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The frequency renormalization parameter of the generalized nonlinear o model introduced to
describe the interacting disordered electron system is identified in terms of the specific heat. This
allows us to complete the effective Landau Fermi-liquid picture for this system and to give the
asymptotic behavior of the electronic specific heat in the various universality classes of the metal-

insulator transition.

The electron-electron interaction in a disordered medi-
um has been found! to introduce relevant corrections to
the Landau theory of the normal Fermi liquid. Many of
these corrections are logarithmically divergent in two di-
mensions as the temperature T decreases to zero.! Since
that discovery,? theorists have been looking for a
renormalization-group approach which could sum the
correction terms in the physical quantities to obtain
power-law behaviors near the metal-insulator transition, at
least in the & expansion (¢=d —2, d being the dimen-
sionality).

Theorists have had to face the problem of deriving the
renormalization group equations for the couplings describ-
ing the electron-electron interaction in the different chan-
nels.> This problem was first solved by Finkelstein® in the
simplified case where particle-particle (hole-hole) chan-
nels are suppressed, so that only the singlet (I';) and trip-
let (T",) interaction amplitudes must be considered.

Finkelstein® mapped the interacting disordered electron
system into an effective nonlinear o model. As in the stan-
dard weak-localization regime,' the expansion parameter
of the model is the dimensionless inverse conductivity
t =A%/ (27)%voD, where D is the diffusion coefficient, vq is
the bare density of states, and A is the ultraviolet cutoff of
order (Dgto) ~'/2, 7o being the bare scattering time. To-
gether with [, Ty, and ¢, the effective nonlinear o model is
specified by the frequency or temperature renormalization
parameter Z which is needed to take care, in a consistent
way, of the corrections introduced by the electron-electron
interaction in the diffusive mode (the ladder in the
particle-hole channels).**

We shall show in this report that, at least to lowest order
in € and to one-loop expansion, Z is related to the electron-
ic specific-heat renormalization induced by the interaction
in the presence of disorder

z=-L c,=yT, (1)
(]
where yo=(27%vy/3) is the coefficient of the linear term of

the Landau specific heat in the absence of disorder
(ch =7y0T). This completes the identification of the renor-
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malization parameters of the effective nonlinear o model
in terms of physical quantities. It has, in fact, been
shown*-8 that, while Z renormalizes the frequency in the
diffusive mode, the two combinations Z;=Z —2v (I
—T) (I being the static screened Coulomb amplitude)
and Z,=Z + voI', renormalize the frequency associated
with the density and the spin-fluctuation modes, respec-
tively. They can be expressed in terms of the thermo-
dynamic density of states 8n/du and the spin susceptibility
X
1 on Y4
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where X =pujvo/2 is the Pauli susceptibility. If one substi-
tutes Z; and Z; in Eq. (2) with their bare values
Z9=1-2vw(@%-1), Z9=1+vI'? one recovers the
standard Landau expressions (87/9u)* and X for an/du
and X in the absence of disorder. According to the analysis
carried out in Refs. 4-8, Z; remains unrenormalized and
equal to its initial value Z{. Z, instead is strongly renor-
malized, leading to a pronounced spin susceptibility
enhancement in the nonmagnetic impurity case.

The problem of disordered interacting electrons may
therefore be modeled in terms of a “renormalized” Landau
theory

Z,=

L
On _18n

ou ou

where the renormalization parameters Z and Z, are ex-
pressed in terms of the renormalized couplings of
Finkelstein’s nonlinear ¢ model* and can be analyzed by
the renormalization-group approach.

To identify y/yo with Z we shall first evaluate the lead-
ing corrections to cy in terms of the renormalized parame-
ters of the effective nonlinear o model to lowest order in ¢,
thus generalizing the perturbative results of Ref. 9. For
this purpose we use the standard procedure of multiplying
the interaction amplitudes appearing in the Lagrangian of
the effective nonlinear o model* by a parameter 7. By in-
tegrating the derivative with respect to 7 of the logarithm
of the grand partition function in the interval (0,1), we ob-

z
cv=Zch, x="212, €))
V4]
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tain the variation of the thermodynamic potential per unit volume. In the one-loop approximation (i.e., to lowest order

in the disorder) we have

AF de 1 VOF.t'wml 3 'wm'
&mT L4\ 4 — 3yl
14 %‘ Qr)? J; N Tom| (Z =20vT) +Dg2 2 om | (Z +7vole) + Dg?
d
=73 [ £ 0InZ |0n] +Dg) = $1l(Z + vl |0 | +Dg) = 1n(Dg)} | @)
m

where we have used the condition Z — 2voI'y =0 which was
shown to hold in the case of long-range forces.* The last
term in the curly bracket of the second expression does not
contribute to the specific heat. The sum over the Matsu-
bara frequency can be carried out by a contour integration
via the Bose function. The resulting expression for AF/V
in d dimensions agrees with the perturbative result of Ref.
9 when the combination of their bare singlet and triplet
couplings

MO0+ 30" =4/d [4—3(1+T0)?/]

is replaced by the renormalized quantity 4/d[4Z%/2
—3Z4/%]. At d =2 the leading logarithmic correction
term for Ay/yo=— (1/70) (8?°AF /dT?) is given by

%1 =1(2Z = $Z) In(T0) =t (vol's = $vol') In(T o) .
0

(5)

Equation (5) coincides with the correction AZ to Z,
evaluated in Ref. 4 in the framework of the Wilson
renormalization-group procedure (which integrates out
the “fast” degrees of freedom in the region
AA2<qr< A% A°A2<Z|®n|/D <A?) with the loga-
rithm of the square of the rescaling parameter A taking the
place of In(T 79). To leading order, /¥, has therefore the
same renormalization-group equation as Z:

ay/vo) _ 8z
aln(A2)  9In(a2)

where /70, Z, Ts, T;, and ¢ =A°A%/(27)2D (\) are intend-
ed to be functions of A. Equation (1) then follows. Our
analysis, which has been carried out in the absence of
particle-particle channels, is correct to first order!® in ¢
when a fixed point for # of order ¢ exists.>”!12 No weak-
coupling assumption is made for the interaction couplings,
provided they are finite. We suggest, however, that the re-
sult 7/yo™=Z has a more general validity and we shall use
it to derive the asymptotic power-law behavior of the
specific heat also when the interaction couplings scale to
infinity (strong spin-fluctuation range, see below) or when
singlet particle-particle channel must be considered (spin-
orbit imputity scattering).

Equation (1) can be used to sum the leading corrections
to y (or cy) whenever the renormalization-group analysis
of the effective nonlinear o model produces a scaling
theory for A— 0. We recall that at finite temperature the
elimination of the “fast” degrees of freedom in the
renormalization-group procedure has to stop when
D315 ! is of order of ZT.>® Since D ~A® at the metal-
insulator transition,>”!! and assuming that Z behaves as

= [vol', — vl ] 6)

r
A" for A— 0, one gets the following scaling relation:
T~)‘.x1, Xr =dq —-Xz , (7)

which allows us to translate the power-law behavior as a
function of A to a power-law behavior as a function of 7.
From y/yo=Z ~A"? we now obtain

y~T21, oy~ '+l =T ®)

This result is in agreement with the following simple
scaling argument. As usual, the logarithm of the partition
function is an invariant of the renormalization group. In
ordinary critical phenomena the thermodynamic potential
F, being multiplied by T around its critical value T,, is
also an invariant. By contrast, in the present case, the
temperature 7 goes to zero and scales according to Eq.
(7). F is no longer invariant. On the other hand, the
specific heat per unit volume ¢y = — (T/V)(82F/3T?) has
an additional compensating T dependence and will, in this
case, obey the same equation as the thermodynamic poten-
tial per unit volume in ordinary critical phenomena:

ev (T3 {pd) =A%y (T/AT3{m}) )

where Eq. (7) has been used for the scaling dimension of
T, and {u,} indicates the full set of the flowing couplings.
Equation (8) follows by taking, in Eq. (9), T =A""7; !,
cv(tg {m}) being a well-defined finite quantity when
evaluated at the fixed point {#*} of the group transforma-
tion. This supports the suggestion that Eq. (1) is valid
quite generally.

In the noninteracting case Z =Zy=1 and x, =O0; there-
fore the specific heat is linear in 7. In this case y remains
unrenormalized and equal to y¢. Quite different is the sit-
uation in the interacting system, where the combined ef-
fect of interaction and disorder leads to various cases
which we are going to analyze.

We first recall that a bonafide metal-insulator transition
is obtained whenever the triplet contribution is at least
partially suppressed as in the physically relevant situations
when magnetic impurity, external magnetic field, or spin-
orbit interaction is present.>’-11:12

(i) For the magnetic impurity case xz =¢/2.>7 Accord-
ing to Egs. (7) and (8), the specific-heat factor y acquires,
therefore, a temperature dependence and goes to zero at
the transition as

y~ Te/@+e) (10)

(ii) When the magnetic field is large enough
(upH >kgT) to introduce a Zeeman splitting (and no
magnetic impurities are present), a line of fixed points ap-
pears in d =2+ ¢ with a finite value Z* for Z.>7 In this
case the coefficient y of the specific heat is rescaled by a
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We note that in the two previous cases the particle-particle
channels are indeed irrelevant and our initial assumption
of suppressing their contributions turns out to be appropri-
ated.

(iii) In the spin-orbit impurity case the problem is more
complex since the singlet particle-particle channel has also
to be included. Assuming Eq. (8) is still valid, the
specific-heat coefficient y is again approaching zero at the
transition, as T — 0, since Z* =0.!! At lowest order in ¢
the exponent xz is estimated to be ¢ and

7~T‘/2 .

r=2Z%y .

(12)

In the general case of nonmagnetic impurities the situa-
tion is complicated by the appearance of strong spin fluc-
tuations. At d =2+¢ an instability line zo=t.(I'?) is
present.®!3 Once again the presence of the nparticle-
particle channel is not likely to modify the general content
of the theory.'>!* In the region of #¢ < t. the model system
scales to a conductor as it should . As the instability line is
reached, Z and Z, tend to infinity as A ™3 and A ™%,
respectively, while the system remains metallic. The di-
mension of Z and Z, are in this case xz=—3¢,
xz,™ —4¢. Since we stay in the metallic region, the scal-
ing relation Eq. (7) for x7 has to be modified by substitut-
ing d (appropriated to the metal-insulator transition) with
the ordinary bare dimension of 7 in terms of an inverse
length, which is equal to two. It follows that at zo=¢,, X
and y behave as

X~ T"Zz"‘" - T —46/(2+36)

13)

y~ T 2/%7 = 36/(2436)
There are indications of an anomalous increase of the
spin susceptibility!>!6 and of the specific-heat parameter y
(Ref. 17) in Si:P at low temperature. In Ref. 16 the spin
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susceptibility is analyzed at donor concentration
n=1.09n. (n. being the critical concentration at the
metal-insulator transition) and shows an enhancement of a
factor 10 in the range 1 K-30 mK, roughly in agreement
with Eq. (13). The specific-heat data refer instead to a
sample at n =1.6n, far from the metal-insulator transition.
Experiments of X and ¢y at the same donor concentration
would distinguish between the disorder-interaction-
induced enhancement [which leads to Eq. (13)] and the
enhancement coming from the Brinkman-Rice liquid pic-
ture.!® In the former case, in fact, X and y renormalize dif-
ferently, while in the latter case X and y are equally
enhanced. By increasing the disorder in these systems, one
should switch from a weak-localization regime, where the
perturbative expressions for the physical quantities are
valid, to the instability region where, after an initial
enhancement of X and y according to Eq. (13), a cross-
over mechanism should take place.%®!3 Eventually the
system should flow into one of the universality classes pre-
viously considered, where random magnetic moments or
spin orbit coupling play a role and a bona fide metal-
insulator transition is obtained.

In conclusion, the specific-heat parameter y=cy/T
should show an initial anomalous increase as 7 — 0 in the
case of nonmagnetic impurities, a temperature decreasing
power-law behavior in T at critical concentration of the
metal-insulator transition in systems with magnetic impur-
ities or spin-orbit coupling, and remain finite when an
external magnetic field is present.!” The available data do
not yet allow a full comparison with the predictions of the
theory. More detailed experiments on the specific heat
and on the spin susceptibility in the various materials will
test the validity of the general content of the theory and al-
low for a more specific classification of the physical sys-
tems in different universality classes.
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