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Piezoelectricity in pyroelectrics and the linear response of polarization to a strain
gradient (flexoelectricity) are discussed in the framework of the unified approach. It was pointed
out by Born and Huang and by Martin, that there was a difference between the piezoelectric
response for the cases of a sound wave and of a uniform strain in a finite crystal, and that only the
"proper" parts of piezoelectric constants coincided for these cases. It is shown in this paper that
there is no such difference if an accurate definition of piezoelectricity is applied. The theory of
flexoelectricity in sohd crystalline dielectrics is developed. It is shown that the general properties of
Aexoelectric response strongly differ from those of piezoelectric response: (1) there is an appreciable
surface contribution to the flexoelectric response and (2) the bulk flexoelectric responses for the case
of a propagating sound wave and for that of a static uniform strain gradient are considerably dif-
ferent. It is proposed to use flexoelectric effect as a method of crystal surface investigation.

I. INTRODUCTION

It is commonly believed that piezoelectricity is a bulk
effect. ' But there are some papers' in which this point
is argued. The debate on this matter continued until re-
cently. 2 Nowadays the bulk nature of piezoelectricity
seems to be settled.

The first purpose of this paper is to consider a property
of piezoelectricity that is closely related to its bulk nature.
It has been pointed out by Born and Huang' and Martin
that there is a difference between the piezoelectric
response for the case of a sound wave and for that of a
uniform strain in a finite crystal. Occurring only in fer-
roelectrics or pyroelectrics' this difference is given by the
following terms:

Pj 6'ij —PI E~) ~ (1)

where e;j is the unsymmetrized macroscopic strain and p
is the spontaneous polarization. Thus in accordance with
Ref. 8 only the "proper" part of the piezoelectric response
[without terms (1)] is the same for those cases. We show
in this paper, that there are no such terms in the
piezoelectric response if we follow strictly an accurate
definition of piezoelectricity. ' Also we show that the
vanishing of terms (1} is related to the bulk nature of
piezoelectricity and moreover, that the bulk nature of
piezoelectricity "requires" this vanishing.

The other purpose of this paper is to consider flexoelec-
tricity in sohd crystalline dielectrics. In accordance with
the definition given by Indenbom, Loginov, and Osipov, "
flexoelectricity in such substances is the linear response of
the dielectric polarization to a macroscopic strain gra-
dient. This phenomenon was first predicted by Mashke-
vich and Tolpygo. ' *' A phenomenological description
was proposed by Kogan. ' He took into account the term

Ejk
ftjktPi .

OXI

in the thermodynamic potential expansion. In (2) P is the
dielectric polarization. The properties of the tensor f
symmetry have been investigated. "

Although flexoelectricity can take place in crystals of
any symmetry, centrosymmetric crystals are of special in-
terest, as there is no piezoelectricity in them. In such sub-
stances the effect is of importance for the description of
the interaction of the elastic deformation with free car-
riers, because the contribution of the flexoelectric efftx:t to
this interaction and that of the deformation potential are
of the same order of magnitude. ' '

It is commonly believed that the general properties of
flexoelectricity and those of piezoelectricity are alike. "
It is assumed that (a) flexoelectricity is a bulk effect, i.e.,
the surface contribution is small in comparison with the
bulk one as d /L, where d is the thickness of the disturbed
surface layer and L is the specimen dimension; (b) the
flexoelectric response is equal for the cases of a static
nonuniform strain and a propagating sound wave. We
shall show in this paper that none of these assumptions is
right: (a) there is an appreciable surface contribution to
flexoelectricity; (b} the same crystal bulk effect is different
for the static and dynamic cases.

Also we propose an improved phenom enological
description of bulk flexoelectricity.

II. PIEZOELECTRICITY IN PYROELECTRICS

In this section we consider piezoelectricity for the case
of a uniform strain in a finite crystal and show that in
contradiction to Born and Huang' and Martin there are
no terms alike [Eq. (1)] in the piezoelectric response of a
crystal of any symmetry, if an accurate definition of
piezoelectricity is applied.

The change of the finite crystal polarization, induced
by a uniform strain e;I, is given by

Q 0gi =P& 5ij P& hajj +8ijk6jk ~
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where

P =V ' J xp(x)d x . (4)

p(x) and V are the charge density and the volume of the
crystal in the absence of strain and e,jk is the "proper"
piezoelectric constant. For the longitudinal effect, i =k,
e;Jk coincides with the expression for the piezoelectric
constant, which may be derived by the method of the long
waves.

Martin assumed that P was the spontaneous polariza-
tion, so the first and the second terms in Eq. (3} did not
vanish in ferroelectrics. Also he pointed out that those
two terms resulted from the rotation and dilatation of the
existing moment in a ferroelectric. On the contrary, we
believe that a nonzero moment P can exist in a nonfer-
roelectric as well. Indeed, in accordance with Eq. (4) P is
the average dipole moment density of the whole crystal
and depends on the crystal termination and its surface
properties. Even though a crystal structure has inversion
symmetry (e.g., the NaC1 structure), a finite crystal may
be terminated in an asymmetric manner [e.g., a (111)
plane of Na ions on the side and a plane of Cl ions on
the other side], so that the finite crystal can have a macro-
scopic dipole moment, proportional to the volume of the
sample, and P &0. All these facts indicate that there is
no one-to-one correspondence between P and ferroelec-
tric spontaneous polarization. Then the question arises of
how to interpret the first and the second terms in (3). One
can answer this question with the help of an accurate defi-
nition of piezoelectricity. In accordance with Nye s text-
book on the physics of crystals, ' piezoelectricity is the
appearance of a crystal dipole moment under the infiu-
ence of a uniform strain, not a change in the moment
which existed in the absence of strain. So if we want to
investigate the genuine piezoelectric response, we must re-
quire that the dipole moment of the initial sample be zero.
This means that P =0, and the first and the second terms
in (3) vanish. We want to emphasize that this is the
unique way to determine the piezoelectric coefficient in
order for this quantity to be a bulk one. Otherwise, the
piezoelectric response will contain terms [the first and the
second in (3)] which are in fact of surface nature. Then
one can say that the bulk nature of piezoelectricity "re-
quires" the vanishing of the additional contributions to
the piezoelectric constant of a finite crystal, compared
with the one obtained with the help of the method of long
waves.

In conclusion we want to discuss in detail the condition
P =0 It is a natura. l condition for a free crystal in the
air in the absence of an external electric field. Indeed, if
we do not change pressure and temperature for a long
time, the macroscopic electric field inside and outside the
crystal vanishes. (This vanishing may be achieved with
the help of free charges from the air, or with the help of
the carriers of the crystal. ) Therefore, all multipole mo-
ments of the sample must be equal to zero, and so is the
dipole one. On the other hand, the requirement P =0 is
in accordance with the quantitative definition of the
piezoelectric constant as the polarization partial derivative
with respect to strain in the absence of macroscopic elec-

tric field, ' for if P &0, generally speaking, we have a
nonzero depolarization field.

The condition P =0 in the absence of macroscopic
electric field might not occur' if we use for the piezoelec-
tric measurement a scheme with the sample between the
plates of a shorted capacitor and if we determine the
piezoelectric coefficient by measuring the current fiow
through the shorting wire, as one varies the stress on the
sample. It is obvious that in this case the average electric
field in the crystal may be zero whereas the depolarization
field and P of the sample are not zero. So, one may ex-
pect that in this case the contribution of the first two
terms from Eq. (3) would reveal itself in the piezoelectric
response. But it appears that if we use a common (and, in
fact, the only one used in piezoelectric measurements}
capacitor with plates stuck tight to the sides of the crystal
(so they move together, as one varies the stress on the
sample), the contribution in question does not reveal itself
in the piezoelectric response.

To make the fact stated above easily understood one
should take into consideration the following: (a) It is the
change of the dipole moment average density of all
charges of the capacitor (including the induced charges on
the plates) that is measured in that scheme. (b) For such a
capacitor we may treat the induced charges as surface
charges of the sample and therefore take them into ac-
count in the integral (4). If we proceed in this way the
quantity P becomes equal to zero. As a result we see
that the piezoelectric response measured in this way is ex-
pressed by Eq. (3}without the first two terms.

Therefore, we conclude (i} that there are no terms like
(1) in the piezoelectric response, if an accurate definition
of piezoelectricity' is applied, and (ii) that (what is more
important) a common piezoelectric measurement is, in
fact, in agreement with that definition, so the contribution
of the terms in question does reveal itself if the course of
the piezoelectric coefficient determination, if the ordinary
scheme with a shorted capacitor (with plates stuck tight
to the sides of the crystal) is used for a piezoelectric mea-
surement.

III. FLEXOELECTRICITY: UNIFORM STRAIN
GRADIENT IN A FINITE CRYSTAL

A general expression for the polarization response to a
uniform strain gradient in a finite crystal may be derived
with the help of the technique applied by Martins to the
problem of piezoelectricity. In this paper we restrict our-
selves by the flexoelectricity consideration, using the
rigid-ion model, for this model is enough to reveal the
main features of the phenomenon, whereas in the frame-
work of such an approach the consideration itself becomes
much simpler.

Consider a uniform strain gradient in a finite but mac-
roscopic or bulk crystal, so

e;J(0)=V ' I e,j(x)d x,
where x; are the Cartesian coordinates of a point inside
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the crystal in the absence of strain. In the presence of
such a strain a particle initially at R is moved to
R'=R+r, where

r; =ej (0)RJ +— RJRk+ u "(R)+u '(R) .
2 Bxg

In Eq. (5) u" ' and u' ' are the linear response of the inter-
nal strain to the macroscopic strain e,t and to its gradient
Bett lBxk. Far from the surface of the crystal u'" and u'i'
can be cast in the form

flexoelectricity as clearly as possible. Let us define the
flexoelectric constant as the polarization partial derivative
with respect to strain gradient in the absence of macro-
scopic electric field. For the case of a uniform strain gra-
dient in a finite crystal it means that all multipole electric
moments of the crystal in the absence of strain must be
zero, because if this condition is not fulfilled, the macro-
scopic electric field does not vanish. Thus, we have to set
in (9) P =0 and Q =0 and, using Eq. (7), we find the fi-
nal form for the flexoelectric response,

P(fl) I tj —iran ppkl ~jk
(13)

(2} {2) jkl jk
u; (R)=u;z N, z-—

Bx i

where p enumerates the atoms in the cell, H and N may
be expressed in terms of bulk microscopic quantities (see
Appendix). The change of the crystal polarization in-
duced by the moving of crystal particles is given by

5P=(V') ' g Q(R')R' —V 'QQ(R)R, (8)
IR'I

where V and V' are volumes of the crystal before and
after the deformation, Q(R} is the charge of a particle at
R and where summations over the whole set of crystal
charges are done. Inserting expression (5) into (8) we find
the final form for the polarization change:

5P; =ei(0)PJ eJJ(0)P;—+ V ' g Q(R)u '(R)

6' xk 2 x;

where U is the unit-cell volume and Q~ is the pth ion
charge. '7

The second term of (13) relates to internal strains and
corresponds to the bulk contribution to the polarization.
The origin of the first term of (13) is similar to that of the
spurious fourth term of (9), but this term cannot be elim-
inated with the help of the condition of the macroscopic
electric field vanishing, because a distribution of charge
with all multipole moments being zero and I+0 does not
create a macroscopic electric field. As it may be seen
from definition of I, (12},' I is very sensitive to an elec-
trical structure of the crystal surface, so is the contribu-
tion to polarization, corresponding to the first term of
(13). That is why we shall refer to this contribution as the
surface flexoelectric contribution One .can obtain a rough
estimate for I: I-ela (e is the charge of electron, a is
an atomic dimension). Taking into account the estimate
for the bulk contribution to flexoelectricity" ' [in ex-
pression (2) f-ela], we see that in ordinary dielectrics
bulk and surface contributions to flexoelectricity are of
the same order of magnitude. '

P'= V-' g Q(R)R,

Qtj = V ' g Q(R)(3R;Rj 5~JR2), —
(R)

I= V ' g Q(R)R
IRI

(10)

(12)

IV. FLEXOELECTRICITY: SOUND WAVEOF
FINITE %WAVELENGTH IN AN INFINITE CRYSTAL

Consider a long-wave acoustic phonon mode of wave
vector K in an effectively infinite crystal, i.e., E much
less than the crystal dimensions, but E ' »a, the atomic
displacements associated with this mode being written

n iK Ra —icut
TI P

—Q] P8

where Po is the average dipole moment density of the
crystal and Q is the average quadrupolar moment density.

The first three terms of (9) are equal to Eq. (3), if it
were derived with the help of the rigid-ion model. They
are related to piezoelectricity and have been discussed in
the previous section. The last three terms of (9) describe
the polarization change produced by the strain gradient,
or, in other words, the fiexoelectricity. As we have shown
in the previous section only the last of the piezoelectric
terms is genuine and the first two ones are spurious. It is
an accurate definition of piezoelectricity that gives us an
opportunity to distinguish the genuine term. But in the
case of fiexoelectricity there is no such a definition.
Therefore, if we want to give a reasonable interpretation
of the flexoelectric terms of (9), we have to define the

p(x) = g Q~5(x —R~),
n,p

(16)

and it is easy to show, using Eqs. (14)—(16) that the am-
plitude of the longitudinal polarization wave associated
with the sound wave in question may be written as

where n numbers the cells. In this case only longitudinal
polarizations are experimentally detectable. The longitu-
dinal polarization is most easily discussed in terms of the
induced charge-density variation 5p related to P by

BP; = —5p(x) .
Xg

In the rigid-ion model
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V. PHENOMENOLOGICAL DISCUSSION
OF BULK FLEXOELECTRICITY

upi' =K( up. K)/K

It is well known' that for the acoustic phonon mode in
the limit E~O and ~~0, g&

——w, which does not depend
on p. But for a real mode with K+0 and ~&0 the spatial
and the frequency dispersion effects reveal themselves,
and we have to take into account waves of internal strains,
following the "pure" acoustic wave with amplitude w.

The lowest spatial-dispersion-induced contributions to uz
can be written with the help of Eqs. (6) and (7). The fre-

quency dispersion reveals itself in contributions to up, be-

ing proportional to even powers of co, because here we are
not interested in dissipative phenomena. Then we can
find a (Ka) -order expansion in series for up in the form

u;p ——wt+tH/pw~Kk N/pto~—KkKi —6/plojtd . (18)

A microscopic expression for g is derived in the Appen-
dix.

Inserting the two first terms of expression (18) into (17),
we see that there is no contribution from the first term
and that the second one given an ordinary piezoelectric
contribution to polarization. Substituting the third and
the fourth terms of expression (18) into (17} leads to the
desired relation for the flexoelectric response to a sound
wave:

It is obvious that taking into account the additional
term (2) in the free-energy density describes static bulk
flexoelectricity only. For the description of dynamic bulk
flexoelectricity we propose to add a new term in the kinet-
ic energy phenomenological density as follows:

Using the I.agrangian density with regard to terms (2) and
(20), we find equation of motion for I'

(21)

klm 1 kXjfjkt 'U QpN~ p X 'jMJ'p v Qp 6'
p (22)

A simple expression for M may be written for the case
of a crystal with two ions per unit cell:

where E is the macroscopic electric field and X is the
dielectric susceptibility tensor of the crystal.

Comparing (21) with (19), we see that term (20) in the
kinetic energy phenomenological density does describe
dynamic bulk flexoelectricity and we can find relations
between the phenomenological tensors f, M and the ma-
trices Ll and g, which can be expressed in terms of micro-
scopic bulk properties of crystal lattice (see the Appen-
dix), as

(P() —1Q (6)j)2+~))jkiK K }
M&J ——5;J(m i

—mi ) /2Q, (23)

where longitudinal components of 6 and N, XII, and g
are defined as in the case of u~~. As one can so:, both
terms of (19) give contributions to the flexoelo:tric con-
stant for a sound wave, for in such a wave coi acKt. If we
compare the expressions for flexoelectric response in the
case of a uniform strain gradient in a finite crystal, Eq.
(13), and in the "sound" case, Eq. (19},we can note that
only the second terms correspond to each other. These
terms relate to the contribution, which we shall refer to as
static bulk jlexoelectricity. The first term of (19} corre-
sponds to the contribution, not arising in the case of a
static strain gradient. That is why we shall refer to this
contribution as dynamic bulk flexoelectricity Using the.
estimates for X and 6 from the Appendix, it is easy to
show that in the sound case static and dynamic bulk con-
tributions to fiexoelectricity are of the same order of mag-
nitude.

To conclude this section we want to make some re-
marks on the nature of the two contributions discussed
above. The static bulk ftexoelectricity contribution arises
due to effects of the spatial dispersion, or, in other words,
due to discontinuity of the crystal lattice. The dynamic
bulk flexoelectricity contribution arises due to effects of
the frequency dispersion. It depends upon the distribution
of the unit-cell mass among the ions and it vanishes, if we
assume the equal masses of the ions [see Eqs. (19) and
(Al 1)]. Therefore, one may say that this contribution
arises due to a nonequal distribution of mass among the
ions of the unit cell.

where m i,m2 and Q, —Q are masses and charges of the
ion, respectively. Equation (23) can be obtained with the
help of Eqs. (22) and (All) and the following expression
for X in the rigid-ion model

~

—1
tpip'Qp' ~

where I' is defined in the Appendix.
In conclusion of this section we want to point out that

there is an interesting question to discuss. Is there any
contradiction between a nondiagonal form of the kinetic
energy density used in the phenomenological treatment
and a diagonal form of the kinetic energy usually used in
microscopic calculations? It has been shown in the
author's previous paper that there is no such contradic-
tion.

VI. UNIFORM STRAIN GRADIENT IN A
FINITE CRYSTAL: SURFACE PIEZOELECTRICITY

CONTRIBUTION TO POLARIZATION

There is another effect in addition to the ones discussed
in previous sections, which can provide a polarization
linear response to a strain gradient in a finite crystal.
That is the surface piezoelectricity. That effect is not of
our special interest, because it is not of "proper" flexoelec-
tric nature. So we shall restrict ourselves only to its brief
discussion for the case of nonpiezoelectric crystals.

In the depth of a nonpiezoelectric crystal the piezoelec-
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tric constant is zero, but it may be of nonzero value in a
thin layer in the vicinity of the crystal surface. It is clear
that the average piezoelectric constant in that layer de-
pends on the structure of the surface and its crystallo-
graphic orientation. ' So surface piezoelectric constants
may be different for the opposite plates of a crystal. In
this situation surface piezoelectricity may imitate a flex-
oelectric response. One can illustrate this imitation by the
simple example. Consider the thin plate cut from non-
piezoelectric crystal with effective values of surface
piezoelectric constant near its two large surfaces li and
lz. Let us mentally apply to the plate a longitudinal
strain gradient, which is perpendicular to it and directed
to its plate with surface piezoelectric constant li. It is
easy to show that in this situation due to the surface
piezoelectricity we have a contribution to the average
specimen fiexoelectric constant of order (li —li)d, where
d is the thickness of the perturbated surface layer. It is
natural to assume that in ordinary dielectrics
li-li-e/a and d-a, and therefare, (li li)d-e/a- .
Thus, taking into account that in Eq. (21)f-e/a, we see
that in ardinary dielectrics the surface piezoelectricity
contribution to the flexoelectric constant and the "proper"
contribution to it are of the same order of magnitude.

In conclusion of this section we want to point out that
in the framework of our theoretical approach the contri-
bution discussed above and the one of the surface
flexoelectricity may be easily distinguished. To make that
fact understood one must take into consideration that the
first contribution has to depend upon the surface value of
H [see Eq. (6)], which governs the piezoelectric response,
and the second one does not. The problem of an experi-
mental discrimination of those contributions is discussed
in the next section.

VII. DISCUSSION AND CONCLUSIONS

The first prablem discussed in this paper is a descrip-
tion of piezoelectricity in pyroelectrics. We have shown
that in contradiction with Refs. 1 and 8 there are no addi-
tional terms in the properly defined piezoelectric response
for the case of a uniform strain in a finite pyroelectric
crystal in comparison with the ane for the case of a sound
wave in the same crystal. We want ta point out that the
absence of those terms may be checked experimentally.

The second problem discussed in this paper is a linear
response of polarization to a strain gradient (flexoelectrici-
ty) in sohd crystalline dielectrics. As it was shown in the
previous sections there are four mechanisms i which can
provide that response: (1) dynamic bulk flexoelectricity,
(2) static bulk flexoelectricity, (3) surface flexoelectricity,
(4) surface piezoelectricity.

The first two give contributions for the case of a propa-
gating sound wave, and the last three give contributions
for the case of a uniform static gradient in a finite crystal.
In ordinary dielectrics contributions of aH mechanisms are
of the same order.

Flexoelectricity is of interest for ferroelectrics with a
nonpiezoelectric paraelectric phase. In the framework of
the Landau second-order phase-tmnsition theory only one
coefficient in the free energy expansion is equa& to zero at

the phase transition temperature. For proper ferroelec-
trics that is one of the components of X,J

'. So, generally

speaking, f [see formula (2)] is nonzero at this tempera-
ture. Besides, it is very improbable to find M,J ——0 at the
transition temperature. Therefore, it is clear from Eq.
(21) that contributions of the bulk fiexoelectric effects
~ouM have a temperature anomaly proportional to 7 near
the transition. So one can expect that near this tempera-
ture flexoelectric constants of ferroelectrics may be
10 —10i times larger than the ones of ordinary dielectrics.
The surface flexoelectricity contribution is not sensitive
to ferroelectric properties of crystal, for I which deter-
mines the value of this contribution [see Eq. (13)] does not
depend on any dynamic characteristic of crystal lattice.
So we can expect that the estimate of this contribution,
obtained above, remains valid for ferroelectrics.

Thus there is no universal estimate for the surface
piezoelectricity contribution to the flexoelectric constant
of a ferroelectric, but it is clear that there are some causes
for a temperature anomaly of this contribution. The
anomaly may be induced by critical dependence of the dis-
turbed surface layer thickness d, or by a critical depen-
dence of the effective surface piezoelectric constants li
and li "

Now we shall make some remarks on a possibility of
experimental investigations of flexoelectricity.

For the "sound" case the effect reveals itself in the ap-
pearance of the polarization wave, following any saund
wave. If the polarization wave is longitudinal, a macro-
scopic electric field wave is present too. Using an esti-
mate for bulk flexoelectric constants obtained above and
in Refs. 11—14, it is easy to show that in ordinary dielec-
trics a sound wave with E =10 cm ' and the strain am-
plitude=10 ' is followed by the electric field wave with
the amplitude —1 V/cm. This estimate remains valid for
ferroelectrics too, because of the depolarization effect.
For the sound case the contribution of the dynamic bulk
effect and of the static bulk one are of the same order,
therefore there is no opportunity for their separation in
the framework of a dynamic experiment. For this separa-
tion the contribution of the bulk static flexoelectricity
should be obtained with the help of static measurements.

Three mechanisms give contributions for the case of a
uniform static strain gradient in a finite crystal: static
bulk flexoelectricity, surface flexoelectricity, and surface
piezoelectricity. In ordinary dielectrics the contributions
of these mechanisms are of the same order, therefore ex-
perimental values of fiexoelectric constants, measured in
such situatj. on, may strongly depend on the crystallo-
graphic orientation of the crystal surface and their quali-
ty. This is the main direction for experiment.

It appears that for the "static" case the most interesting
crystals for investigation are ferroelectrics. First, for the
case of a uniform static gradient in a finite crystal we can
eliminate the depolarization effect by measuring with a
shorted-capacitor set up, and therefore in ferroelectrics we

may deal with effects which are 10 —10' times more ex-
treme than in ordinary dielectrics. Second, in ferroelec-
trics the contribution of surface flexoelectricity is negligi-
bly small and the contributions of surface piezoelectricity
and static bulk flexoelectricity may have different tem-
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perature dependences. So, it is ferroelectrics that give us
an opportunity to distinguish the contributions of mecha-
nisms of fiexoelectricity.

Note, that the high susceptibility of the flexoelectric ef-
fect to the properties of crystal surface may make this ef-
fect an effective method of surface investigation.

To the author's knowledge, no systematic experimental
investigations of flexoelectricity in solid dielectrics have
been made. The first attempts of such investigation are
discussed in Ref. 11.
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APPENDIX

In this Appendix we shall obtain a microscopic expres-
sion for a linear response of internal strains to a gradient
of macroscopic strain in the absence of macroscopic elec-
tric field E

We shall proceed from the equation of motion for
atoxnic displacernents r;"p

Ptlpf i p +ip, i'p'7i' p' ~ (A 1)

where mz is the mass of the pth atom in the cell and 4 is
the matrix of the crystal potential energy second partial
derivatives with respect to atomic displacements, with the
macroscopic field contribution being excluded.

For the ease of a propagating sound wave the response
in question may be obtained with the help of "the method
of long waves. "' Following this method let us write r z
in form (14), insert (14) into (Al), and consider the long-
wave acoustic solutions of the resulting equation for u.
As it was shown, ' this equation can be solved by the per-
turbation method with respect to the small parameter Ea.
The perturbation equations for contributions to u in the
zeroth, first, and second orders (u' ', u' "„u'2') are

'lg(a) mp5pp5g KIEI—T',p,'p )w; =0,
pp

where

v'jl .. . A(1~i, „1 .„„.„, „,A(, 1,)l„. . . ' A.(2)ji,
&P, &'P' tP, &

"P"~ I"P",&"'P'™i"'P"',i'p'+ 2 ~ip, i'p' .

(A7)

It is obvious that Eq. (A6} describes the internal strain
response to macroscopic strain.

Our interest in the internal strain response to a macro-
scopic strain gradient makes us calculate u' '. Inserting
(A5} and (A6) into (A4) and taking into account the con-
dition for solubility (A4), we can find the solution of (A4)
in the form

u = I . (a) p 5 ~ -5 - EEiT' ~ —- ~ )w', (AS)
p

where

7=jl, , 7vl .. .
IP,iP ~ IP,iP

p~ =m~ I, I=—s ' g m~, s is the number of atoms
per unit cell of the crystal.

Comparing (18) with (A5), (A6), and (AS) we can write
microscopic expressions for N, H, and 6:

in Ref. l. Equation (A2) has nontrivial solutions of the
form24

(0)
Up =w,

where vr can be any arbitrary vector in space. The condi-
tion for solubility, Eqs. (A3) and (A4}, is the requirement
that their right-hand members summed over p must van-
ish. After inserting (A5) into (A3) the condition for solu-
bility (A3} is identically fulfilled. The solution of (A3) is

(A6)
p

where I is the inverse matrix, defined in a special way, to
the singular matrix A'o'. The condition for solubility
(A4) [after inserting (A5) and (A6) into (A4)] is the equa-
tion for the long acoustic lattice waves. It may be written
as

g (0) (0)
ip, i'p'ui', p' =0

g (0) (1) g g (1) (0)
ip, i'p'~i', p' = —lX& rxip, p ~,' p

g(0) (2) ~ g(1) (1) j l g(2)jl (0)
ip, i'p'~i', p' = ~~j ~ip, i'p'~i', p' ~ip, i'p'~i', p'

(A2}

(A3)

Hi p
— ~ I I'p i'p'A 'p lp"

p

jkl ~ kl+t,p = ~ ~ip, i'p'Ti'p', jp" ~

p

I.p
= iPjP'I P'g] r.

(A9)

(A10)

(Al 1)

2 (0)+Q) PlpQg p

where

&P~& P ~ 'P~& P

n'

A,pg&p = —g@,r Ip(Rp —Rq )J(Rq —Rq )i .

The solutions of Eqs. (A2)—(A4) were investigated and
the following properties of those solutions were obtained

It is easy to show that in ordinary dielectrics H-a,
N-a~, 6-coo (coo is the optic mode frequency).

There are roany ways to divide up the right-hand term
of (AS) into the co-dependent and the K-dependent parts,
for K and cg must satisfy Eq. (A7). Therefore, there is
some arbitrariness in the definition of N and G in the
framework of "the method of long waves. " This arbitra-
riness may be eliminated with the help of the requirement
that the matrix N must be the same as in the expression
for the internal strains response in the static case (7). Let
us show that N defined by (A10) just satisfies this condi-
tion.

We procecxl from the equation of static equilibrium of
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crystal lattice:

(A12)

c)tt t yp
+~ip g p +Agp i Q'

J

R'
I".

p
= EiJ x xJ. +Q;p R

(A13)

Consider a macroscopic strain e;j(x), unsymmetrized,
which is a stnooth function of coordinates. The problem
is to find internal strains up(x) as a smooth function of
coordinates, which being summed with macroscopic dis-

placements of the lattice sites provide equilibrium in the
lattice, i.e.,

] ~ (2]~I
iPgP g J+ & M gpig'p' +

(A15}

(A16)

This equation can be solved by a perturbation method
with respect to the small parameter a/l, l being a charac-
teristic distance of the e;j variation. The two first pertur-
bation equations can be written in the form

tQ t t —— Q, rg, f., ~
g'p, i p i,p

= ~ gp, gp
P

R=Rp, R'=Rp, (1)
(2] (

pgp g',p
= —Aipip

BXj

(2)jl ' j+iX
X]

(A17)

is consistent with Eq. (A12). Only the members with

~
n —n'

~
small is of importance for (A12), so it is useful

to expand (A13}with respect to X=R' —R, i.e.,

1 a~,j(R)
ej(x)dxj+ej(R}Xj+— j X X,P O

gJ J gJ 2 Bxi

au, , (R)+ + tt;,p (R)+ '
Xj + . (A14)

Xj

Inserting (A14) into (A12) and carrying out the sum over
all n', we obtain a differential equation as follows:

the condition for solubility, Eq. (A16), being the same as
the one for Eq. (A3), is identically fulfilled. The solution
of Eq. (A16) is given by (6), where I comes from (A9).
The condition for solubility, Eq. (A17) [after inserting
(6)], is the equation for static elastic dispacement [com-
pare with (A7)]:

jl gJ
ipi p'

Bxi

It is easy to show that the solution of Eq. (A17) is given
by (7), where N comes from (A10). This concludes the
proof.
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