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Cumulative disorder and x-ray line broadening in multilayers

W. Sevenhans, M. Gijs, and Y. Bruynseraede
Laboratorium voor Vaste Stof Fysika en Magnetisme, Katholieke Universiteit Leuven,
B-3030 Leuven, Belgium

H. Homma and Ivan K. Schuller
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
(Received 12 June 1986)

We have measured the high-angle x-ray diffraction from crystalline Pb-amorphous Ge mul-
tilayers. The experimental data in conjunction with a model calculation for the fluctuation in
amorphous-layer thickness show that this fluctuation is larger than about 5%. A smaller thickness
variation implies the existence of high-angle peaks which have not been observed in any

amorphous-crystalline multilayers.

The study of x-ray diffraction from multilayers and su-
perlattices has received considerable theoretical and exper-
imental attention.!"* For the case of amorphous-
crystalline multilayers theoretical predictions imply the
existence of many high-angle diffraction peaks due to the
interference between the crystalline layers. All experi-
ments to date, however, only show the presence of one
broad peak due to the finite-size-limited incoherent
scattering by the individual crystalline component. We
show here that random variations in the amorphous-layer
thickness (“cumulative disorder”) can explain these obser-
vations. By comparing the theoretical calculations with
the experimentally measured spectra from crystalline
Pb-amorphous Ge multilayers we are able to set a lower
limit on the amount of disorder or thickness variation
present.

The structural characterization'? of multilayered super-
lattices is the fundamental basis for the understanding of
their interesting transport and magnetic properties. A
variety of models such as the step? and the strain model®
]
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where M is the number of bilayers in the sample, and Q is
the scattering vector assumed to be in the perpendicular
direction to the multilayer.

We will concentrate here only on an uncontrollable ran-
dom type of disorder excluding long-range drifts in the
preparation conditions and systematic changes such as
those produced by interdiffusion. The type of random
variations possible are the following: (a) at a particular
point in the x -y plane of the film, the thickness of each
amorphous layer might vary around an average value &
(b) there might be lateral thickness variations (“rough-
ness”) along the plane of the film due to substrate imper-
fections, island growth, lateral diffusion, etc.

The x-ray linewidths will be affected by the disorder in
the following ways (assuming for simplicity that the crys-
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have been proposed. The former assumes an abrupt com-
positional profile and a uniform atomic spacing for each
layer; in the latter model, on the other hand, lattice-
spacing variations are assumed due to in-plane coherency
strains. These models have been successfully applied to
metallic®* as well as semiconducting superlattices.’

A more realistic model would require including effects
of disorder such as random fluctuation of modulation
periodicity (A) and roughness at interfaces.>>® There are
two types of disorder in A, i.e., noncumulative and cumula-
tive. The latter type of disorder is more common than the
former unless the error in A is compensated for during
sample preparation.> We consider here the x-ray scatter-
ing from a crystalline-amorphous one-dimensional super-
lattice; the extension to the crystalline-crystalline case is
straightforward.

The scattering amplitude for a multilayer formed by N
crystalline layers with scattering power f and interplanar
spacing d followed by an amorphous layer (of low scatter-
ing power which is set to zero) of thickness a; is given by

M-—1

iQ[ ) aj+(M—1)Nd]“,

j=1

1)

I
talline layer thickness does not vary):’

(1) Noncumulative disorder (as is the case for thermal
motion®?) in which the position of the layers randomly
fluctuates around the mean value @. As a consequence the
position of the Rth layer which appears as the exponent of
the Rth term in expression (1) is given by

Ra+RNd +Aag , (2)

where Aag is the change of the position of layer R from its
average position R@+ Nd. In general Aag is assumed to
be randomly distributed in a Gaussian distribution. This is
similar to the treatment of thermal fluctuations and there-
fore the linewidth is not affected, only the intensity de-
creases as the effective Debye-Waller coefficient as long as
Aag is given by a Gaussian distribution.
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(2) Cumulative disorder which is possibly the main ef-
fect in multilayers.%!® In this case, the exponent of the
Rth term in expression (1) is given by

R
Ra+RNd+ Y Aag; . (3)

j=1

The main difference between formulas (2) and (3) is that

in the second case the random fluctuations of one layer af-
J
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fect the fluctuations in the other. This is the main reason
why this type of disorder will affect the linewidth and rela-
tive intensities considerably.

(3) Surface roughness (incoherent) which should be
averaged laterally (x -y ) over the sample.

(4) The finite-crystal-size coherence length which also
affects the linewidth in a known fashion.

The scattering intensity for perfect crystalline layers is
given by

M=2
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Assuming a Gaussian distribution for the a; around @ with a width ¢ ~! and averaging the intensity over this distribu-
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=( formula (5) reduces to the simple expression for a step model.

The effect of the disorder is to give intensities which are not Debye-Waller-like. On the other hand if the averaging is

performed on the scattering amplitudes'®!3
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At this point we should remark that the incoherent dif-
fuse scattering (i.e., the difference between the average of
the scattering function squared and the average of the in-
tensities) is quite large at high angles so care should be ex-
ercised if a comparison is to be made between low- and
high-angle intensities. Of course, dynamical effects are
also present which further complicate this comparison.

Figure 1 shows the effect of cumulative disorder in the
amorphous layer on the high-angle diffraction peaks as
calculated using formula (5). A perfect multilayer with
no variation in the thickness of the amorphous layer
(c ~'=0) shows well-developed superlattice peaks at high
angles. As the disorder increases the lines broaden and
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merge together. When the disorder changes from
¢~ !'=0,05a to ¢ "' =0.07a all trace of superlattice modu-
lation peaks disappears and the high-angle diffraction
spectrum is merely given by the finite-crystal-size-limited
diffraction peak from the crystalline Pb component.

In order to check some of these ideas we have performed
diffraction experiments on a variety of crystalline
Pb-amorphous Ge multilayers.!* The Pb-Ge multilayers
were prepared on liquid-N;-cooled sapphire substrates in a
molecular-beam-epitaxy apparatus (1x10~8 Torr during
evaporation) using a rate-control technique which employs
a quadrupole mass spectrometer in a feedback mode. This
technique allows a control which is better than 5% on the
rate with a time constant of 3 msec, as has been described
earlier.!® The starting materials were 99.999%-pure Pb
and 99.9999%-pure Ge. The x-ray measurements were
performed on a 2-kW DMax II Rigaku diffractometer
equipped with a variable-temperature stage and low-angle
capabilities. The high quality of the layered structure is
proven by the existence of up to 13 low-angle multilayer
peaks and by the fact that the even-order peak intensities



FIG. 1. Simulated high-angle 6-26 x-ray spectra for different
values of thickness distribution width ¢ ~! for d =2.87 A, N =25,
a=30A,and M =13.

are of smaller amplitude than the odd-order ones in
equal-thickness multilayers. Independent transmission
electron microscopy and electron diffraction measure-
ments on transverse cross sections prepared using ion mil-
ling, also showed distinct well-separated layers. The de-
tails of the temperature behavior of the x-ray diffraction
and electron microscopy results will be the subject of a fu-
ture publication. The amount of roughness, however, is
very hard to quantify from such electron microscopy mea-
surements.

Figure 2 shows the experimentally measured diffraction
data from a Pb (49 A)-Ge (59 A) multilayer with
M =51. The diffraction data at high angles show one
broad peak centered at the Pb (111) position. Measure-
ments for a variety of thicknesses of the Pb films con-
firmed that the linewidth of this peak is given by the finite
size of the Pb layer. This figure also shows a fit to Eq. (5)
with ¢ “'=2.0 A, which corresponds to a disorder of about
4%. We have performed additional Debye-Scherrer dif-
fraction measurements from a sample peeled off the sub-
strate and confirmed that only crystalline Pb is present,
without any traces of oxides or crystalline Ge phases.

Earlier measurements on Cr-C, Ni-C, W-C,!%!6 Fe-
Ge,'” and Nb-Ge (Ref. 18) (crystalline-amorphous) mul-
tilayers also show the existence of one broad peak due to
the finite size of the crystalline component. Therefore, in
all these multilayers the cumulative disorder is larger than
about 5% of the layer thickness. The conclusions drawn
here are equivalent to the statement that the individual Pb
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(dashed line) for a Pb (49 A)-(Ge 59 A) multilayer fitted to
Eq. (5) with ¢ ~!=0.04a (solid line).

layers scatter incoherently*!”!8 with the additional quanti-

tative conclusion regarding the amount of disorder re-
quired to obtain incoherent scattering. Moreover, if the
amount of cumulative disorder is assumed to be the same
for all crystallites in the x -y plane the conclusions will not
change. This is so because lateral (x -y ) plane roughness
adds incoherently (for scattering Q vector in the z direc-
tion) and so only the total intensity of the peaks changes,
not their relative intensities or shapes. We should remark
at this point that generally the rate control in all prepara-
tion methods available to date (power control for sputter-
ing, quartz crystal, mass spectrometry, electron impact
emission spectroscopy for electron beam gun evaporators,
etc.) is larger or of the order of 5%. The error in the rate
control, therefore, is sufficient to wipe out higher-order
multilayer peaks. Of course, growth phenomena, such as
diffusion, island growth, etc., will also contribute to fur-
ther smear out the multilayer peaks.
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