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In a recent paper, we introduced the concept of quasicrystals [Phys. Rev. Lett. 53, 2477 (1984)], a
new class of ordered atomic structures. Quasicrystals have long-range quasiperiodic translational
order and long-range orientational order. In the present paper and the following one, we discuss the
details of our analysis of the mathematical and structural properties of quasicrystals. We begin with
a general overview of our analysis. We then discuss our computation of the diffraction pattern of a
quasilattice, using as an example the case of icosahedral orientational symmetry. We demonstrate
that two quasilattices with the same orientational symmetry and quasiperiodicity which are not lo-
cally isomorphic will have diffraction patterns with different peak intensities. Finally, we describe
some examples of computer modeling of atomic quasicrystals.

I. INTRODUCTION

Traditionally, the atomic structures of pure solids have
been divided into two classes: crystal structures and
glassy structures. Crystal structures are highly ordered:
(1) They have long-range translational order characterized
by a periodic spacing of unit cells; (2) they have long-
range (near-neighbor bond) orientational order with a
symmetry corresponding to special crystallographic'
discrete subgroups of the rotation group [as represented
by the 5 two-dimensional (2D) and 14 three-dimensional
(3D) Bravais lattices];>* and (3) they have a rotational
point symmetry (also restricted to special crystallographic
discrete subgroups). A glassy structure, by contrast, has
none of the long-range correlations of the crystal. A me-
tallic glass, for example, is modeled by spheres that are
densely but randomly packed together.*

Recently, we introduced the notion of a new kind of or-
dered atomic structure—one which would represent a new
phase of solid matter if found in nature.’> The new struc-
ture is like a crystal in that it has long-range translational
order and long-range orientational order. However, the
translational order is not periodic and the structure does
not have a rotational point symmetry. Instead, the new
structure is quasiperiodic, a well-defined but more subtle
kind of translational order. Because the new structures
have many of the properties of crystals, with the notable
exception that they are quasiperiodic rather than periodic,
we termed them quasiperiodic crystals, or quasicrystals for
short. We briefly discussed methods of constructing
quasilattices and packings of the unit cells and described
some of the mathematical properties of quasicrystal struc-
tures.

We also suggested that the recently reported
“icosahedral phase” of aluminum manganese (I-Al-Mn)
and related rapidly quenched alloys® may, in fact, be an
icosahedral quasicrystal, based on a comparison of our
theoretical (computed) diffraction pattern with the experi-
mentally observed pattern.’

Numerous papers have appeared which discuss alterna-
tive models for the icosahedral phases of
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aluminum—translational-metal alloys. Some of these at-
tempt to explain the experimental observations in terms of
ordinary crystallography (e.g., multiple twinning or large
unit cells or a combination of the two).”~° These are con-
ceptually and, ultimately, experimentally distinguishable
from our quasicrystal model; experimental investigations
will eventually determine which model is correct.

In addition, there are now several different descriptions
of the same quasicrystal models discussed in Ref. 5. Kra-
mer and Neri, '° working independently, employed a tech-
nique based on projections from a higher-dimensional
periodic lattice for obtaining quasicrystal packings of unit
cells. Another independent projection technique has since
been found by Elser,!! Kalugin et al.,'* and Duneau and
Katz.!> We also note that the models of “amorphous
structures” suggested earlier by Mercier and Levy'* ap-
pear to be generated by yet another projection approach
and probably correspond to quasicrystal structures. A
number of groups'>'5—!® have discussed a density-wave
description for icosahedral quasicrystals. Finally, there
are the quasicrystal models obtained by the “generalized
dual method”!”> (GDM) or multigrid?®® methods. These
models are experimentally indistinguishable. In the
present paper (hereafter referred to as I) and the following
one?? (hereafter referred to as II), we shall point to some
of the advantages of the different descriptions, especially
the GDM, in understanding various physical and
mathematical properties of quasicrystals.

The goal of papers I and II is to explain in greater de-
tail our theory of quasicrystal structures, as introduced in
Ref. 5, and to present many new results of mathematical
and physical interest.

We have divided the text into two papers. Paper I is in-
tended as a general guide to the definition and diffraction
properties of quasicrystals. We begin in Sec. II with a
pedagogical overview of our analysis of quasicrystal struc-
tures. We discuss the definition of quasicrystals and how
ideal quasicrystal structures can be constructed with arbi-
trary orientational symmetry. We generalize the notion of
quasicrystals given in Ref. 5 to include any structures that
are composed of unit cells and that exhibit long-range
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quasiperiodic translational order and long-range orienta-
tional order, without the requirement that they be self-
similar.

For the remainder of the paper we restrict our attention
to the special cases of pentagonal and icosahedral quasi-
crystals. These are examples of the class of quasicrystals
which are self-similar. We find this class to be of special
interest for several reasons; (a) the class includes the sim-
plest and most symmetrical quasicrystal structures; (b)
due to their symmetries, the quasicrystals in this class
have additional fascinating mathematical properties; and
(c) I-Al-Mn (and related alloys) appears to correspond to
an icosahedral quasicrystal.

In Sec. III we discuss the computation of the diffrac-
tion pattern for the 1D and 3D icosahedral quasilattice.
We compare the computations for the icosahedral quasi-
lattice with the experimentally observed electron®? dif-
fraction patterns of I-Al-Mn. In Sec. IV we discuss the
further subdivision of quasicrystal structures of given
orientational symmetry and quasiperiodicity into local
isomorphism (LI) classes. Two quasicrystals are in the
same LI class if and only if every finite configuration of
unit cells in each occurs in the other. We argue that
structures in different LI classes have different diffraction
peak intensities and free energies, so that, although the
ground state is degenerate, all ground-state configurations
correspond to a single LI class. In Sec. V we discuss some
results from our computer modeling of 2D atomic and
polyball systems as an attempt to study conditions under
which the formation of quasicrystal structures is energeti-
cally favorable.

Paper II is a more formal treatment of pentagonal and
icosahedral quasicrystals, emphasizing methods of con-
struction and local isomorphism properties. We discuss
various methods of generating quasicrystals in one, two,
and three dimensions. We show that, in addition to gen-
erating quasicrystals with arbitrary orientational symme-
try, the GDM, for any fixed orientational symmetry, gen-
erates the largest set of LI classes compared to the other
known construction methods. We then focus on a very
special LI class of icosahedral quasicrystals for which
there exist a set of “matching rules” for the unit cells,
analogous to the special LI class of pentagonal quasicrys-
tal tilings found by Penrose.?* The matching rules deter-
mine how two. unit cells may be packed together and are
designed so that the cells are forced to pack into
icosahedral quasicrystal structures (without matching
rules, the unit cells can be packed periodically or quasi-
periodically). These matching rules might be physically
effected in some systems through local interactions of
atoms or clusters of atoms.

II. GENERAL OVERVIEW

A. Motivation

In a study directed towards understanding the structur-
al properties of supercooled liquids and glassy solids,
Steinhardt ef al.?® found extended (but finite range)
icosahedral orientational order in computer simulations of
supercooled liquids which suggested that they attain a

surprising degree of icosahedral orientational order before
glassification. Two distinct theoretical efforts have arisen
from attempts to assess the significance of the observed
orientational order. One approach, pursued by several
groups, 2% is based on the notion that a metallic glass may
be described as a state with extended (but finite range)
icosahedral orientational order and entangled icosahedral
disclination defects. The “ideal” glass state would be one
in which the defects were ordered so as to form a crystal
with a large unit cell—a Frank-Kasper phase.?” A second
approach, pursued by the authors, is to consider the possi-
bility that the “ideal glass” might have infinite range
icosahedral orientational order.?® The notion is that
perhaps such a state may be a locally (or even globally)
stable state of matter, but difficult to obtain due to kinetic
considerations. A rapidly quenched liquid might begin to
form such a state but fall out of thermal equilibrium and
form a “real glass” before ever reaching the ideal state.
The chief stumbling block to this approach was that it
was not known how to construct a perfect icosahedrally
oriented dense structure. The prejudice, in fact, was that
such a structure could not exist because icosahedra do not
pack crystallographically; the geometric frustration in-
duced by the demand for icosahedral order would severely
limit the range over which such order could persist. We
will comment further on the relationship between these
two approaches to understanding glass structure in the
conclusions, Sec. VI.

Our study of the “nonperiodic” tilings discovered by
Penrose?*?° suggested that the stumbling block might be
surmountable. The tilings have long-range pentagonal
orientational order, even though pentagons cannot pack
crystallographically. We proceeded to construct and
analyze a three-dimensional analogue with icosahedral
symmetry.

In the process, we found that the Penrose tilings (and
the icosahedral analogue) not only have long-range orien-
tational order, but also have long-range 2D (or 3D) quasi-
periodic translational order. Once the true symmetries of
the structures had been identified, an analysis of the phys-
ical properties (e.g., diffraction pattern, elasticity theory,
etc.) became possible. Because the symmetries are funda-
mentally different from those of crystals or glasses, it be-
came apparent that atomic configurations corresponding
to such new structures would represent a new phase of
solid matter if found in nature. The new quasiperiodic
structures were termed ‘“‘quasicrystals.” We initiated a
series of computer simulations to find conditions under
which quasicrystal configurations of atoms are locally,
and perhaps globally, stable (see Sec. V).

In 1984, Shechtman et al.® reported an alloy of alumi-
num and manganese which apparently possesses
icosahedral symmetry. The electron diffraction pattern of
the new alloy corresponded very closely with our compu-
tations of the diffraction pattern for an icosahedral quasi-
crystal. The correspondence led us to suggest that the
Al-Mn alloy may be an example of an icosahedral quasi-
crystal. A brief summary of our analysis and a compar-
ison with experiment was presented in Ref. 5.

Although at present quasicrystals with only
icosahedral,® dodecagonal®® and decagonal’! symmetry
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have been reported, we are hopeful that, now that atten-
tion has been focused on this new class of ordered atomic
structures, many more examples will be found. In that
case, the symmetry possibilities and theoretical notions in-
troduced in these papers may have further physical signi-
ficance.

B. Basic definitions

An ideal quasicrystal is constructed by the infinite re-
petition in space of two or more distinct (atomic or molec-
ular) structural units, called “unit cells,” packed in a lat-
tice that has long-range quasiperiodic translational order
and long-range orientational order. By a quasicrystal unit
cell, we mean only a repeating motif, but, unlike crystals,
the motif is not repeated periodically. We will refer to the
structure obtained by a packing of unit cells (e.g., as de-
fined by the vertices of the cells) as a packing in general, a
tiling for the special case of two dimensions. The under-
lying lattice will be referred to as a quasilattice. The term
quasicrystal will refer to the physical (atomic or molecu-
lar) structure, corresponding to some atomic decoration of
the unit cells, or its ideal mathematical abstraction (where
the atoms are replaced by points).

The formal properties of quasicrystals are as follows.

(a) Orientational order: The bond angles between
neighboring atoms or clusters (measured with respect to
some fixed set of axes) have long-range correlations and
are oriented, on the average, along a set of “star” axes that
define the orientational order. For the quasicrystal pack-
ings we shall describe, each edge of each unit cell in the
packing is oriented along one of the set of orientational
star axes; this clearly establishes the fact that the structure
has perfect long-range orientational order. The set of star
axes can be chosen arbitrarily, in general.

Quasiperiodic structures formed for a set of star axes
which correspond to a crystallographic orientational sym-
metry have been known for a long time and are normally
referred to as “incommensurate crystals.”>? Quasicrystals
represent the generalization to quasiperiodic structures
with noncrystallographic orientational symmetry (e.g., de-
cagonal orientational order in two dimensions and
icosahedral orientational order in three dimensions). We
shall mention in Sec. IIF some important physical dis-
tinctions between incommensurate crystals and quasicrys-
tals with noncrystallographic symmetries.

(b) Minimal separation between atomic sites: There ex-
ist distances r and R (both greater than zero) such that
the separation between any two nearest-neighbor sites lies
between r and R.** This distinguishes the quasicrystal
from a set of sites obtained by superimposing two periodic
lattices with periods whose ratio is irrational, in which
case the spacing between neighboring lattice points can be
arbitrarily small. In particular, minimal separation is a
necessary condition for the structure to be defined in
terms of a finite number of fundamental unit cells.

(c) Quasiperiodic translational order: The (mass) densi-
ty function of the quasicrystal is quasiperiodic. A func-
tion is quasiperiodic if it can be expressed as a sum of
periodic functions with periods, where at least some of the
periods are incommensurate (i.e., their ratio is irration-

al).>* (Some may wish to distinguish between quasi-
periodic, where there is only a finite sum of functions, and
almost periodic, where there is an infinite sum of func-
tions; we make no such distinction in papers I and IIL.)
For example, the function

f(x)= cos(x)+ cos(mx)

is quasiperiodic. The quasiperiodicity is characterized by
special sets of irrational numbers. The set of irrational
numbers is constrained by the orientational symmetry
whenever that symmetry is noncrystallographic. There-
fore, we find it useful to classify quasicrystals both by
their orientational symmetry and their quasiperiodicity.

It should be added that there is no nontrivial translation
of either the quasilattice or the packing that leaves them
invariant, and there is no rotational point symmetry. In
fact, outside of certain exceptional cases, there is no center
of symmetry in the quasicrystal. 3’

In our original research,’ we were interested in space-
filling structures which, in addition to having properties
(a)—(c), are also self-similar. According to our conjec-
ture, >3 self-similar quasicrystals can be constructed with
orientational symmetry corresponding to any polygon in
two dimensions or polyhedron in three dimensions. We
will discuss examples of self-similarity transformations or
deflation rules in paper II.

More recently,'®?! the GDM was used to demonstrate
that it is possible to produce a packing in two or three di-
mensions from a finite number of unit cells such that the
tiling has perfect long-range quasiperiodic translational
order and perfect long-range orientational alignments
along an arbitrary set of star vectors. For an arbitrary set
of star vectors without a high degree of orientational sym-
metry, the associated quasicrystal packing is not self-
similar. We think it is natural to broaden our definition
of “quasicrystal” to include these more general quasi-
periodic packings.

C. Generalized dual method

Several methods have been found for generating quasi-
crystal packings of unit cells. A technique which we re-
cently discussed (it is an application of the ideas of de
Bruijn?® and Kramer and Neri' to the most general N-
grids) is called the generalized dual method or GDM.
This method is a straightforward approach for obtaining
quasicrystal packings with arbitrary orientational symme-
try.

In order to discuss the GDM, it is useful to establish
the definitions of a few terms.

(1) A grid is any countably infinite set of infinite (un-
bounded) nonintersecting curves in two dimensions or sur-
faces in three dimensions. In two dimensions, an N-grid
is a set of N grids such that each curve in the ith grid in-
tersects each curve in the jth at exactly one point for each
i#j. In three dimensions, an N-grid is a set of N grids
such that any triplet of surfaces in the ith, jth, and kth
grids, respectively (for ij=£k), intersect at exactly one
point. Associated with a grid is a star vector, e;, which
plays an important role in the dual construction.

(2) A quasilattice is a set of points lying at the intersec-



tion of a special class of N-grids which have the following
three properties: (a) quasiperiodic translational symmetry,
(b) orientational symmetry, and (c) a finite number of
Voronoi cell shapes. [A Voronoi cell, known also as the
Wigner-Seitz or Dirichlet cell, can be associated with each
point in the quasilattice and is the convex polygon
(polyhedron) whose edges (faces) are determined by con-
structing all lines (planes) that bisect the line segments
joining the point to its neighbors.3] Condition (c) au-
tomatically insures that the special class of N-grids satisfy
the minimal separation condition defined in Sec. IIB.
The Ammann quasilattice, to be described in Sec. II D,
corresponds to a 5-grid that satisfies these conditions. An
example of an N-grid that fails to meet the three condi-
tions is one formed from five periodically spaced grids
oriented normal to the five symmetry axes of a pentagon;
in particular, the intersections points do not satisfy condi-
tion (c).

For an arbitrary N-grid, each grid curve (or surface)
can be indexed by an integer corresponding to its ordinal
position in the grid (the star vector, e;, associated with
each grid determines the positive ordinal direction). Each
open region between grid lines (or planes) is characterized
by N integers, k;: For each i <N, an open region lies be-
tween the grid curves (or surfaces) associated with the e;
direction which are indexed k; and k;+1. The “dual”
transformation associates with each open region the point

N
t= 2 k,'e,'

i=1

in the dual space. The set of points, t, lies at the vertices
of a complete quasicrystal packing of rhombic (or rhom-
bohedral) unit cells with orientational symmetry corre-
sponding to the star vectors, e; (provided the e; satisfy
certain minor restrictions on their relative orientations; see
paper II). The number of independent doublets (triplets)
of star vectors (that is, ones with different sets of intersec-
tion angles) determines the maximum number of different
unit cell shapes in the tiling, at most N(N —1)/2 in two
dimensions [ N(N —1)(N —2)/3! in three dimensions].

In Fig. 1 we illustrate an example of a quasicrystal ob-
tained via the GDM for an arbitrary star of seven vectors.
Further discussion of the properties of GDM is given in
Ref. 21 and paper II.

D. A major example: Penrose tilings
and the Ammann quasilattice

The inspiration for the notion of quasicrystals came
from an extended study of the properties of (2D) Penrose
tilings.?*?® Penrose discovered a pair of tile shapes (in the
current jargon, unit cells) plus a set of “matching rules”
which determine how they are allowed to join together
such that the tiles are forced to fill the 2D plane only
“nonperiodically” (today we would say quasiperiodically).
In Fig. 2 a small section of a Penrose tiling composed of
“fat” and “skinny” rhombic unit cells is shown.

The tiling corresponds to a 2D pentagonal quasicrystal.

(a) Each edge in the Penrose tiling is oriented normal to
the symmetry axis of a pentagon. Thus, a Penrose tiling
has perfect pentagonal orientational order even though
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FIG. 1. A tiling generated via the GDM from a 7-grid for
the set of seven arbitrary star vectors shown at the upper right.

FIG. 2. Portion of a Penrose tiling with fat and skinny rhom-
bic unit cells. The deflation rules for the two cells are shown at
the bottom.
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pentagonal point symmetry is disallowed for crystals in
two dimensions. (Here we describe the Penrose tiling as
having pentagonal orientational symmetry; however, since
an edge has an orientation but not a direction, like a
“headless arrow,” it is equivalent to describe the tiling as
exhibiting decagonal orientational symmetry.)

(b) The structure obviously has a minimal separation
between vertices.

The tiling is also self-similar. The Penrose matching
rules are in one-to-one correspondence with a self-
similarity transformation called a deflation rule. The de-
flation rule is a decoration of the unit cells with markings
which join to form a new tiling with all unit cells scaled
down by a constant factor, as shown at the bottom of Fig.
2. Any cluster of tiles consistent with the matching rules
can be obtained by deflating a smaller cluster of tiles.

It should be emphasized that the Penrose tilings are
special in that the self-similarity transformation is so sim-
ple. As we shall discuss in paper II, many other tilings
can be constructed from the same unit cells and with the
same orientational symmetry. These tilings disobey the
Penrose matching rules and have much more complicated
self-similarity transformations. 7%

(c) The 2D quasiperiodic translational order is the least
obvious property of the tilings. There are several ways of
demonstrating the quasiperiodicity. One way is to super-
impose two Penrose tilings translated by a small amount
to form a moiré pattern (see Fig. 3).° The appearance of
stripes in the moiré pattern, where the two patterns inter-

FIG. 3. Two identical Penrose tilings, one translated with
respect to the other, are overlayed to form a moiré pattern.
Where the two patterns interfere constructively or destructively,
light or dark lines appear.

fere constructively or destructively, directly demonstrates
the translational order of the structure, although it is
clearly not periodic.

The quasiperiodicity can be best observed by studying a
special decoration of the Penrose tiles. Ammann® has
pointed out that, if each tile is decorated with line seg-
ments according to Fig. 4 and then laid in a Penrose tiling
according to the matching rules, the line segments join to
form sets of continuous lines running parallel to each of
the symmetry axes of a pentagon. According to the defi-
nitions set in Sec. II B, the continuous lines form an N-
grid; furthermore, the N-grid satisfies the necessary cri-
teria such that its intersections form a quasilattice which
we will refer to as an Ammann quasilattice, to distinguish
it from other quasilattices that can be found with the
same or other orientational symmetry. The tiling can be
viewed as decoration of the Ammann quasilattice, analo-
gous to decorating a simple-cubic lattice to form, say, a
face-centered-cubic lattice.

The position of the Nth line of any given grid from the
origin is given by

x~=N+a+{!§+Bl, (1
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FIG. 4. Each tile in Fig. 2 has been decorated with line seg-
ments as shown at the bottom of the page. These segments join
to form five sets of quasiperiodically spaced parallel lines whose
locations are given by Eq. (1). The intersections of these lines
comprise the Ammann quasilattice.
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where 7 is the golden ratio equal to (1 + V/5)/2; a and B
are arbitrary real numbers and where | |’s represent the
greatest integer function. The first term alone corre-
sponds to a periodic spacing between grid lines with spac-
ing equal to one. The second term increases by 7~ each
time N is increased by 7. Because 7 and 1 are relatively
irrational, Eq. (1) describes a quasiperiodic spacing of
lines. The spacing between any two consecutive lines
(xy—xy_1)is L or S where L/S =1+1/7, and the se-
quence of L’s and S’s is a Fibonacci sequence.’ Note that
Eq. (1) describes a quasiperiodic function even if 7 is re-
placed by any irrational number. We shall see that Eq. (1)
is the key to understanding the properties of the 2D Pen-
rose tiling and the 3D icosahedral analogue.

E. 1D quasicrystals, algebraic numbers,
and substitution rules

Let us consider a 1D quasicrystal with atoms placed at
positions xy, given by Eq. (1). According to the discus-
sion above, such a structure is quasiperiodic even if 7 is
replaced by any irrational number. However, as we shall
see in Sec. IIF, in order to form two- and three-
dimensional quasicrystals with orientational symmetry
corresponding to some regular polygon in two dimensions
or polyhedron in three dimensions,>® only a special class
of irrational numbers known as algebraic numbers can ap-
pear.*! (Algebraic numbers are irrational numbers that
satisfy a polynomial equation with integer coefficients.
The degree of an algebraic number, ¢, is defined as the de-
gree of the lowest-order polynomial equation satisfied by
é. The golden ratio 7, for example, satisfies 77 —7—1=0
and is an algebraic number of degree two.) We shall
therefore restrict our discussion of the 1D quasicrystals to
cases involving algebraic numbers.

The 1D quasicrystal generated using Eq. (1) with 7 be-
ing the golden ratio is self-similar. All neighbor atoms
are separated by either L or S where L/S=7[S=1 in
the normalization we have used in Eq. (1)]. (See Fig. 5.)
Associated with the sequence of L’s and S’s is a “substitu-
tion” (or “production”) rule: L-—LS and S—L, which
can be expressed as

L 11
S 10

L

s|- (2)

—>

Under a substitution, a sequence of intervals described by
Eq. (1) is transformed to another such sequence (with

L S L L S L S L
r 17 T r T r 1" )l
L] -] L] o o L] L] o L] o e
L L L s L L S
L

FIG. 5. 1D quasicrystal generated according to Eq. (1). The
original sequence of L’s and S’s is shown above the lattice sites
and corresponds to separations between only those sites indicat-
ed by solid disks. The deflated quasicrystal, obtained by apply-
ing the substitution rule of Eq. (2), consists of all of the sites,
solid and open. The corresponding sequence of L’s and S’s is
indicated below the sites.

changes in the values of a and B in general). The action
of this substitution rule on a sequence of two different ele-
ments was first studied by Leonardo Pisano (original
name, Leonardo Fibonacci)*?> who showed that, beginning
with a single L, say, and iterating the substitution to in-
finity, the ratio of / (identically equal to the number of
L’s) to s (identically equal to the number of S’s) ap-
proaches the golden ratio 7. We therefore refer to this
particular sequence of spacings as the Fibonacci sequence.
This substitution rule for the sequence of L’s and S’s can
be transformed into a self-similarity transformation or in-
flation rule (the inverse is a deflation rule) for the 1D lat-
tice provided the ratio of lengths satisfies L /S =, as is
the case in Eq. (1): Since the ratio of interval L to the in-
terval which is substituted for it, namely L +S, is equal
to the ratio of S to the interval which is substituted for it,
namely L, i.e.,

L S

L+S L

L

S

L

S +1, (3)

the substitution rule acting on the sequence of intervals is
equivalent to a self-similarity transformation acting on
the lattice points, xy.

These properties can be generalized by considering &
lengths (L;), at least some of which must be incommensu-
rate, and a substitution rule:

(L,')—»M,'j(Lj) . 4)

The matrix M;; is a kK Xk nonsingular matrix with non-
negative integer coefficients whose eigenvalues satisfy a
polynomial equation of kth degree (i.e., they are algebraic
numbers). A further generalization is to consider quasi-
crystals obtained using a sequence of different substitution
rules. This can lead to a situation where different L inter-
vals in the sequence, say, transform differently under the
deflation rules.® We also note that it is possible to find
matrices M;; that lead to structures that are not, strictly
speaking, quasiperiodic (e.g., the Fourier transform may
not consist of true Bragg peaks), even though they are
self-similar. 3

F. Two- and three-dimensional quasicrystallography

The new element in extending quasiperiodic translation-
al order from one dimension to two or three dimensions is
the orientational symmetry. Just as periodicity is allowed
only for special (crystallographic) orientational sym-
metries, so quasiperiodicity, as characterized by a set of
irrational numbers, is allowed only for special orientation-
al symmetries. Thus, there is a classification of quasicrys-
tals that is a natural extension of the well-known classifi-
cation of crystals.

A (trivial) category of quasicrystals contains structures
with crystallographic orientational symmetry. As noted
in the Introduction, such cases correspond to incommen-
surate crystals.3? In many cases incommensurate crystals
can be resolved into two or more overlapping layers of
periodically spaced atoms with incommensurate periods.
However, the term has been broadly defined to refer to
any crystal structure with quasiperiodic modulations, a
definition which incorporates the notion of quasicrystals
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with crystallographic orientational symmetry. In the
known physical examples, quasiperiodic structural modu-
lation occurs only in one or two dimensions, although sys-
tems with quasiperiodic spin modulations in three dimen-
sions are known; e.g., in chromium.*

For incommensurate crystals the orientational symme-
try places no constraint on the quasiperiodicity—any irra-
tional length scales (as defined by the ratio of the lengths
of the wave vectors in the diffraction pattern) will do.
The physical consequence is that the ratios of incommen-
surate lengths measured in incommensurate crystals may
change continuously with temperature and pressure. The
quasiperiodicity and orientational symmetry are totally
decoupled.

The more interesting cases are quasicrystals with non-
crystallographic orientational symmetry. In these cases,
the quasiperiodic, rather than periodic, translational order
allows quasicrystals with arbitrary orientational symmetry
to be constructed.!®2! At the same time, the orientational
symmetry constrains the allowed incommensurate length
scales and quasiperiodicity.

To demonstrate this, consider five sets of periodically
spaced parallel lines oriented normal to the symmetry axes
of a hexagon and a pentagon. In Fig. 6 we show a few of
the lines for the hexagonal and pentagonal cases. Consid-
er the intersections of sets 1 and 2 with set 3. For the

¥
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FIG. 6. Periodically spaced parallel lines with spacing a are
drawn normal to the symmetry axes of (a) a hexagon and (b) a
pentagon. Only a few lines from three sets are shown for each.
Note that the intervals between intersections of sets 1 and 2 with
set 3 are the same for the hexagon but are different for the pen-
tagon for which ratio of interval lengths is the golden ratio.

hexagon, the spacing between intersections is the same for
each set, which is directly related to the fact that a period-
ic lattice with hexagonal symmetry is possible. On the
other hand, the spacing between intersections is different
for the pentagon. In fact, the ratio of the intervals be-
tween intersection points for sets 1 and 2 with set 3 is
irrational—the golden ratio 7. Thus, if the complete sets
of parallel lines were drawn, intersections from set 1
would approach arbitrarily close to intersections from set
2 and the minimal separation condition would not be
satisfied. This is directly related to the fact that a pentag-
onal periodic lattice (with minimal separation) is not pos-
sible. On the other hand, if the sets of equally spaced
lines are replaced with lines with two fundamental spac-
ings, L and S where L /S =, and if the lines are spaced
quasiperiodically according to the Fibonacci sequence, a
lattice with minimal separation is possible. The result is
the Ammann quasilattice which can be decorated with
rhombuses to form a Penrose tiling.

By relaxing the constraint on the translational order
from being periodic to quasiperiodic, a space-filling struc-
ture built from unit cells can be constructed with a disal-
lowed crystallographic orientational symmetry. An im-
portant point, though, is that the irrational spacings can-
not be arbitrary. The orientational symmetry constrains
the quasiperiodicity (that is, the irrational length scales).
Because intervals between intersections whose lengths are
in the golden ratio are automatically generated by con-
structing parallel lines normal to the pentagonal symme-
try axes, as shown in Fig. 6, the irrational numbers that
determine the quasiperiodic spacing must contain the
algebraic field** generated by r in order that the minimal
separation condition be satisfied. The Fibonacci sequence
expressed in Eq. (1) is the simplest example. A sequence
generated by (V'2—1), say, does not work for the pentago-
nal case because there is no minimal separation between
lattice points (though it does work for the octagonal
case). ¥

The following summarizes our approach to categorizing
quasicrystal structures (see paper II for details). Quasi-
crystals can be classified according to their orientational
symmetry and quasiperiodicity (that is, the irrational ra-
tios or incommensurate length scales). Any orientational
symmetry is possible. For a subset of symmetries, includ-
ing those corresponding to regular polygons in two dimen-
sions and polyhedra in three dimensions (e.g., pentagonal
and icosahedral symmetry), the irrational ratios of length
scales are algebraic numbers and the structures are self-
similar in the general sense described in Sec. I1E.

For a given symmetry and quasiperiodicity (self-similar
or not), there are many local isomorphism (LI) classes; til-
ings with the same symmetry but in distinct classes can be
constructed from the same unit-cell shapes, but some of
the arrangements of cells found in each tiling are never
found in the other. For a given symmetry and quasi-
periodicity, the GDM produces an infinite range of LI
classes.

We shall argue in Sec. IV that only configurations in
the same LI class have the identical diffraction patterns
and free energies. Thus, discrimination between LI
classes is physically significant; for example, it is impor-
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tant to realize that only locally isomorphic tilings are en-
ergetically equivalent when counting the degeneracy of
the ground state.

A special LI class that we will call the Penrose local iso-
morphism (PLI) class (because the original Penrose tiling
corresponds to this class for the pentagonal case) has three
very special properties: (a) there exist matching rules for
the unit cells such that any tiling which fills space is
forced to be a quasicrystal in the class; (b) there exists a
simple self-similarity transformation or deflation rule (as
shown in Fig. 2 for the Penrose tiles); (c) there exists a
decoration of the unit cells with line segments or planar
sections such that the segments or sections join to form a
quasilattice (analogous to the Ammann quasilattice shown
in Fig. 4) when the cells are packed into a tiling. We shall
see in paper II that the three properties are closely related.
This class might be especially interesting if the matching
rules can be enforced by local interactions of atoms or
clusters. In this case, the ground state of the atomic sys-
tem might be a structure that is an element of the Penrose
class.

G. Structure of icosahedral quasicrystals

The icosahedral quasicrystal is a case of special interest:
the one which is relevant to the earlier work on
icosahedral ordering in supercooled liquids and glass (see
comments in Sec. VI); and the one which appears to
describe the recently observed Al-Mn alloy.%*

The simplest set of unit cell shapes for the icosahedral
quasicrystal consists of the oblate and prolate rhombohe-
dra shown in Fig. 7. (These play similar roles to the skin-
ny and fat tiles, respectively, in the 2D Penrose tiling.)
All the faces are identical rhombuses. As first described
by Kowalewski,* ten prolate and oblate rhombohedra can
be packed to form a rhombic triacontahedron, a zonohe-

dron with icosahedral symmetry. A general 3D
icosahedral quasicrystal packing of the unit cells consists
of a ratio of prolate to oblate rhombohedra equal to 7:1.
Figure 8(b) shows a layer of such a rhombohedral pack-
ing.

A case of special interest is the packing corresponding
to the PLI class—the 3D icosahedral analogue of the 2D
Penrose tiling. This class is defined by a set of unit-cell
shapes plus rules for matching them face on face such
that the rhombohedra can only fill space quasiperiodical-
ly. The set of matching rules is in one-to-one correspon-
dence with a deflation algorithm. That is, the constraints
on the way two cells can match face to face imposed by
the matching rules are identical to constraints required for
unit-cell packing to be deflatable; alternatively, any finite
packing of unit cells in accordance with the matching
rules can be inflated and deflated, and, if a packing is
built according to the matching rules and then deflated or
inflated, the new packing again obeys the matching rules.
Independently of our own construction,>*’ several groups
have attempted to obtain such a packing. Ammann at-
tempted a construction using the same rhombohedral unit
cell shapes,* as reported by Mackay;*® Kramer* and, in-
dependently, Mosseri and Sadoc®® have suggested dif-
ferent sets of shapes (each set containing more than two
unit cells). However, the matching rules provided were ei-
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FIG. 7. The two rhombohedral unit cells used to build the
icosahedral quasicrystal packing. The ratio of volumes of the
prolate rhombohedron (lower) to the oblate one is 7. If
a=(1+47%)1"2 the edge lengths are unity.

ther incomplete, the construction required a center of
symmetry, and/or the unit cells were not forced to match
vertex to vertex (which can result in there being effective-
ly an infinite number of matching rules). Mackay and
Mosseri and Sadoc also suggested that the icosahedral
structure might have some relevance to atomic structures,
although they never identified the full symmetries, partic-
ularly the quasiperiodicity, of such a structure.

As for our own construction, we found that the match-
ing and deflation rules as applied to the rhombohedra are
much more complicated than the 2D analogue.>*’ Two
rhombohedra with the same shape may have different
matching and deflation rules, or rules for a given unit cell
may depend upon the local packing configuration about
that cell. An alternative and much more useful construc-
tion makes use of four types of unit cells, each of which is
a zonohedron that can be formed from the oblate and pro-
late rhombohedral bricks: (a) a rhombic triacontahedron
formed from ten oblate and ten prolate bricks; (b) a rhom-
bic icosahedron formed from five oblate and five prolate
bricks; (c) a rhombic dodecahedron formed from two ob-
late and two prolate bricks; and (d) a single prolate rhom-
bohedron. Associated with these four units is a set of
planes whose intersections are the 3D analogue of the
Ammann quasilattice of the 2D Penrose tiling. Wherever
a zonohedron of a given shape is found in the structure it
is divided by the planes in the same way. If the four zo-
nohedra are used as the fundamental bricks for the
icosahedral quasicrystal instead of the rhombohedra, the
matching rules reduce to the constraint that bricks only be
matched in such a way that all the planes are continuous-
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ly extended across the interface. Also, using the GDM,
the deflation rules may be determined from the intersec-
tions of the planes. Thus, two zonohedra with the same
shape have the same matching and deflation rules. In Fig.
8 we show a layer of the zonohedral packing and, below
it, the decomposition of the layer into the two rhombohe-
dra unit cells (the decomposition actually includes some
additional rhombohedra above and below the depicted
layer which have been removed for the sake of clarity).
The detailed construction of the PLI class packing is
given in paper II.

Of course, as pointed out in Sec. IIF, this matching
rule construction produces only a single local isomor-
phism (LI) class of icosahedral packings, albeit a very in-
teresting one. The icosahedral packings generated by pro-

N
<

4\

)
V.
N

==
U
\!

2

///’
.

FIG. 8. Layer of a 3D icosahedral quasicrystal packing cor-
responding to the Penrose local isomorphism (PLI) class. In (a),
the layer is shown as a packing of the four zonohedral unit cells.
The unit cells can be decomposed into the rhombohedral unit
cells of Fig. 7, as shown in (b) (the decomposition actually in-
cludes some additional rhombohedra above and below the de-
picted layer which have been removed for the sake of clarity).

jections from a six-dimensional hypercubic lattice also are
elements of a single (different) class; the GDM produces
elements of infinitely many other classes. However, these
other classes do not have simple deflation and matching
rules.

A complementary approach to describing quasicrystals
is from the point of view of Landau theory.!%!%16.18,17.51
Just as for crystals, there exists a Landau theory and den-
sity wave description for the quasicrystal structure. Asso-
ciated with the star of N vectors that define the orienta-
tional symmetry are a set of N fundamental density
waves, p;. The p; are the leading Fourier coefficients in
the transform of the density function for the quasicrystal.
A Landau free-energy expression can be written as an ex-
pansion in the p;. In a density wave approximation, only
the leading terms are kept and the structure is approxi-
mated as a sum of the fundamental density waves.

The quasicrystal model and the density wave descrip-
tion bear the same relation to one another as the crystal
lattice and density wave picture for crystals. Both pic-
tures are useful for describing various properties. No
direct information about atomic structure is provided by
the density wave description; in fact, the density wave
description is not usually useful for describing the micro-
scopic structure of solids that are not near the melting
temperature. Better approximations to microscopic struc-
ture can be obtained in principle by keeping more and
more terms in the Fourier transform of the density. How-
ever, a more useful microscopic description of a quasi-
crystal solid is in terms of the atomic decorations of the
unit cells. On the other hand, the Landau description is
useful for studying the hydrodynamics and elasticity
theory. 165253

H. Diffraction patterns

The diffraction pattern of a quasicrystal is one of its
most distinctive features. The pattern consists of a set of
Bragg peaks that densely fill reciprocal space. This result
can be understood intuitively by considering the case of
the one-dimensional quasicrystal with atomic positions
given by Eq. (1). As described in Sec. II D, Eq. (1) can be
divided into a sum of two functions that describe periodic
spacings but with incommensurate periods. If the first
term only were kept, the diffraction pattern would consist
of Bragg peaks spaced periodically in reciprocal space
with some fundamental period k,. Because the second
term is incommensurate, it leads to Bragg peaks at some
incommensurate reciprocal space period k;. The full pat-
tern then consists of the union of the two sets of peaks,
plus peaks at linear combinations of k, and k;. Because
the two are incommensurate, the peaks densely fill re-
ciprocal space (in a countable, nonfractal way). For a
two- or three-dimensional quasicrystal, the reciprocal
space is still densely filled with Bragg peaks, but now in a
2D or 3D pattern whose rotational symmetry reflects the
orientational order. The position of each peak in the pat-
tern can be written as an integral linear combination of
the N reciprocal-lattice vectors associated with the star of
N vectors. In Sec. III we discuss the quantitative compu-
tation of the intensities of the diffraction pattern.
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The fact that the diffraction pattern consists of a dense
set of Bragg peaks has physical implications for the spec-
trum of electron and phonon states. In the nearly-free-
electron approximation, the gaps in the energy spectrum
are in one-to-one correspondence with the Bragg peaks
and the gap sizes scale with the intensities; thus, the spec-
tra are expected to consist of a set of gaps that are dense
in k space.’ Since the intensities of peaks very near a
peak of given intensity are much less intense in general,
near a large gap there are arbitrarily weak ones; therefore,
we do not expect the dense set of gaps to drastically alter
the behavior of quasicrystals compared to crystals, al-
though more accurate computations are needed.

III. DIFFRACTION PATTERN
OF ICOSAHEDRAL QUASICRYSTALS

The diffraction pattern of the icosahedral quasicrystal
consists of a set of Bragg peaks that densely fill reciprocal
space in an array with icosahedral symmetry. To explain
this result, we will first consider the case of a one-
dimensional quasicrystal with atomic positions given by
Eq. (1). This particular example is critical in the study of
the pentagonal and icosahedral quasilattices.

A. Diffraction pattern for a 1D quasicrystal

The atomic positions of the 1D (Fibonacci) quasicrystal
described by Eq. (1) may be reexpressed as

X,=n 1+% +BV'S
1|n+1/H+BV5 |
+ . Vs Br+a|, (5)

where the curly brackets signify the fractional part (or
modl) function and we have used the fact that
(14+1/7)=V5. (An identity is x =|x|+{x}. The
function {x} is periodic in x with period 1.) This expres-
sion is of the general form:

X, =na +¢+F(na+4¢), (6)

where F(x) is periodic in x with period b and a /b is irra-
tional. Expressions of this variety arise in the study of the
Frenkel-Kontorova model,** which describes a 1D incom-
mensurate crystal. The Fourier transform of such a set of
atomic positions consists of Bragg peaks at positions
k=27M/a +27wN /b, where M and N are integers. For
our case, this means that there will be peaks at

Kpg _ 2 9
1+1/72

P+, ™

where p and g are integers.

In order to see this result explicitly, we will employ an
argument based on the fact that numbers of this form
constitute a dense subset of the real numbers (that is, arbi-
trarily close to any real number is a number of this form).
We will compute the diffraction pattern (i.e., Fourier
transform) of the 1D quasicrystal in Eq. (1):

. 1 .
f,(k)—le_{n°° ’N ?exp(th,,) , (8)

where we are summing over the N atomic position in a
1D chain. First, consider f(k) for k of the form,
k =kpq, as defined in Eq. (7); noting the identity
(14 1/7%)=V5, the exponent in Eq. (8) is given by

. . n B 1 |n
lkpqx,,=21rt pn +q: +kpq :-{-a_? :+B
. n . kpq n
=2mi \pn+q | —+B| |+i|2mg—— | {=+B
T T T
L kg
+ikpga—i |2mq — == |B, 9)
T

where we have used the identity x =[x | +{x} to obtain
the second expression. The first term in the final expres-
sion is an integer times 27, and therefore only contributes
a factor of unity upon exponentiation. The last two terms
are independent of n, and so only contribute an overall
phase factor to f;(k). The second term, however, is n
dependent and contributes to the sum in an important
fashion. Since

o< {2 +Bt<1,
T

the second term lies between zero and iX, where
k
X=2mg— —f_'; . (10)

Since 7 is an irrational number, the value of the second
term is uniformly and densely distributed in the interval
(0, X), enabling us to approximate the sum in Eq. (8) by
an integral:

iy X 3
f1(k)=e7 fo exp(iy)dy:-s—l—r%'%—/z—)exp(iy), (1
where
kpq X
Y=kya— 21rq——7_— B and ‘}’El,l}+—2-. (12)

Equation (11) is the value of f;(k) for the special values
of k =k,,, which, we argued in Eqs. (5) and (6), corre-
spond to the positions of Bragg peaks. To make this more
plausible, consider any point k' that is not of the form
kpg- Then k' can be arbitrarily well approximated by an
expression of the form k,,, because these points densely
fill reciprocal space. There exists a well-defined, uniform
sequence of best approximants to k' of the form k,,q.‘“""2
However, the integer g becomes arbitrarily large with im-
proving approximation while the value of k,, remains
nearly unchanged. Thus, X in Eq. (10) also grows arbi-
trarily large and the amplitude of f(k), according to Eq.
(11), approaches zero. From this we conclude that

sin(X /2)

iy
x/2 ¢

pe

8k —kpy) . (13)
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Those familiar with the computation of the Fourier
transform of the 1D quasicrystal via projection
methods!""3* (which appeared subsequent to Ref. 5) will
recognize that the two methods agree exactly.

The brightest spots occur for those k =k,, where X is
small. Since

27ri

k
X=2mqg -2 |==F(¢qgr—p), (14)
T V5

this means that g /p must be close to 7. It is well known
that the best rational approximants to 7 occur when g and
p are successive Fibonacci integers, F,.*> Therefore, the
sequence of most intense peaks corresponds to
(p,q)=(F,,+1,F,, ), where (Fl,Fo)z(l,l)

Note that the diffraction peaks are indexed by two in-
tegers even though the structure is one dimensional. The
appearance of more indices than the dimensionality is typ-
ical of incommensurate crystals and quasicrystals. Since
all pairs of integers are represented in general, the peaks
of the diffraction pattern of the 1D quasicrystal are in
one-to-one correspondence with the diffraction peaks of a
two-dimensional square periodic lattice. This is directly
connected with the fact that the real-space structure itself
can be obtained as a projection from a two-dimensional
periodic lattice, '3+ 38

B. 3D diffraction patterns

The diffraction pattern of the 3D quasicrystal is simply
related to the Fourier transform of the 1D quasicrystal,
just as the 3D crystal diffraction pattern is simply ex-
pressed in terms of the transform of a 1D crystal. In Ref.
5, we presented the diffraction pattern for the quasilattice
underlying the icosahedral packing. This pattern has the
quasiperiodicity and orientational symmetry of the pack-
ing itself since the unit cells can be viewed as a decoration
of the quasilattice. Also, the diffraction pattern of the
quasilattice should have Bragg peaks in the same places as
the icosahedral packing except for possible extinctions (as
found in going from simple cubic, say, to fcc crystal lat-
tices). Thus, the diffraction pattern of the quasilattice
embodies all of the essential features of the diffraction
pattern for the packing.

The quasilattice for a three-dimensional tiling is com-
posed from sets of quasiperiodically spaced parallel
planes. There are five models with icosahedral orienta-
tional order.'®% To discuss the different models, it is
useful to consider the action of the full icosahedral group
(including reflections) on a point P on the surface of an
icosahedron. If we act on P with all the elements Y; of
the icosahedral group, we obtain the orbit of P: the set of
points Y;P. The points Y;P divide into pairs such that
each pair lies on an axis through the center of the
icosahedron. We shall say that this set of axes is generat-
ed by the point P. The number of axes depends upon the
symmetry of the icosahedron about the point P.

The five quasilattice models with icosahedral orienta-
tional symmetry are described as follows:

(1) Sets of planes oriented normal to the six axes gen-
erated by a point of fivefold symmetry of the icosahedron
(a vertex).

(2) Sets of planes normal to the ten axes generated by a
point of threefold symmetry (a face center).

(3) Sets of planes normal to the fifteen axes generated
by a point of (2 X 2)-fold symmetry (an edge center).

(4) Sets of planes normal to the thirty axes generated by
a point of reflection symmetry (that is not one of the
points of higher symmetry discussed in the models above).

(5) Sets of planes normal to the sixty axes generated by
a point P that is not a symmetry point of the icosahedron.

In the nomenclature of Ref. 21, the first model is called
the vertex model, the second is called the face model, and
the third is called the edge model. Although the diffrac-
tion patterns for all the models possess icosahedral sym-
metry, there will be differences both in the locations and
intensities of the diffraction spots, particularly in the
planes normal to the (2 X 2)-fold symmetry axes.!®%® The
original experiments of Shechtman et al.® appear to cor-
respond to the vertex model. There is also the suggestion
that the T phase of Al-Mn is really a structure described
by periodic stacking of decagonal quasicrystals,®"’!
roughly analogous to a hexagonal prism structure, a possi-
bility mentioned in Ref. 21.

Neither the quasilattices nor the three-dimensional til-
ings associated with them constitute a realistic atomic
model for I-Al-Mn or similar alloys. A packing of Al
and Mn in the unit cells is required. Aluminum and man-
ganese scatter differently, whereas the theoretical models
above use ideal point atoms of a single type. Many
decorations are possible, including ones where two unit
cells of the same shape are decorated differently. The til-
ing associated with the quasilattice represents the analo-
gue of a Bravais lattice. From the diffraction patterns of
the quasilattices or tilings one can learn the qualitative
features about the diffraction pattern of I-Al-Mn, such as
the symmetry and the location of the Bragg peaks (except
for possible extinctions), but it is probably not useful to
directly compare the computed intensities to the experi-
mental data.

The diffraction pattern of the quasilattices for the vari-
ous models can be computed straightforwardly. We shall
introduce the same formalism for all the models and then
discuss the vertex model in detail as an example.

The vertices x of a quasilattice lie at the intersections of
three planes, and so satisfy three simultaneous equations:

€i'X=X,,
€' X=X, (15)
€ X=Xy,
where i£j+k; e; is the unit normal to the ith family of
planes; and x, is given by Eq. (1). (In general, @ and 8

may be different for different sets of planes.) We may
write Eq. (15) as a matrix equation:

M x=v, (16)
where
€; Xp
M= |e; | and v= |x, (17)
(5% Xy



Here i, j, and k vary from O to 5 for the vertex model, 0
to 9 for the face model, and O to 14 for the edge model.
Equation (16) can be inverted to obtain x, which is what
is needed to compute the Fourier transform of the quasi-
lattice:

Fik)= 3 3 explik-x). (18)
i>j>knn',n"

For a given i, j, and k, the exponent can be expressed:
ik-x=ik-(Mj'v)

=i (KX, + KW Xy + K Uggix,0) (19)
where

u =e¢; X e /[(e;-(e; X e )]
and

M = (Wi W Uy -

Thus, the 3D Fourier transform of the quasilattice
breaks up into a product of 1D transforms and can be
written

F3(k)—_— 2 fl(k'll,-jk )fl(k‘u]'k,' )f)(k‘llk,-j) . (20)

i>j>k

Since we have shown that the support of f,(k) (i.e., the
set of k where the function is nonzero) is the set k =k
(see Sec. III A), the argument of each factor in Eq. (20)
must be of this form in order that F;(k) not vanish. This
occurs for k of the form:

k= 2T

gi q;
V3 pi+— Pj+—7“_‘

T

9k
e+ €+ [Pkt |

’

21)
where e;,e;,€; (is£jKk) are three of the N star vectors
and where the p; and ¢; are integers. (We use the same
vectors e; to denote both the real-space and reciprocal-
space basis vectors.)

The unit normals, e; are as follows.
(a) Vertex model: [1/(1+7%)'72)(0,7,£1), plus cyclic

permutations.
(b) Face model: (1/v3)(0,+77,7) and (1/V3)
(—1,1,1) plus cyclic permutations of each, and

(1/vV3)(1,1,1).

(c) Edge model: (1,0,0) plus cyclic permutations, and
+(+7,+771,1) plus cyclic permutations.

An electron diffraction pattern corresponds to a set of
spots that lie in some plane that passes through the origin
of reciprocal space. For the choice of coordinates we have
used above, the z axis corresponds to a (2 2)-fold sym-
metry axis. Thus, examples of planes normal to the
(2% 2)-fold, fivefold, and threefold symmetry axes corre-
spond to k,=0, k,+7k,=0, and 77k, +k, =0, respec-
tively.

C. The icosahedral (vertex) model

As a specific example, let us consider the case of the
vertex model. The diffraction pattern is characterized by
six indices [the six integers (p;,q;) in Eq. (21)], and so dif-
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fraction peaks are in one-to-one correspondence with a
six-dimensional periodic hypercubic lattice. (This corre-
sponds with the fact that an icosahedral quasicrystal
rhombohedral packing can be obtained as a projection of a
six-dimensional periodic hypercubic lattice down to
3D. 10—-13

Our computation of the diffraction pattern for the
quasilattice is shown in Fig. 9; that is, this figure shows
the diffraction pattern for an ideal model in which identi-
cal atoms are placed at each point of the quasilattice. Al-
though this does not represent a realistic atomic model,
the diffraction pattern is still useful for determining the
positions and relative intensities of peaks for a realistic
atomic decoration of the quasilattice; e.g., as might occur
in I-Al-Mn. The right-hand side of the figure shows the
diffraction patterns for the rapidly quenched alloy of Al
and Mn observed by Shechtman et al.® The agreement
with observations is remarkable; every diffraction spot ob-
served experimentally appears in our computation. For
the fivefold and threefold symmetry axes the agreement is

FIG. 9. Computed diffraction patterns of the icosahedral
Ammann plane quasilattice (left) and the experimental electron
diffraction patterns taken on a rapidly cooled alloy of aluminum
manganese. (a) In a plane normal to a fivefold axis of an
icosahedron. (b) In a plane normal to a threefold axis. (c) In a
plane normal to a (2 X 2)-fold axis.
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perfect. For the (2X2)-fold pattern, there are many extra
spots in the quasilattice diffraction pattern that do not ap-
pear (that is, they are extinct) for I-Al-Mn. This result
demonstrates that the diffraction pattern in the plane nor-
mal to (2x2)-fold axis is the most sensitive to the de-
tailed decoration of the lattice.’® By decorating the quasi-
lattice (similar to going from fcc to bec lattices), the
unwanted quasilattice spots can be extinguished.

As it turns out, the simplest decoration that extin-
guishes the unwanted spots is to put identical atoms at the
vertices of the rhombohedral packing that decorates the
quasilattice. As with the quasilattice, this decoration is
not a realistic atomic model either because there are many
large vacances and there is only one atomic species. The
model certainly does not apply to I-Al-Mn which has two
atomic species. On the other hand, the initial goal is to
understand the qualitative, not quantitative, features of
the spectrum.

The fact that the diffraction patterns of the quasilattice
and the rhombohedral packing are different is easy to
understand. Consider the vertices of the packing in which
each vertex lies at the intersection of several oblate and/or
prolate rhombohedra. The position of each vertex can be
written as an integral linear combination of the six
icosahedral star vectors, e;. By contrast, the vertices of
the quasilattice and the Bragg peaks of the quasilattice
diffraction pattern correspond to integer linear combina-
tions of the form in Eq. (21); that is, combinations of both
e;’s and 7e;’s. For the icosahedral vectors, Te; cannot be
written as an integral linear combination of the e;’s. Un-
like the case of the packing diffraction pattern, the quasi-
lattice pattern is defined not just by a single ring of basis
vectors (the e;’s) but by two rings (the re;’s as well). In
the end, though, one structure is just a decoration of the
other.

It is interesting to note that the extinction of the
unwanted spots can also be obtained by a simple modifi-
cation of the quasilattice; for example, consider a spacing
of grid lines given by

n
27

Each point of the quasilattice is a linear combination of
vectors of the form (m +n/7)e;, where n is even only
[for the quasilattice generated by Eq. (1), n odd and even
occurs]. Any such point of this more restricted kind can
be written as an integral linear transform of the e;’s alone.
The diffraction patterns of the modified quasilattice and
the packing will have Bragg peaks at precisely the same
points and extinctions at precisely the same points. The
intensities of the two patterns will differ, but since neither
corresponds to a realistic atomic model there is no need to
be very concerned about such quantitative differences.

In Fig 10 we show a picture of the diffraction pattern
for this modified quasilattice, which it can be seen, in-
corporates the correct extinctions. The two diffraction
patterns exhibited in Figs. 9 and 10 illustrate another pos-
sible variation among quasicrystals with icosahedral sym-
metry. Along with the face, edge, etc. models discussed
earlier, these correspond to different structures with the
same orientational symmetry, and phase transitions be-

x,,=n+-7z'_- +B|+e. 22
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FIG. 10. Computed diffraction pattern of the modified
quasilattice in the planes normal to the fivefold, threefold, and
(2 2)-fold axes of an icosahedron. As can be seen, peaks in the
(2 2)-fold pattern of the Ammann quasilattice (Fig. 9) have
been extinguished. (In addition, there are a few new peaks in
the figure compared to Fig. 9, but these are just an artifact of
using a different intensity cutoff.)

tween these different structures might be observed in
physical systems.

The brightest peaks in either diffraction pattern corre-
spond to those wave vectors k of the form shown in Eq.
(21) where the coefficients, p; +q; /7, are such that the
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Xi= =7-g(q,~7'—p,-) (23)

are as close to zero as possible. In such cases, the argu-
ments of the factors of f,(k) in Eq. (20) are near zero and,
as argued in Sec. IIT A [see Eq. (14)], this means f(k) is
large. The brightest peak of all, then corresponds to all
(pi»q;)=1(0,0)—the central peak of the diffraction pattern.
The next brightest peaks occur for the case where (p;,q;)
are nonzero for some single value of i, but (p;,q;)=(0,0)
for two distinct values of j not equal to i. These corre-
spond to wave vectors oriented along one of the
icosahedral basis vectors, €;. Among this subset of wave
vectors, the intensities are ordered according to how close
X; is to zero or, equivalently, how close g;/p; is to T; as
was concluded in the discussion of Eq. (14), the sequence
of brightest spots occurs for (p;,q;)=(F, ,1,F,), or

k=(F, .1+F,/7)e;, (24)

where F, represents the nth Fibonacci number. The
peaks in the sequence become brighter as n increases.
(This result is the same for the original and modified
quasilattices except for the restriction that g; =F, be even
in the latter case.)

IV. LOCAL ISOMORPHISM

An important difference between periodic crystals and
quasicrystals is that for crystals there is a unique ideal
unit-cell packing (up to translations and rotations),
whereas for quasicrystals there are an infinite number of
distinct ideal unit-cell packings. For a periodic crystal
there is a single unit cell and there is only one way to pack
the cell (up to translations and rotations) so as to form an
undefected crystal structure. For quasicrystals, there are
two or more unit cells and many distinct quasicrystal
packings which can be subdivided into different
equivalence classes that we call local isomorphism or LI
classes. Two quasicrystals in the same LI class are said to
be locally isomorphic.

Two quasilattices (packings) are locally isomorphic if
and only if every finite configuration of vertices (tiles)
that appears in each quasilattice (packing) appears in the
other. That is, two locally isomorphic quasilattices (pack-
ings) can be made to overlap out to any finite distance by
a finite translation (plus global rotations and inversions)
and overlap out to arbitrarily large distances if we allow
arbitrarily large translations. This is sufficient to guaran-
tee that clusters occur with equal frequency out to arbi-
trarily large distances. A quasilattice in one LI class will
have configurations of vertices that do not appear in a
quasilattice in a different LI class; a packing in one LI
class will have configurations or clusters of tiles that do
not appear in a packing in a different LI class.

Local isomorphism has physical significance. In par-
ticular, two quasilattices (or packings) have identical dif-
fraction patterns if and only if they are locally isomor-
phic. Two quasilattices (or packings) in distinct LI classes
have diffraction patterns with Bragg peaks in the same lo-
cations, but the peak intensities differ. Intuitively, one ex-
pects two locally isomorphic quasicrystals to have the

same diffraction pattern because they are locally
equivalent. Any finite bounded region which occurs in
one also occurs in the other. Thus, no local measurement
can distinguish the two structures. We will demonstrate
this result for the case of the icosahedral (vertex) quasilat-
tices described by Eq. (15).

A. Local isomorphism and diffraction patterns

Consider the quasilattices described by Eq. (15) for the
case of the vertex model. In this case, each vertex lies at
the intersection of three planes each of which belongs to a
set of grid planes normal to one of the six basis vectors,
e;. We will label the vectors i=0,1,...,5 where
es=(0,0,1) and

e, = ( sin(7) cos(2mn /5), sin(7) sin(27n /5), cos(n)),

where cos(n)=1/V'5. The spacing of the planes for each
of the six grids is identical except for the choice of a and
B. We can completely specify the the ith grid by the or-
dered pair (a;,8;).

From Egs. (11) and (12), it can be seen that changing
(a,B) for the 1D quasilattice only changes 3, which in
turn only changes the relative phases of the Bragg peaks;
the intensities ( « | f(k)|?) of the peaks are unchanged.

In two or three dimensions, though, changing (a;,[3;)
can change the relative intensities. The factors of f,(k) in
each term of Eq. (20) have as their argument an expres-
sion of the form k-u;; corresponding to the contribution
of quasilattice points that lie in planes that belong to the
grid normal to e;; thus, each factor of f(k) also depends
on the (a;,B;) associated with that grid. In particular,
each factor of f;(k-u;;) contains an a- and B-dependent
phase factor, exp(i;), where

k
P;iq;
27Tq i

}B.- ) (25)

= kpiqiai - T
where p; and g; are integers. We have implicitly used the
fact that, since F;(k) is a sum of products of f,(k), the
Bragg peaks occur only when f(k) is nonzero for each
factor in at least one term of Eq. (20); or according to Sec.
IIT A when k is of the form
1+
/17

plus cyclic permutations of ijk, for some triplet of
is£j==k. Thus, each term in Eq. (20) has a phase factor,
expli (¥; +¢; + ¥ )]. A change in (a;,5;) can change the
relative phase factors of the different terms in Eq. (20),
thereby changing the magnitude of their sum. The result
is a change in the peak intensity. (In general, the change
in intensities changes the quantitative but not the qualita-
tive features of the diffraction pattern.)

There are some shifts in the (a;,[3;), though, that leave
the Bragg peak intensities unchanged. These changes cor-
respond either to translations of the quasilattice, or to
shifts from one quasilattice to another in the same LI
class. We shall briefly present the argument in the
remainder of this section.

1

q.
k-u,,-k =kp,~q,— =27 |p; + Tl
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The shifts that leave the intensities unchanged are of
the form («a;,3;)—(a;,B;) where

a;=a;+z-€, (26)
Bi=Bi+z' e (27)

for all i, where z and z' are independent arbitrary 3-
vectors. We shall use the angular brackets to represent an
operation on an integer argument n, ranging from 0 to 5,
such that e(,)=e€3nmods) if n#5, and e, =—e, if
n =5. The vectors e; and e(;) are related to the two dif-
ferent 3D representations of the icosahedral group. The
action of elements of the icosahedral group on the
icosahedral star vectors, e;, is equivalent to a transforma-
tion of the following form: e;— tep;, where Pi corre-
sponds to a permutation of i’s and the sign depends upon
i and the particular group element. Thus, the icosahedral
group can be represented by 6D matrices which act on the
indices and change the signs of the e;’s. The 6D represen-
tation can be decomposed into two irreducible 3D repre-
sentations, I'; and I'3, which can be viewed as rotating the
3D vectors (rather than permuting the indices). The rela-
tionship between the e; and e(;), then, is as follows: If an
icosahedral group element has a representation in I';
whose action on the e; is equivalent to a permutation,
e;,— tep;, then the same element has a representation in
I'; whose action is equivalent to a permutation,
e(;y— te(p;) (Where we have not specified the appropriate
choices of signs). Note that our e(;) corresponds to €} in
Elser’s papers'! and e, in the papers of Duneau and
Katz.!?

Shifts of a; of the form shown in Eq. (26) correspond
to translations of the quasilattice equivalent to x—x—z
in Eq. (15). Such a shift results in ¢, —>¢; +(k-u;3 N(z-¢;)
and the phase of the ijkth term in Eq. (20) is changed by

k-[(z-€;)u +cyclic permutations of ijk]=k-z, (28)

where we have used the property of the w;’s, that
e 'ur=1 and e;-u; =€ u; =0, to reduce the expres-
sion in square brackets to z. From Eq. (28) we see that
the change in phase of the ijkth term is independent of i,
Jj, and k. Thus, the same phase change is made to each of
the terms in Eq. (20) and the intensity of the peaks is not
changed. Of course, an overall phase shift by k-z is just
the change in F;(k) to be expected since Eq. (26) corre-
sponds to a translation of the quasilattice by z.

The shift of the B; in Eq. (27) corresponds to a more
subtle transformation of the lattice. In general, the shift
results in a rearrangement of the quasilattice grid planes in
Jjust such a way as to produce a new quasilattice that is lo-
cally isomorphic to the original. (A much more thorough
discussion of such transformations will be given in paper
I1.)

For each wave vector k in the reciprocal lattice there
exists a unique k¥ such that, if for some triplet i54j+k,

kw=kpg, kupi=kpg, and k-uy;=kpq

where k), is defined in Eq. (7)], then

u kPi‘Ig
K uey gy =2mgi ———, (29)

plus two similar expressions with cyclic permutations of
ijk. According to Eq. (25), then, a shift of the B; of the
form in Eq. (27) results in a shift

Ui— K a0 Gy (2 ewy),

resulting in a phase shift for the ijkth term in Eq. (20) of
the form

k“-[(z'-e¢;y)u(iy(j) (k) +cyclic permutations of ijk =k*-z’,
(30)

where we have used the property that

ey uGy Gy =1

and

€ UGG (k) =€) ) () k) =0 .

Once again, we find that the net result of the shift is in-
dependent of i, j, and k. Therefore, each of the terms in
the sum in Eq. (20) is changed by the same phase factor,
exp(ik¥-z'), which can be brought out of the sum as an
overall phase shift of F3(k). Thus, there is no change in
the intensities of the peaks.

It is straightforward to show that Egs. (26) and (27), in
addition to rotations and inversions, represent the most
general shifts in the (a;,5;) that leave the intensities of
the diffraction pattern invariant. The results also apply to
the rhombohedral unit-cell packings since any such pack-
ing is the decoration of some quasilattice [although, strict-
ly speaking, our results have only been established for a
class of quasilattices with flat planes and with spacings
given by Eq. (1)]. In principle, the generalization to
quasilattices with different symmetries only requires fur-
ther application of group theory and vector analysis.

B. Physical significance of local isomorphism

In general, even for fixed orientational symmetry,
quasiperiodicity, and unit-cell shapes, there are infinitely
many distinct LI classes [corresponding, for example, to
shifts in the (a;,;) which are not of the form shown in
Egs. (26) and (27)]. No such issue arises for the case of
periodic crystals where there is a unique configuration of
cells—a single LI class containing one element. In Sec.
IV A, we argued that two quasilattices (or packings) have
diffraction patterns with identical intensities if and only if
they are locally isomorphic. This result suggests some
further physical consequences:

(i) Whereas modulations in the Bragg peak intensities
for ideal crystals can be used to directly probe the atomic
decorations of the unit cell, for quasicrystals the situation
is more complicated. Modulations in intensity can be ob-
tained not only by changing the atomic decorations of the
(two or more) unit cells, but also by changing from one LI
class of unit-cell packings to another.

(ii) The density wave description is expressed in terms
of the Fourier components of the density, and the expres-
sion for the Landau mean free energy is expressed in
terms of these components. In general, the free energy de-
pends on both the phases and magnitudes of the com-
ponents. Since two quasilattices in the same LI class have
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the same Fourier transform (except for a k-dependent
phase shift), their free energy must be the same (an overall
phase shift such as obtained by a translation, does not
change the free energy). By the same token, two quasilat-
tices in different LI classes have different free energies,
unless there is some accidental degeneracy. As support
for this conclusion, note that in Ref. 17 it was shown that
the density wave expansion for the Landau mean free en-
ergy of the icosahedral quasicrystal is invariant under
phase shifts in the density waves (Fourier components)
that correspond precisely to Egs. (26) and (27).

(iii) Given this conjecture, if the ground state of some
physical system is a quasicrystal state, as determined by
minimizing the Landau mean free energy, then it is de-
generate and corresponds to a set of configurations in a
single LI class (neglecting the possibility of accidental de-
generacy). For example, configurations corresponding to
the quasicrystal packings that obey the matching rules
described in Sec. II G have a different energy than config-
urations that do not obey the matching rules since, as we
noted, they necessarily belong to different LI classes. The
Penrose LI class of packings for any given symmetry (i.e.,
packings for which there exist matching and deflation
rules) appears to be the simplest class for which condi-
tions can be “rigged” (e.g., by covalent atomic or molecu-
lar bonding rules) so that quasicrystals in that class corre-
spond to the ground state. We do not suggest, though,
that this must be the case for I-Al-Mn in which there are
metallic bond forces with nearly spherical symmetry.

(iv) The entropy of the ground state is determined by
the number of energetically equivalent configurations.
According to the arguments above, only configurations in
the same LI class should be counted. Counting all possi-
ble rearrangements of the unit cells consistent with the
quasiperiodicity and symmetry leads to a vast overesti-
mate of the entropy.

V. COMPUTER MODELING
AND THE STABILITY OF QUASICRYSTALS

Thus far, we have discussed only the unit-cell structure
of ideal quasicrystals. In this section we discuss some of
our work on computer modeling of atomic quasicrystals
obtained by decorating the unit cells, including studies of
stability.

One method of studying the stability of quasicrystals is
to study the Landau mean free energy expressed as an ex-
pansion in density waves (cut off to include only the first
few terms) and then to examine the stability of quasicrys-
tals with the variation of parameters.'>!%171851 Al
though this is a powerful approach to such problems, the
method has the disadvantage that there are many free pa-
rameters (Nelson and Sachdev have attempted to improve
upon the method by utilizing experimental data to obtain
fits to the values of the free parameters'?) and the validity
of cutting off the Landau expansion is questionable.

As an alternative approach to studying the stability of
quasicrystals and to gaining better insight into possible
realistic atomic quasicrystal structures, we initiated an ex-
tensive program using computer modeling of ideal atoms.
This program began well before the report on I-Al-Mn

(Ref. 6) appeared as an effort to find physical systems
that might be likely candidates for forming quasicrystals.
The goal was to find whether there existed any conditions
for which the quasicrystal atomic configuration might be
locally, or perhaps even globally, favored energetically.
Obviously, this approach has its own limitations—sample
size, relaxation time, etc.—but it serves as an interesting
complement to the other methods. The most complete re-
sults to date are on 2D pentagonal atomic quasicrystals,
which we shall discuss here, although some of the insights
undoubtedly carry over to 3D structures as well.

One set of models is based on ideal atoms modeled as
soft spheres interacting through Lennard-Jones interac-
tions:

-6 —12
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Vi(r)=e (31
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where V;y(r) is the Lennard-Jones potential energy associ-
ated with two atoms separated by distance r.* The energy
€/12 corresponds to the binding energy for a pair of
atoms at the ideal separation, r =0, both expressed in ar-
bitrary units. The models contain two or more different
atomic species. Associated with each possible pair of dif-
ferent species is a different set of parameters, (€,0), which
is supposed to model the two-body interaction. These pa-
rameters may be chosen to favor different local atomic
configurations. Our strategy was to find parameters that
favor local fivefold symmetry, as described below.

For each model, the values of o for two of the atomic
species were chosen so that, after relaxation under the
Lennard-Jones potential, five of the atoms of larger radius
just fit around a central atom of smaller radius. In the
hard-sphere limit, this means

ry/ry=sin(w/5)/[1— sin(w/5)]

so that five of the spheres with radius 7, can densely pack
around a central sphere with radius r, in a pentagonally
symmetric configuration. This condition is chosen to al-
leviate the local frustration (on the scale of atomic clus-
ters) so that inhibits the formation of pentagonal packings
of identical atoms. Our notion was that, if the bond be-
tween the two different atoms is very strong, the forma-
tion of pentagonal clusters and then possibly pentagonal
quasicrystals might be favored. Obviously, this notion is
quite vague and we certainly do not argue that such a con-
dition is required. (Nevertheless, it is intriguing that
I-Al-Mn contains two atomic species such that, according
to the effective atomic radii measured in metals, 12 alumi-
num atoms can fit densely around a central manganese
atom.)

Next, we considered the possible atomic decorations of
the Penrose lattice. Even for fixed ratios of the atomic ra-
dii, we found a wide range of possible stoichiometries.
For the case of binary systems, for example, models have
been constructed with stoichiometry (large:small) ranging
from 7:1 to 5:1 with comparable packing fractions. In all
the cases we constructed, there are vacant regions and
two-level systems (ambiguities in the placement of atoms
that contribute to the entropy).

All the examples we constructed were statically relaxed
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using a conjugate gradient program to test the local stabil-
ity of the atomic configuration.?> In Fig. 11 we show an
example of a ternary alloy decoration of a Penrose tiling
after static relaxation. The initial configuration was a
decoration of a Penrose tiling. The two types of decagons
(arrangements of five fat and five skinny tiles) were each
decorated with the large and medium size atoms. The
smallest atoms were added to fill in the gaps that
remained. Where two decagons overlap, only one could be
decorated with a large atom. This binary choice is arbi-
trary (a kind of two-level system) and does not affect the
relaxation. Although there is some decay of the orienta-
tional and translational symmetry after relaxation, the
structure remains highly ordered. For example, we com-
puted the orientational order parameters—

, = (exp(in8)),

where 0 is the orientation angle of a bond joining two
near-neighbor atoms measured with respect to some fixed
axes and the angular brackets signify the average over all
nearest-neighbor (as determined, say, by the Voronoi con-
struction’) atomic bonds. In the unrelaxed configuration,
Q, is zero for n < 10 but Q) is unity, indicating that the
structure has perfect long-range pentagonal (or decagonal)
orientational order. (Note that, since atomic bonds have
orientations but not directions, Q, =0 for odd »; by this
definition pentagonal and decagonal orientational order
are equivalent.) For the relaxed configuration, the Q,
remain negligibly small for n <10 and Q,, ranges be-
tween 0.5 and 0.95, depending on the model (each sample
had 750 atoms or more). (Q;o=0.95 for the example in
Fig. 11.) To see if the decay in order is exponential, we

FIG. 11. Two-dimensional sphere packing using three dif-
ferent size spheres (a ternary alloy) which has been statically re-
laxed under a Lennard-Jones potential. This packing displays
long-range pentagonal bond-orientational order, and, as may be
seen by viewing at a grazing angle, sequences of parallel lines
separated by 1 or 7 (in suitable units) which indicate long-range
quasiperiodic translational order. The initial (unrelaxed) config-
uration of atoms was a decoration of a Penrose tiling.

computed the correlation function,
G,(r)=(Q,(rQ,(0)),

as a function of r and then determined the ratio
G10(r)/Go(r) to measure the decagonal orientational
correlations;?® the ratio decreased rapidly for small » but
then appeared to reach a long plateau, indicating that the
orientational order remained long range even after relaxa-
tion.

One interesting example is a binary alloy composed of a
large (L) and small (S) atom such that (¢€,0) is (1.0,2.618)
for the L-S interaction, (0.01,4.0) for the L-L interaction,
and (0.01,2.8) for the S-S interaction. This case is
designed so that the binding force between the two dif-
ferent atoms is much stronger than that between like
atoms to greatly favor pentagonal clusters. (It seems
peculiar at first that the value of o for the S-S interaction
is greater than for the L-S interaction. However, given
that the value of € is much greater for the L-S interac-
tion, the separation after relaxation is greater for L-S
than for S-S.) In Fig. 12, we show the bond-
angle—bond-angle correlation function, Go(r)/Gy(r)
suitably normalized, and the radial distribution function
(RDF) of the relaxed structure, both of which illustrate
that orientational and translational order is maintained
over the sample. For this case, we have been able to find
no crystalline phase that has lower energy, including
numerous phase-separated crystalline states one might
consider. Although this analysis is far from conclusive, it
suggests that there may exist conditions under which the
quasicrystal phase is even more energetically favorable
than the crystalline state. This is consistent with the con-
clusions drawn from the analysis of the Landau
theory. 1215:1%,18,51

In three dimensions the only difference is that the steric
hindrance to the formation of quasicrystals appears to be
less than in two dimensions for all the models we have
considered. For example, although there are cracks
formed in a 3D packing of regular dodecahedra (since
they do not pack crystallographically), the cracks
represent a considerably smaller vacant volume than their
analogues in a 2D packing of pentagons. Thus, we con-
clude that dense atomic quasicrystal structures are feasi-
ble; some may even be globally stable.

Since the Lennard-Jones parameters we studied were
not realistic (that is, did not correspond to the values of
the parameters found for the inert gases or metallic
glasses), we next modeled a system that we hoped could be
measured experimentally—a configuration of polystyrene
spheres (polyballs) in colloidal suspension in an ionic solu-
tion interacting through electric and ionic forces. We
modeled the polyball spheres using an interpolyball poten-
tial of the form:*’

V=V,+Vz (32)
where V4 is the attractive van der Waals interaction and

Vg is the repulsive double-layer interaction. ¥V, is given
by

H_ 1 1 Ly | 224
Vi=—-—1 +71n ,
T3 ey 422 P 427

(33)
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FIG. 12. (a) Bond-angle—bond-angle correlation function

G10(r)/Go(r) of the relaxed ternary “alloy” (2D sphere packing)
normalized so that the function is unity for r =0. The alloy
contains three types of atoms (large, medium, and small).
Shown here is the bond-angle correlation for large atoms only,
but correlations for medium and small atoms are similar. Note
that the function drops sharply initially, but then levels off and
oscillates about a value of approximately 0.5. (b) Radial distri-
bution function (RDF) of the relaxed ternary alloy displaying
the persistence of long-range translational order.

where y is the surface-to-surface distance divided by a; a
is the sum of the radii of the two interacting polyballs;
and H is the Hamaker constant for the system, typically
of order 2 10~2°J. ¥V was taken to be of the form:

€.ay’

2
where €,=8.9X10~° C/Vm is the dielectric constant of

the medium; « is the reciprocal Debye-Huckel reciprocal
screening length; and ¢ is the surface (double-layer) poten-

Ve = In[1+exp(—kay)], (34)

tial, for which a typical value is 0.1 V.%’

The polyball system seems ideal, in principle, for find-
ing quasicrystal configurations since so many physical pa-
rameters can be adjusted to produce optimal conditions
for quasicrystal formation. For example, in two dimen-
sions we can imagine a system composed of two polyball
species with opposite charges such that five of the larger
species just fit around a central smaller one after relaxa-
tion under the interpolyball potential. The force between
different (oppositely charged) polyballs is much greater
than the force between like polyballs due simply to elec-
trostatic repulsion. Phase separation of the species or oth-
er simple crystal-like configurations appear to be highly
suppressed energetically. (Of course, it is always very dif-
ficult to rule out the possibility of a periodic lattice with a
very large unit cell.) According to our computer compu-
tations, for the choice of parameters above, a pentagonal
quasicrystal configuration of spheres of radius
ry=0.31 ym and r,=0.33 um is at least locally stable
under relaxation, and, by our argument above, possibly
even globally favored energetically.

Unfortunately, one problem with testing this possibility
in the laboratory is that oppositely charged polyballs tend
to flocculate, forming large clumps before they can be
mixed homogeneously. However, if the ionic concentra-
tion is kept high during mixing to screen the charges, and
then the ionic concentration is rapidly changed to the
desired value above, this problem might be overcome.*®

VI. CONCLUSIONS

Quasicrystals are a well-defined ordered phase of solid
matter with long-range quasiperiodic translational order
and long-range orientational order. Because they are not
periodic, they can have orientational symmetries disal-
lowed for crystals; in fact, they can have arbitrary orienta-
tional symmetries corresponding to any star of symmetry
vectors. They are characterized by a diffraction pattern
composed of a dense set of true Bragg peaks in an array
that reflects the orientational symmetry.

Quasicrystals can be classified by their orientational
symmetry and quasiperiodicity (that is, the irrational
numbers that determine the ratio of length scales). For
fixed orientational symmetry, there are various manifesta-
tions of the same orientational symmetry, such as the ver-
tex, edge, face, etc. models in the case of icosahedral
orientational symmetry. In addition, for a given symme-
try and quasiperiodicity, there exist many distinct local
isomorphism classes of structures, where two structures
are said to be locally isomorphic if and only if every finite
region in each occurs identically somewhere in the other.
If two structures have the same orientational symmetry
and quasiperiodicity but are in different local isomor-
phism classes, they will have different Bragg peak intensi-
ties and Landau mean free energies. Therefore, a state
with fixed energy, e.g., the ground state, corresponds to a
single local isomorphism class.

Computer modeling of atomic quasicrystals and Lan-
dau theoretic treatments indicate that quasicrystal struc-
tures can be locally, and perhaps even globally stable ener-
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getically. A range of stoichiometries appear to be locally
stable.

A given system may exhibit phase transitions between
quasicrystal structures with many different orientational
symmetries or between two different manifestations of the
same orientational symmetry, such as a transition from an
icosahedral vertex model structure to an icosahedral face
model.

The electron diffraction patterns of I-Al-Mn and relat-
ed alloys clearly show that their structures are closely re-
lated to icosahedral quasicrystals; the positions of the dif-
fraction peaks agree remarkably well with the predictions
for an icosahedral quasicrystal. The electron micro-
graphs, x-ray diffraction measurements, and the morphol-
ogy of I-Al-Mn also appear to support the hypothesis that
I-Al-Mn is an example of an icosahedral quasicrystal.

On the other hand, it should be noted that, although
measurements of the orientational correlation length indi-
cate that it is on the order of microns, all measurements
of the translational correlation length are on the order of
hundreds of angstroms.> The prejudice is that this is due
to strain or to a high density of defects. If so, it might be
expected that such defects can be annealed out in some
samples (although it is much more difficult to anneal de-
fects in quasicrystals compared to crystals'®*?). Another
possibility is that the I-Al-Mn structure is not really a
quasicrystal, but an icosahedratic as described in Ref. 26.
Such a structure has long-range orientational order and
short-range translational order. It should also be noted
that by considering larger and larger unit cells, a periodic
crystal can be constructed so as to produce a diffraction
pattern that arbitrarily well approximates a quasicrystal
pattern. (A simple way to illustrate this is to take a single
Penrose rhombus tile, deflate it arbitrarily many times,
and then use the tile as a large unit cell for a periodic lat-
tice.)

Whatever the case of I-Al-Mn, it is nevertheless ap-
parent that a whole class of new atomic structures for
solids is possible corresponding to a new phase of matter
with unique symmetries and physical properties. Tradi-
tional concepts, such as the impossibility of fivefold sym-
metry, must be abandoned. We remain hopeful that na-
ture will take frequent advantage of such an intriguing
possibility.

The existence, both theoretically and experimentally, of
icosahedral quasicrystals may also have ramifications for
the study of glass structure, the subject that was the origi-
nal motivation for this research. As we noted in Sec. IT A,
one of the leading models of metallic glass structure, dis-
cussed by Sadoc, Sethna, Nelson, and others,2° is that over
extended but finite length scales the glass is a structure
with icosahedral orientational order. According to the
model, the atomic arrangement in a metallic glass over
short distances can be described as a projection from a
packing of atoms that lie in a closed (spherical) curved
manifold. The atoms in the curved manifold are packed
in a perfect tetrahedral lattice in which 20 tetrahedra join
at a point to form an icosahedron. The model is based on
the notion that, although an icosahedral configuration of
atoms is energetically favored on small scales, as was first
noted by Frank,® the icosahedral symmetry of an atomic

structure cannot be extended over a long range. The pro-
jection from curved space to flat space necessarily gives
rise to disclination defects which disorder the orientation-
al symmetry.

The quasicrystal is a counterexample to the notion that
perfect icosahedral orientational symmetry is only possi-
ble on a curved manifold and that icosahedral orientation-
al symmetry in flat space must be limited in range due to
the presence of disclination defects. The loophole is that
disclination defects may be so ordered and so dense in a
structure that their effect on the long-range orientational
order is screened and the icosahedral orientational order
can be extended to infinite range. The resulting structure
is then best regarded as a new kind of ideal ordered struc-
ture. Not only is this a theoretical possibility, as illustrat-
ed by our construction of icosahedral quasicrystal unit-
cell packings, but also we have now an experiment involv-
ing a real metallic alloy system that exhibits long-range
icosahedral orientational symmetry (extending over mi-
crons). The alloy was even produced by a splat-cooling
process usually used to produce metallic glasses.

Of course, we take care to note that, even if the original
motivations for the curved space projection model are
shaken, it may still be a correct description of some, if not
all, metallic glass structures. Using the model, computa-
tions of the structure factor for metallic glass have been
obtained which appear to be reasonable,?® although we do
not know if the results depend only on the presence of
small icosahedral clusters, which might be obtained with
other models, or actually require the projection from
curved manifolds.

Our own point of view continues to be that the metallic
glass structure is closely related to that of the icosahedral
quasicrystal. One possibility is that the structure and
properties of a metallic glass are similar to those of an
icosahedral quasicrystal with a high density of defects.
Alternatively, it may be that there is a whole progression
of periodic (crystalline), then quasiperiodic (quasicrystal-
line), and finally chaotic (glassy) structures that form a se-
quence of spatial possibilities analogous to the progression
of periodic, quasiperiodic, and finally, chaotic behavior
that form a sequence of temporal possibilities for dynami-
cal systems. The state achieved by a given system would
depend upon the kinetics by which the atoms sample the
quasicrystal and crystal structural possibilities under the
conditions of rapid quenching. This kind of approach
might lead, we hope, to a unified theory of the atomic
structures of solids.
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FIG. 3. Two identical Penrose tilings, one translated with
respect to the other, are overlayed to form a moiré pattern.
Where the two patterns interfere constructively or destructively,
light or dark lines appear.



FIG. 9. Computed diffraction patterns of the icosahedral
Ammann plane quasilattice (left) and the experimental electron
diffraction patterns taken on a rapidly cooled alloy of aluminum
manganese. (a) In a plane normal to a fivefold axis of an
icosahedron. (b) In a plane normal to a threefold axis. (c) In a
plane normal to a (2X2)-fold axis.



