained by other workers. The corresponding crystalline
DOS is shown in Fig. 1 as the dotted curve. Note the
spikiness of the Penrose DOS. Such fine structure in the
DOS is consistent with the presence of many gaps. The
participation ratio is shown in Fig. 2. Note that only the
states of lowest energy have participation ratios signifi-
cantly different from l. In both these figures, the energy
scale also goes to negative values, but the presence of only
even paths in the lattice guarantees that all functions of
energy are even, so only the E & 0 half is shown.
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FIG. l. DOS for periodic (dotted) and quasiperiodic (solid)
lattices in two dimensions, averaged over central 1000 sites out
of 2000.

FIG. 3. DOS fox periodic (dotted) and quasiperiodic (solid)
lattices in 3D, averaged over central 1000 sites out of 2000.

The DOS for the three-dimensional (3D) tilings are
shown in Fig. 3. Here, the match between the crystal and
the Penrose samples is very close, and the DOS is quite
smooth, presumably because there are so many possible
gaps in 3D that they all average out. The participation ra-
tio is shown in Fig. 4 for the Penrose lattice, and again, all
values are very close to 1. This result shows that in each
state, an electron has roughly equal probability of appear-
ing on any site, so there are no bottlenecks through which
electric current must pass.

IV. DISCUSSION

We see that the DOS for the 3D problem is almost
featureless, as if the model had been amorphous, rather
than Penrose. Any interesting structure must be at a level
more subtle than the DOS. While the calculation does not

have anything to say directly about transport properties,
the fact that all the states seem to be delocalized would
suggest that the properties of the Penrose lattice are not
much different than those of an ordered lattice, which also
has delocalized states.

There is evidence that icosahedral Al-Mn-Si is built
around the same structural units as the so-called a phase
of Al-Mn-Si. 9 If so, then the obvious prediction is that the
icosahedral and a phases should have comparable resistivi-
ties.

The results indicate that for three dimensions, any
"strangeness" about the electronic properties of quasicrys-
tals will only be seen by probes sensitive to the direction
of the electron momentum. Most such probes will have
to wait for the availability of single-domain specimens.
In two dimensions, features should still be visible in the
DOS. Perhaps the properties of the T-phase will prove
interesting.
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FIG. 2. Participation ratio for 20 lattices, as in Fig. 1. FIG. 4. Participation ratio corresponding to Fig. 3.
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