
PHYSICAL REVIE%' B VOLUME 34, NUMBER 8 15 OCTOBER 1986

Spectroscopy of single atoms in the scanning tunneling microscope
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A study is presented of the bias dependence of the tunneling current between two planar metal
electrodes, each of which has an adsorbed atom. (One atom can be thought of as the tip, the oth-
er as the sample. ) The positions of the peaks in a plot of the calculated dlnI/din V versus V show

a close correspondence to the positions of the resonances in the densities of states of both sample
and tip.

We discuss here the extent to which spectroscopy in the
scanning tunneling microscope' gives an accurate ac-
count of the surface-region density of states of the sam-
ple. 9'o For this purpose we study the vacuum tunneling
current between two planar metallic electrodes as a func-
tion of the bias between them, in the instance in which
there is a single adsorbed atom on each electrode.

The tunneling-Hamiltonian formalism" is used to cal-
culate the total current in terms of the wave functions
determined separately for each electrode in the absence of
the other. '2 These wave functions are calculated starting
with results on atomic chemisorption of Lang and Wil-
liams, 's as described in Ref. 14. The jellium model with

r, 2 is used for each of the metal surfaces.
We describe our problem schematically as in Fig. l.

(We will employ atomic units in our discussion, in which
ft m (e ) 1.) For the picture as shown, we define the
current I and the bias V as positive. To simplify our dis-
cussion, we take the Fermi energy for the left electrode
EFL (measured with respect to the bottom of the conduc-
tion band for this electrode) to be equal to EFa (the corre-
sponding quantity for the right electrode): EFL EFrt
=-EF. Tunneling (for V & 0) takes place from filled states
on the right with energy E„(measured with respect to the
bottom of the conduction band on the right) to unfilled
states on the left with energies E„E„+V. The Hamil-
tonian for the left (right) electrode considered separately
has eigenfunctions y~L (iirP), with eigenenergies E„(E,).
The current at zero temperature is then

I -4» ai. d vie(E, —E„)—e(E,—E„)l
xb(E„—E„-V)

~ J„„(', (1)

where the step function e(x) is 1 for x &0 and 0 for
x&0,

J„„-—,'i „—dSl(yP)'Vy~ —y„&(yP)'j, (2)

and fd p (fd v) is an integration over energy and a sum
or integration over the other state labels as well. We do
not extend the meaning of fd p (fd v) to include a sum
over both a stationary state and its complex conjugate as
we did in Ref. 14 (it was necessary there in obtaining the
current density), and so there is a factor of 4 in Eq. (1)
that was not present in the analogous equation in that pa-
per. The integral in Eq. (2) is over an infinitely extended
surface in the vacuum region between the electrodes, as
discussed in Ref. 11. Note that (given the b-function re-
striction) the difference of step functions in Eq. (1) is
nonzero only for energy levels in the strip of width V be-
tween the dashed lines in Fig. 1.

In this paper we will consider values of the bias, typical-
ly —1 eV, that are relatively small on the scale of the work
function, and we will therefore make the approximation of
computing ter~ and yP in the absence of the electric field.
We show our approximation schematically in Fig. 2
(V&0 case) for ill„, where the potential that slopes up
into the vacuum region (dashed line) is replaced by a con-
stant potential in this region (solid line). We make the
corresponding approximation for yP, with the potential
that slopes down into the vacuum region being replaced
again by a constant potential. ' Thus ter„will decay more
slowly than it should in the vacuum region, while yP will
decay more rapidly than it should, but if we evaluate Eq.
(2) at the midpoint between the two electrodes, these two
effects are seen (in a simple model calculation) to cancel

FIG. 1. Schematic diagram of energies in the tunneling prob-
lem.

FIG. 2. Schematic representation of the approximation used
in computing the wave functions.
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to first order in the bias, leaving only a small second-ader
error.

We will consider in our discussion a Na atom, which we
label the tip, and a Ca atom, which we label the sample.
(The present analysis however treats tip and sample en-
tirely symmetrically. ) Calculations for such systems, with
a variety of lateral separations between tip and sample
atoms, were given for the low-bias limit in Ref. 17. Here
for simplicity we will consider just the case of zero lateral
separation. 's We exclude from the calculated total current
the current that would flow between the two bare metal
surfaces in the absence of both atoms (which is infinite be-
cause of the infinite surface area); the result is nonetheless
just denoted by I in our figures. (The current density in
the absence of both atoms is —10 of the current density
on the axis in the presence of the atoms. )

In Fig. 3 (top) we show the additional eigenstate density
due to the presence of a Na atom and of a Ca atom on a
metal surface, that is, the total eigenstate density for the
metal-adatom system, minus that of the bare metal. Note
that the energy axis for Na (the top of the graph) is re-
versed for later convenience. In the case of Na, the fact
that the resonance, which corresponds to the 3s valence
level of the free atom, is mostly above the Fermi level indi-
cates that the 3s electron of the Na has been largely lost to
the metal. For Ca, the 4s valence shell of the free atom is
filled, but in the adsorption case there is loss of electronic
charge to the solid, with the result that the peak of the 4s
resonance is near the Fermi level, as seen in the figure.
Only the state density component with azimuthal quantum
number m 0 (e.g., s and p, ) is shown, because m~0
components make a much smaller contribution to the tun-
neling current for lateral separations that are not too
large —cf. discussion in Ref. 14.

We now discuss the results of our calculations. The
current is computed using Eq. (1) (much as it was com-
puted in Ref. 17)'9 for a number of values of the bias, and
the results numerically differentiated to produce a table of
dl/dV vs V. The center-to-center distance between the
atoms is held fixed at 18 bohrs (9.5 A), roughly the
separation discussed in Ref. 17. We take the atom on the
right to be the tip atom, and so by the convention of Fig. 1,
positive bias represents tunneling from filled tip states to
empty sample states, while negative bias represents tunnel-
ing from filled sample states to empty tip states. We plot
(dI/dV)/(I/V) dlnI/dlnV, as suggested by Feenstra,
Stroscio, and Fein. (Note that this is unity for V 0.)
These authors find experimentally that this dimensionless
quantity is relatively independent of tip-sample separation,
and that it gives a good account of the surface density of
states of the sample.

The solid curve in Fig. 3 (bottom) gives (dI/dV)/(I/ V)
for the case of a Ca atom on the left (sample) and a Na
atom on the right (tip). The positions of the two Ca peaks
and one Na peak in the density of states correspond
reasonably well to the features of this curve. Note the
negative values for V near +2 eV. Such "negative resis-
tance" effects have been discussed by Esaki and Stiles.

In an experiment, it ~ould be most convenient if the tip
state density could be taken as relatively featureless, and
thus be omitted from consideration. In at least one case
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FIG. 3. Top: Curves of the difference in eigenstate density
between the metal-adatom system and the bare metal (r, 2)
for adsorbed Ca and Na. Note that the energy scale for Na
(top) is reversed. The 3s resonance for Na is clearly evident.
The lower-energy Ca peak corresponds to 4s, the upper to 3d
(aud some 4p). (Only m 0 is shown. ) Bottom: solid line is cal-
culated curve of (dI/dV)/(I/V) vs V for Ca/Na; dotted line is
same quantity evaluated using the simple model represented by
Eq. (4).

(Ref. 8), tips were used which were purposely blunt (and
probably disordered), and it was found that the tip state
density appeared to play no significant role in the results.
This seems quite reasonable, in view of the expectation
that most of the sharp features in the density of states of
such a tip ~ould be ~ashed out. Even if the tip were very
sharp (a single atom), its state-density structure should be
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similar to the often broad resonances in the cases studied
here; it would certainly not exhibit the complex surface-
state structure that may be characteristic of an extended
ordered surface made of these same atoms.

Now let us discuss a rough approximation for the tun-
neling current in terms of the m 0 components of the
state densities. By analogy with the results of Tersoff and
Hamann2' for the low-bias limit, we expect crudely that

REF+ V

I~„dEpT(E—V)ps (rT,E), (3)

where pT(E) is the density of states associated with the tip
atom (i.e., the total density of states for the metal-adatom
system minus that for the bare metal), which is taken to be
on the right; ps(r;E) is the local density of states due to
the sample; and rT is the position of the center of the tip.
Let us now say roughly that

p (r E ) ~p (E)e 2s42(w-8)+ v

where ps(E) is the density of states associated with the
sample atom, W is the height of the sample surface poten-
tial barrier (we think of it as square for simplicity), and s
is the tip-sample separation. Again, we are taking only the
m 0 components of all state densities (i.e., s and p, for
example, but not p,s). This form would not be a very good
approximation if there were a significant wave-vector
parallel to the surface, since the decay length in that in-
stance would be appreciably shorter, but cases of this type
(e.g., certain surface states) do not occur in the present
context. Note that we are using an "average barrier" ap-
proximation here. 3 (Note also that effects of current flow
directly to or from the planar metal electrodes are omit-
ted. ) If we substitute this expression into Eq. (3), then we
obtain, with a change of variable to emphasize the symme-
try,

r EF+VI- dEp (E-V)p (E)e-"~" -""
4 EF

lPEF+ 2 V
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FIG. 4. Solid line: obtained using Eq. (4) with Ca sample and
constant-state-density tip. Dotted line: obtained using Eq. (4)
with constant-state-density tip and sample.
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We can investigate the comparative utility of curves of
(d1/dV)/(I/V) and dI/dV in a simple way by taking the
tip state density in Eq. (4) to be constant and the sample
state density to be a Lorentzian (see Fig. 5). For the case
of such a peak centered, e.g., l eV above the Fermi level
(and a 4-eV work function and separation s equal to that
used above24), we graph the deviation from the Lorentzian
center of the positions of the peaks in (dl/dV)/(I/V) and
dI/dV, as a function of the Lorentzian peak width. We
see that over the range shown, the maximum deviation for
dl/dV is three times what it is for (dl/dV)/(I/V). This,
of course, depends on the presence of the barrier penetra-
tion factor. If it were not included, there would be no shift
of the peak in dl/dV away from the peak in the Lorentzi-
an, but a shift would remain for (dl/dV)/(I/V).

(Note that 8' @+EF,with 4 the work function. ) This
form is very convenient for discussion purposes. It is just
an integral over the product of tip and sample state densi-
ties with the simplest barrier-penetration factor. When
dI/dV is calculated using this form, in addition to prod-
ucts of state densities evaluated at the ends of the energy
interval, there are terms associated with the V dependence
of the integrand (which appear to be neglected in Ref 3.).

The dotted curve in Fig. 3 (bottom) shows (dI/dV)/
(I/V) evaluated using Eq. (4) for the Ca-Na case. 24 The
simple model provides a good account of the qualitative
features of the results of the full calculation. Figure 4
(solid curve) shows what happens to (dI/dV)/(I/V) in
this model if we take the tip state density to be a constant,
leaving the sample (Ca) state density unchanged. (The
dotted curve is for both tip and sample state densities con.-
stant. ) It is evident from this figure that for sufficiently
negative bias, the Ca atom mouM be essentially invisible,
because its state density has no structure in the corre-
sponding energy region.
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FlG. 5. Results calculated using Eq. (4) with constant-state-
density tip and Lorentzian-state-density sample. Solid line:
difference between position of peak in (dI/dV)/(I/V) and posi-
tion of peak in Lorentzian, as a function of full width at half
maximum (FWHM) of Lorentzian. Dot-dash line: same for
dI/dV.
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