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Momentum-space equations of the restricted Hartree-Fock method for quasi-one-dimensional sys-
tems are obtained and analyzed in view of direct numerical determination of their solutions. Calcu-
lations on the basis of known results on the infinite linear chain of hydrogen atoms whose Bloch
states are approximated in terms of 1s hydrogenic atomic functions are made to test the formalism
as well as the mathematical and computational implications of a numerical approach. Future
developments along these lines are discussed on the basis of the practical knowledge imparted by
these preliminary tests.

I. INTRODUCTION

Hartree-Fock (HF) equations and their solutions play a
central role in the determination of the electronic struc-
ture of atoms, molecules, and extended systems [one-,
two-, and three-dimensional (1D, 2D, and 3D)]. Unfor-
tunately, exact solutions to the HF equations are not ac-
cessible in explicit forms, and as a consequence, applica-
tions on realistic systems are carried out with the one-
electron states expanded in finite series of basis functions,
usually of atomic character [linear combination of atomic
orbitals (LCAO) approximation]. The error resulting
from the truncation of the otherwise ideally infinite series
is difficult to estimate. Moreover, its incidence largely de-
pends upon the nature of the properties. Total energy and
one-electron eigenvalues converge faster to their HF limit
with respect to basis-set increases than other expectation
values, such as the dipole moment, the electric field gra-
dient, etc., which are rather sensitive to the details of the
state functions and thus to basis-set extensions. In solid-
state physics, this problem of choice of the most appropri-
ate representations for the Bloch states has led to fierce
controversies on the relative merits of delocalized [plane
waves (PW), orthogonalized plane waves (OPW), etc.] and
localized [tight-binding approximation (TBA), LCAO,
etc.] functions.

Rather recently, Davis and co-workers' studied the
possibility of improving the description of the Hartree-
Fock states by building into the basis functions some
analytical information inherent in the HF orbitals. They
found that such attempts do not lead to better basis func-
tions and they were forced to the conclusion that the
problem of basis-set incompleteness cannot be solved by
searching for new types of basis functions. They also
ruled out the traditional practice of enlarging basis sets
due to prohibitive computer time and linear dependencies.
Finally, they expressed their preference for approaches
that do not rely on basis sets.

In the case of atoms and diatomic molecules, it is
possible to achieve enough separability among the direct-
space variables to solve the HF equations by numerical in-
tegration. These calculations have evidenced the fact that
many functions must actually be used to eliminate the
basis dependence from the results. For medium-sized sys-
tems, an equivalent level of quality cannot be reached by
the algebraic or basis-set approach due to prohibitive
computational needs. The numerical approach in direct-
space is unfortunately not applicable to systems whose
structural complexity exceeds two nuclei and no progress
seems presently possible in this direction.

In 1981, Navaza and Tsoucaris suggested that momen-
tum (reciprocal) space should be a more appropriate
framework to solve directly the HF equations for ~olya-
tomic systems. Two years later, Defranceschi et al. were
able to develop and apply the method to determine nu-
merically in momentum space, the occupied molecular or-
bitals of the triatomic Hi molecule. As we recently point-
ed out in a short communication, ' there is nothing in the
method that prevents it from being applicable to infinite
systems. It is the purpose of the present paper to gain a
first experience on the theoretical and practical problems
related to direct numerical solutions of the HF equations
for extended chain systems.

In Sec. II we obtain the general expressions of the
momentum-space representation of the restricted
Hartree-Fock (RHF) equations (i.e., restricted to the dou-
ble occupancy of the Bloch states of lowest energy eigen-
values) for quasi-1D systems. A broad identification of
the numerical and computational aspects inherent in these
equations is made in Sec. III. In Sec. IV we report on our
first attempts to apply a full numerical treatment to the
integral part of these equations. The model system chosen
is the infinite chain of hydrogen atoms whose approxi-
mate one-electron states are expressed as a Bloch sum
based on one hydrogenic is functions successively ex-
panded in one, two, and three spherical Gaussians. In the

34 5862 Q~ 1986 The American Physical Society



NUMERICAL SOLUTION OF THE HARTREE-POCK EQUATIONS. . .

final section we comment on the future of the method and
indicate directions for solving some of the already identi-
fied problems.

II. MOMENTUM-SPACE REPRESENTATION
OF THE RHF EQUATIONS

The Fourier-representation method developed by Harris
and co-workers" ' to calculate explicitly the matrix ele-
ments of the LCAO version of the RHF equations
(RHF-LCAO) for extended systems, and the work by Na-
vaza and Tsoucaris and Defranceschi et al. on mole-
cules form the basic material from which we start. To fa-
cilitate access to these works we have largely maintained
their notation and structure. A summary of the more
familiar direct-space version of the RHF equations is
given in Sec. II A; their momentum-space formulation is
developed in Sec. II B.

A. The RHP equations in direct-space (Refs. 16—19)

First-principle quantum-mechanical calculations of the
electronic structure of quasi-1D systems have almost ex-
clusively been concerned with isolated regula model
chains whose atomic positions can generally be obtained
through line-group symmetry operations. ~ For the sake
of convenience, but without loss in generality, only the
translational symmetry is explicitly dealt with in this
work With. in that framework, a quasi-1D system consists
of a macroscopic number N(~ oo ) of unit cells of length
ao in the direction of periodicity defined by the unit vec-
tor e, . Each cell contains 0 nuclei at positions si,
s2, . . . , s„, . . . , so relative to the cell origin paoe,
(p=O, +1,+2, . . . ), and co electrons distributed along the
nuclear framework. It is practical to have the position
vectors s„expressed in units of ao. For the chain to be
stable, the cell electroneutrality has to be fulfilled, i.e.,
co= Q„Z„with Z„as the atomic number of atom u.
The set of indices (u, u'=1, 2, . . . , 0) and (p,p, ', v, v'=0,
+1, +2, . . . } will refer, respectively, to the nuclei and the
points of a lattice unit length.

In atomic units, the direct-space representation of the
Hamiltonian of the model system (nuclear motion, mag-
netic and relativistic effects excluded) is

cyN0= g [——,V' (r;)+ V(r;)]
i=]

cgX

~r; —rJ ~

'+U~, (1)
I,j=1

I (J
with r; the position vector of electron i measured from an
arbitrary but fixed origin, V(r;) the nuclear attraction
operator,

(3a)

(3b)

0
V(r;)= —g Z„g ~

r; —(s„+pe, )ao
~

', (2)
u=1 p,

and U~ the nuclear repulsion energy,

U~ =-,' y g"Z„Z„ I
[s„—s'+(u —

S '}e,]
JM~p QiQ

=—g g"Z„Z„~(s„—s„+pe, )ao
~

P Q, Q,

In Eq. (3a) the double prime indicates omission of the
term p=p, ' [@=0in Eq. (3b)] when v=u'. Unless other-
wise indicated, all summations will be over the entire
range for which the summed indices are defined.

The Hamiltonian will be applied to single-determinant
wave functions built from doubly occupied RHF one-
electron (single-particle) Bloch orbitals (states}

~
k„} or

P„(k,r) which can generally be written as

~
k„}=P„(k,r)=e ' u„(k,r), (4)

where u„(k,r) is a function having the lattice periodicity;
k (k') and n (n') =1, 2, . . . , oo, are respectively, the Bloch
wave number and band index. In our notation, k is in
units of 2nao ', the Brillouin zone (BZ) corresponds to a
unit range of k, i.e., kG[ ——,', —,

'
and a sum over k be-

comes, in the limit N +oo, Ã d—k. By virtue of the
phase factor of unit modulus appearing in Eq. (4), the
Bloch functions

~
k„}are orthogonal in k. Furthermore,

it is convenient to require orthogonality in n as well as the
normalization implied by

(k„ ik„&=XS
Applying the Hartree-Fock condition of minimum ex-

pectation value for the total energy EN of the many-
electron wave function subject to the above normalization
conditions,

(k„k'„
i
k„k'„)——,

' (k„k'„
i
k'„k„)f dkg +U+N f dk f dk'g

k„/ k„k'„fk'„

yields the RHF equations. In Eq. (6), U=N 'UN. The explicit form of the u„(k,r) are determined by solving RHF
equations, i.e.,

oo 0
F(r)P„(k,r)= ——,

' V'(r) — g g Z„~ r —(s„+pe, )ao
~

p= —ce u=1

+ g f dk'8„(k')[J„ i, (r) —,E„k(r)] P„(k—,r) =E„(k)P„(k,r) .
tl

The operators J„k (r) and EC„i, (r), respectively describing the classical electrostatic and exchange interactions, are ex-
pressed as
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J„k(r)iI}„{k,r)= f dr/„'(k', r')
~
r—r'

~

'i}}„{k',r) iti„(k,r} (8a)

&„k (r)i}}„(k,r)= f dr'P„'(k', r')
~
r —r'

~

'iI}„(k,r') P„(k',r}, (8b)

where e„(k) is the single-particle energy of band n at
point k in BZ, and 8„(k) is the single-particle state occu-
pation function [8„(k)=2 when

~
k„) is populated and

8„(k)=0when
~
k„) is unoccupied].

S. Momentum-space representation of the RHF equations

Applying a Fourier transformation to the direct-space
RHF equations yields the corresponding expressions in
momentum space. The various steps leading to the final
equations are based on properties of the Fourier transform
defined here as'

[f(r)] (q)=f (q)= f dr f(r)e
' '

The above expression can be further specified if u„(k,r),
which has the translational periodicity of the lattice in
direct space, is expanded in a Fourier series,

u„(k,r)=ao ' gu„(k, ri',v)e, ri =(x,y) (12)

(13)

and zo an arbitrary point on the axis of translational
periodicity. Inserting Eq. (12) in Eq. (11), using the fol-
lowing definition for u„(k,p„),

with u„(k,ri, v) as the vth Fourier coefficient obtained
from the usual prescription,

o+ o 2l O'0 o VZ

u„(k, ri, v) = dz u„(k,r)e
Zo

[——,
'

V f(r)] (q)= 2 (2irao ') q f (q),

[f ( r)g (r—R)]'(q)

(10a)

so that the transform variable q is dimensionless and
scaled like the Bloch wave number k. The most useful re-
lations for our purposes are listed hereafter in a notation
consistent with the definition in Eq. (9):

u„(k,p„)= f dri e ' ' 'u„(k, ri;v),

and denoting pi ——(p„,pp) and p„=(p„,p„,v), yields

~r(k )
i ~ f d

2ineo iz[p —(v —k)}

(14)

=ao ' f dpf'{p)g'(q —p)e

~

r —R~ '=( )-' f "q
(10b)

(10c)

ge ' "'=+5(q, —v) . (10d)

We first discuss the form of the Bloch orbitals in
momentum space, and since many of the forthcoming re-
sults are expressible in terms of the Fourier transforms
over products of Bloch orbitals, we also introduce their
definition before considering the RHF equations them-
selves.

P„(k,p)= f dre ' P„(k,r)

2ieao ip r Zisao ikr~

~

1. Block o~bitals in momentum spcrce

Applying the Fourier transform defined in Eq. (9) to
the direct-space form of the Bloch states lead to the corre-
sponding expression in momentum space:

= g 5[p, —(v —k)]u„(k,p„) . (15)
V

It is worth stressing that, while iI}„(k,r) is a continuous
function of x,y, z, its momentum transform P„(k,p) is a
continuous function of p and p„only and a discrete
function of the third variable p, . The discrete part can be
represented by a set of equally spaced 5 functions having

eight u„~(k,p) ar p, =v—k (v=0, +1,+2, . . . ) an
thus identifies with a Dirac comb.

2. Fourier transform of orbital products W„„(k,k', qj

As will soon become apparent, the Fourier transform
over products of Bloch orbitals W„„(k,k', q) are central
quantities and are thus ideally defined at this point,

II'„„(k,k', q) = f dr p„'(k, r) t(kii', r)e ' . (16)

Using the property in Eq. (10b) leads to the following ex-
pression:

8'„„(k,k', q) =ao f dsi}}„(k,s —q)i}}„(k',s),

which, after insertion of the momentum-space representa-
tion of the Bloch state in the form given by Eq. (15), be-
comes

8'„„(k,k', q)=ao g f ds5(s, —q, —(v —k))5(s, —(v' —k'))u„(k, si —qi, v}u„(k',si, v')
V, V

=ao g f ds, 5(s, —(q, +v —k))5(s, —(v' —k')) f dsi u„(k,si —qi, v)u„(k', si, v') . (18}
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Using the following identity,

f ds 5(s, a—)5(s, b—)=5(a b—),

and replacing v' —v and v' by p and v, respectively, gives

W«(k, k', q) =as g 5(q, —[(v' —v) —(k —k')]) f dsz u„(k,sz q—i,v)u„(k', si, v')

(19)

=as +5(qg —(iu+k' —k)) f dsi g u„(k,s„—q„)u„(k',s, ) .

(21)

To compress some of the expressions, it is practical to introduce the auxiliary quantity, W„„(k,k', q„+««), defined as

W..(k, k', q„„««)=a.-'5(q, —(p+k —k')) f ds, yu„"(k,s„—q„)u„'.(k,s„),

so that

W„„(k,k', q)= g W„„(k,k', q„+««) . (22)

[F(r)iI}„(k,r)] (p) =e„(k)[iI}„(k,r)] (p)

=e„(k)P„(k,p) . (23)

W„„(k,k', q) is a continuous function of p, and p„only
and a Dirac comb of the third variable p, as is P„(k,p).

3. Momentum representation of the RHF equations

The RHF equations expressed in momentum space are
obtained after applying a Fourier transform to the direct-
space formulation of that equation, Eq. (7):

The linearity of the Fourier transformation permits an in-
dividual treatment for the terms constituting F(r), name-

ly the kinetic-energy term, the classical electron-electron
and electron-nuclear terms, and the exchange contribu-
tion.

a. Kinetic energy -term Using . Eq. (10a) the kinetic-
energy part of the Fock operator is easy to express in
momentum space,

[——,
'

V (r)P„(k,r)] (p)= —,'(2irao ') p P„(k,p)= —,'(2mao ')'+5(p, —(v —k))p'u„(k, p„) . (24)

b. Electrostatic terms. Electron-electron and electron-nuclear terms in Eq. (7) contain divergent series related to the
long-range nature of the Coulomb force. In the case of electrically neutral systems, the divergencies can be made to can-
cel by combining the individually divergent terms. The resulting series is conditionally convergent, but an unambiguous
result is obtained upon imposing the physical condition that the partial sums represent neutral samples. The sum of the
electron-electron and electron-nuclear terms contributed by band n and denoted C„(k,r) is

C„(k,r)= g f dk'8„(k') f dr'p„'(k', r}
)
r —r'

~

'iI}„(k',r') —g gZ„] r —(s„+use, )ao
~

' {(}„(k,r) .
I' P M

Inserting the Fourier representation of
~

r—r'
~

' and
~

r —(s„+pe, )a&&
~

', see Eq. (10c), and applying the Fourier
transform to Eq. (24) gives

[C(k, r)]„(p)=C„(k,p)=(irao) ' f dre
' " ' g f dk'8„(k') f dr'P„'(k', r'){(}„(k',r) f e

5

dq —2isao ~q (r—s„ao) 2impe

q

=(~a, )-' f q g f dk'8„.(k')W'„ „(k',k', q) —g QZ„e " * {(}„(k,p —q) .
n'

lM Q

Introducing the explicit form of W„„(k',k', q), Eq. (20), in the above expression gives

C„(k,p}=(mao) ' f z g f dk'8„(k')ao +5(q, —p) f dan gu„(k', s„—q„)u„(k',s„)
n' V

(26)

T

=(~ac) ' f 2 +5(q, —p) g f dk'8„(k')W„„(k', k', q„)—QZ„e P„(k,p —q),
ig II Q

(27)
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where Eqs. (10d) and (21) have been applied.
At this point, it is important to note that at q=0 both the electron-electron and electron-nuclear terms diverge. How-

ever, due to the electroneutrality condition, these terms are equal in magnitude and opposite in sign, and therefore cancel
exactly at q=0,

a0 g f dk'8„(k') f dan gu„(k', s,)u„(k', s„)=tv= gZ„, (28)

which removes the problematic singularity. Harris' has shown, that interchanging the q integration and the p summa-
tion is permitted; therefore, Eq. (27) becomes

C„(k,p)=(naa) 'g f ~
gdk'8„(k')W„„(k', k', q„) Q—Z„e " " P„(k,p —q„) .

Due to cancellations between electron-electron and electron-nuclear terms, the integral in Eq. (19) is of bounded value.
In the vicinity of q=O (qua=0, p, =O), the singularity has been weakened and integrations in arbitrarily small regions
around this point yield finite contributions. At large values of

~ q ~

the multiplicative function P„(k,p —q„) provides the
necessary decay for C„(k,p) to be finite. The asymptotic decay of P„(k,q) results from the Coulombic nature of the in-

teractions involved in the potential term of the Hamiltonian. In direct space, the wave functions must decay like ex-
ponentials at large

~

r
~

and in momentum space the characteristic decay will be of the form —
~ q ~

( v & 0) as, for ex-

ample, in the case of the ls hydrogenic wave function where v =4.
c. Exchange terms. The direct-space representation of the exchange part, X„(k,r), due to band n,

r

X„(k,r)= ——,
' g f dk'8„(k') f dr'P„'(k', r') ~r —r'~ 'P„(k,r') P„'(k', r), (30)

can be expressed in the momentum-space representation by following the same steps as in the case of the electrostatic
terms,

X„(k,p)= —(2naa) ' f q g f dk'8„(k') f dr'p„'(k', r')p„(k, r')e '" ' f dre ' p„(k', r)
n'

= —(2maz) ' f 2
W„„(k',k, q)P„(k', p —q) . (31)

Replacing W„„(k',k, q) by the explicit form in Eq. (21), leads to

X„(k,p)= (2naa) '—f g f dk'8„(k') +5[q, —(Ju+k' —k)]
n'

X f ds, g u„(k', s„—q„)u„(k,s„)$„(k',p —q)

= —(2ira0) ' g f dk' f z +8„(k')W„„(k',k, @+k )Pk„(k', p —q„+k ~ ) .
qi+(p+k' —k)

(32)

Contrary to the case of electrostatic contributions, un-
removable singularities occur at q i + (p, +k' —k) =0 (i.e.,
qg ——0; p=0 with k =k', @=1with k = —k'= ——,', and
p= —1 with —k=k'= —,'). Nevertheless, the contribu-
tions originating from the regions of singularity accumu-
late to a finite result after integration over qz and k'.
However, as was already experienced in the algebraic ap-
proach, ' this causes many problems in performing the
numerical integrations. This mill be mentioned in the
next section with emphasis on the fully numerical ap-
proach. The behavior of the integrand at large values of

~ q ~

follows the saine trends as in the case of the electro-
static terms.

d. Total energy. An appropriate form of the total ener-

gy for our computational purposes is

E~ —f dk g I 8„(k——)[c,„(k}+T„(k)+V„(k)]I + UN,

(33)

t

where

e„(k)= f dr/„'(k, r)F(r)P„(k,r)

=a0 f dpi'„(k, p}[F(r)P„(k,r)] (p),

T„(k)= f dr(I}„'(k,r)[ ——,
'

V (r)]P„(k,r)

(34)

and

U& ———g g"Z„Z„~ (s„—s„+pe, )aa
~

'=AU, (37)
Q, Q

=aa f dpi'„(k, p)[ ——,V (r)P„(k,r)] (p), (35)

V„(k}=f dr/„'(k, r)P„( kr)
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with U=N 'U. It is possible to factorize out N, the
number of cells, and to write the total energy per unit cell
Eas

E =—,
' f dk +8„(k)[s„(k)+T„(k)]+U+ V,

V being defined as

V= —,
' f dk+8„(k)V„(k) . (39)

In Eq. (38) both U and V are individually divergent
terms, the divergence is resolved through a grouping simi-
lar to the one applied to the electrostatic terms occurring
in F(r).

%e proceed by meriting U in a Fourier-representation
form; using Eq. (10c), we obtain

U= —, g gZ„g"Z„~ (s„—s„+pe, )ao
~

' =(2irao) 'gZ„g g"Z„ f e
Pk Q Q Q P, Q'

r

f dq 2l)l'q (5 8 +i(c ) f d'q

Q Q' P,

(40)

In the last hne of Eq. (40), the term p =0, u =u, initially excluded by the double-prime convention, has been added and
subtracted. The term V is treated in a similar way, i.e.,

V= —,
' J dk +()„(k)f dr g(kr)p„(kri —QQZ„(r —(s„+pe, )ao

(

=(2ma, )
' f dk +8„(k)f dr/„'(k, r)P„(k,r) —QQZ„ f, e

'""
5 p Q

=(2ira, )
' f dk +8„(k) —QQZ„ f, W„„(k,k, q)e

5 P Q

(41)

We now combine U and V, interchange the p summation and the q integration, insert Eq. (10d) and integrate over q,
to obtain

—2l Kq 'S
p M

U+V=(2nao) 'QZ„ f dq&
Q qy +P

QZ„e " " —f dk g 8„(k)W„„(k,kq~)
Q

(42)

As already pointed out in the algebraic approach, '2 ""Eq. (46) has a regular behavior not only at q„=0 but also at
large qi. This can be made more obvious by separating from the u' summation the term u'= u to finally obtain

U+ V = (2irao) ' g Zu f "qi Zg
Q (t(tg +p

—2l&qg Sg

f dk +8„(k)W„„(k,k, qi)

—2imq .s„

f dk +8„(k)W„„(k,k, q„)
p, (+o) Vi +9 n

—2l 77/ 'SQ
e+X,2

p ql+P g Z„e " "—f dk +8„(k)W„„(k,k, q„)
Q

Q QQ

Equation (43) is well conditioned from a formal point of
view, ' ' but its numerical treatment requires to add and
subtract analytical contributions in order to secure nurner-
ically accurate and stable results. Such procedures have
been suggested by Harris' and have already been used in
an application of the Fourier-representation method. '

The way in which difficulties related to these problems
manifest in direct numerical integration of the RHF equa-
tions will only be understood and mastered from test cal-
culations of gradually increasing complexity.

III. OVERVIEW OF THE CGMPUTATIGNAI.
ASPECTS

A full account of the computational and numerical
features characteristic of the approach is neither possible
nor appropriate at this stage of development. The compu-
tational strategy and procedures used in our preliminary
calculations are likely to be adjusted according to the new
knowledge the future computational experiments and tests
will impart. Nevertheless, it is already informative to
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analyze the expressions established in Sec. II on the basis
of their general and constant features.

An appreciable advantage of transforming to momen-
tum space is that the RHF equations come out ln the
form of integral equations, while in direct space the corre-
sponding expressions are of the integro-differential type.
Integration is thus the basic operation that shall per-
vasively be performed to solve Eq. (23) numerically. The
variables and the different types of integrations arising in
the method are identified in Sec. III A. Sec. III 8 is de-
voted to a brief discussion of problems related to singular
integrands.

A. Variables and integration schemes

The Bloch states, Eq. (15), and derived quantities such
as a Fourier transform of orbital products, Eq. (22), de-

pend upon four variables: the wave number k, two con-
tinuous coordinates p„,p~, and a discrete coordinate

p, =v —k. The continuous variables p„and pz as well as
the index v have double infinite ranges. It can already be
anticipated that the tractability of a fully numerical treat-
ment is closely linked to the actual decay of the relevant
quantities, (()„(k,p) and W„„(k,k', p), with respect to p.
The more delocalized the functions and the more difficult
will become the numerical work due to increasing storage
requirements. The already identified singularities in some
of the integrands suggest that we adopt a polar representa-
tion for the two continuous variables p, and p», i.e.,
(p„,p~)~(8,p), which proves to be more convenient do
deal with the expressions near the points of singularity.
The range of 8 and p, respectively, are 0(8&it and
0(p & oo. Translational symmetry decouples p, from the
other two variables, 8 and p, and thereby implies a
separate numerical treatment.

1. k integration

The process of populating the Bloch states of energy
lower that the Fermi energy involves an integration over
k(k') in BZ [see, for instance, Eqs. (29), (32), and (43)].
In the case of our model system (H)„ this type of integra-
tion has been performed using the standard Gauss-
Legendre method, ' and it was noticed that 6—10 points
in half the Brillouin zone led to stable and consistent
values.

2. (8,p) integration

The region of integration for the p variable is a singly
infinite interval, 0 &@& 0o, and the corresponding integral
is known as an improper integral. From preliminary at-
tempts, it does not seem obvious that some sort of advan-
tage can be gained by trading the unbounded interval for a,

finite one through a change of variable. One straightfor-
ward way to deal with such integral is to reduce the infi-
nite interval by ignoring the tail of the integrands. How-
ever, in this case it is important to estimate the error re-
sulting from such a truncation, and presently, we do not
have simple and reliable inequalities from which to get er-
ror bounds for a given truncation. Nevertheless, the pre-
vious works on the molecular systems, ' H2 and H3,

have indicated that the relevant part of the one-electron
states is enclosed in a disk d(0,p;„), hereafter referred to
as the inner region, whose radius, p;„, is (3 a.u. of
mornenturn. However, it was also observed that this was
not sufficient to yield energetic quantities such as the total
energy and one-electron eigenvalues more significant than
within three decimal digits. To improve the situation an
outer region, extending from p;„ to p,„„was added. Typ-
ical values for p,„, are 15 and 20 a.u. In the outer region
simple analytical forms, deriving from the shape of the 1s
hydrogenic wave function, were used to continue the nu-
merical values from the inner region into the outer region
and ease the computational work.

The integration method used in this paper for d(0,p;„)
is an adaptation to the two-dimensional case of a pro-
cedure originally developed by Pierce i for spherical
shells. The p abscissas are the nodes used in the standard
Gauss-Legendre quadrature for a finite interval, i' while
the 8 abscissas are evenly distributed on circles intersect-
ing the radial axis at the p nodes. Computer tests on mol-
ecules ' and in this work suggest that 27—37 p points
per a.u. of momentum and 10—15 8 values are suitable
grids to yield numerically accurate values to within four
decimal digits.

3. p summation

As a result of the lattice orthogonality relation, Eq.
(10d), the integration over the variable p, =p —k reduces
to an infinite summation of the functions defined at the
points of a Dirac comb. The summation index runs in

principles from —00 to + 00. For localized functions in
momentum space (delocalized functions in direct space),
the series have a favorable rate of convergence. In the
case of moderate and/or low convergence, procedures for
summing the series become rapidly necessary but their use
is subordinated to an explicit knowledge of the terms,
which is obviously not the case in a numerical procedure.
To overcome the difficult, the full range of the p, indices
can be divided in an inner region, —p;„&p &p;„, where
the terms of numerical origin are directly summed, and an
external region where the remaining terms have the same
explicit form as introduced for the p variable and can be
summed by some analytical device. ' '

4. Interpolation

The occurrence of convolution integrals in the working
expressions, see, e.g, Eq. (21), requires the knowledge of
the state functions and other quantities for arguments not
defined at grid points fixed by the numerical integration
schemes. In such cases approximation procedures are
needed. In the molecular applications and in this work
these values are approximated by a cubic interpolation. '

B. Singular integrands

Extended systems generate problems of their own
characterized by singularities in the integrands of both
electrostatic, Eqs. (20) and (43), and exchange, (Eq. (32),
contributions.

The divergencies arising from the singularities in the vi-
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cinity of q„=O (or q» =q» =)u =0) for integrands of Eqs.
(29) and (43} have been removed by the combination of
two terms equal in magnitude and opposite in sign, and
does not hide new formal problems. ' ' However, the
evaluation of the integrals in Eqs. (29) and (43) remains
difficult in practice because the terms q„ in the denomi-
nator enhance the numerical errors when q„~O.
Mathematical manipulations such as adding and subtract-
ing analytical forms' to reduce the ill-conditioned nature
of the integrand at q„~O are useful, especially in the case
of total energy. This is alluded to in the following sec-
tion.

Much more problematic is the exchange singularity
which, contrary to the electrostatic situation, cannot be re-
duced on the basis of physical criteria. The integrand in

Eq. (29) is unbounded when q„+k k~0, but the contri-
butions originating from the regions of singularities are
nevertheless finite as can be easily appreciated from the
following simpler expression having the same singular
behavior as in Eq. (32):

Pi(k, r}=$(k,r)=Dt, ge ' X(r va—oe, ) . (46)

Using the same method employed in Ref. 15, X is approx-
imated by a finite ( m = 1,2, 3) Gaussian expansion,

convenient reference for testing new approaches. Recent-
ly published data on this system by the algebraic Fourier
representation method' and a direct-space approach
will be used to compare with our results.

In the model system, the hydrogen atoms are equally
spaced. The basic parameters entering the preceding ex-
pressions are all equal to unity, Z =Q=~=1, and the
one-electron states corresponding to the lowest-energy
band n =1, are constructed from a single ls hydrogenic
function, denoted by X, of exponent g. In order to simpli-
fy the notation, the subscript n has been removed from
the expressions as suggested in Eq. (46). Since each hy-
drogen atom contributes one electron, in the double occu-
pancy scheme, the occupation function 8,(k}=8(k) is
equal to 2 for

I
k

I
& —,

'
and zero elsewhere:

dqj.I= —(2nao) ' dk'
~ qi+(p+k' —k)

3/4
m

X(r) =Dk g d,
a=1

—CXg I'2

e (47)

= —(2a ) 'g f dk'f, (44)
s +(p+ k' k)2—

where
I
c

I
and

I
d

I
& —,', and o is a circular region of ra-

dius p =[(q„+q» )]' enclosing the origin. The above ex-
pression is the same as Eq. (32) where the numerator

g 8„(k')W„„(k',k, ~+g k )p„(k',p q„+k —k ),

+2p tan
c+p —k

(45)

It is easily observed that Eq. (45) leads to a finite result no
matter how small p is and whatever the integration limits
for the k' integration chosen within the range of variation
of' k', i.e, I

k'
I

& T. This simple exercise shows that
X„(k,p), Eq. (32), is bounded for any n, k, and p but,
even more important than in the case of the electrostatic
terms, the regions for which q„+k k~O are ill condi-
tioned and require special treatments. The way this prob-
lem has been dealt with for (H)„ is described in the fol-
lowing section.

IV. APPLICATION TG THE (—H—)x
MODEL CHAIN

The infinite chain of hydrogen atoms, (H}», is the sim-
plest quasi-1D system that can be conceived for meaning-
ful ab initio test calculations. Its electronic structure has
been investigated many times' ' and thus serves as a

which does not contribute to the singularity, has been set
to unity for the sake of illustration. Equation (44) can be
given an explicit form since both q and k' integrations
have a tabular entry:

2 I s 2

I = —(2ao) ' g k'ln
(k')

. -d+p —k

The momentum-space version of Eq (46) .is
' 3/4

P (k,p)=Dt', +5(p, —(v —k)) g d, e
V a=1 Aa

(48)

Dt, and Dk are normalization factors and

P, =m (aoa, ) '. The values of the parameters entering
Eqs. (46) and (48) are listed in Table I. From Fig. 1 it can
be noticed that P (k, p) has more diffuse and more local-
ized components when m increases. The actual values of
the exponents and weights are listed in Table I. Equations
(46) and (48) constitute approximate but fully defined ex-
pressions for the Bloch states of lowest-energy band once
the parameters ao and g are fixed. In this work the varia-
tionally optimized' values of ao and g have been used,
see Table I. The graph of PT(k, p„) for pi =0 is represent-
ed in Fig. 2 as a function of v for two expansions, m =1
and m =3. In momentum space, the Bloch states are
discontinuous functions of v and their values are
represented by thick bars in the figure. To provide a
better description of the difference in the decay of
P (k,p„) for m =I and m =3, the corresponding en-
velope functions have been added in as dashed lines. Fig-
ure 2 clearly shows that P (k, p„) is of slower decay when
pl increases.

Our numerical experiments deal with the integral part
of the method. This part is not only the most involved
but also the first to be mastered before the iteration steps
can be reasonably considered. The quantities obtained by
algebraic methods' ' are thus ideal references to try to
reproduce. Our goal in this testing part is twofold: (a) to
pro»de a posteriori checks on the consistency of the for-
mal expressions obtained in Sec. II, and (b) to learn on
some of the problems occurring in the elaboration and
practice of the procedure.

The conditions for these tests were the following.
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TABLE I. Numerical values of the parameters m, ao, g, d„a„and P, occurring in Eqs. (47) and
{48);ao in Bohr units, w, =d, {2n/a, )', and P, =sr {aoa, )

d I ——1.M@00,
For m =1, ao ——1.915, (=1.156

a( ——0.362 08, w I ——8.502 20, Pi ——7.432 89

d l ——0.430 13,
d2 ——0.678 91,

For m =2, a0=1.883, (=1.142
ai ——1.11091, wi ——3.667 55,
a2 ——0. 19774, wq ——13.383 32,

Pi ——2.505 65;
Pp

——14.076 82

di ——0.15433,
d2 ——0.535 33,

0 AAA 63

For m =3,
al ——2.83947,
aq ——0.51721,
a3——0. 13998,

ao ——1.900, g= l. 129
w I

——l.81429,
w2 ——6.50706,
w 3 ——17.341 45,

Pi ——0.962 84;
Pt ——5.285 98;
p3 ——19.531 09

calculations were made with an inner region d(0,p;„) of
radius p;„=1 a.u. and an outer region extending from p;„
to p,„, with p,„,=4 a.u. The radii p;„and p,„, have been
chosen on the basis of the decay of pr(k, p) with m =1.
The same algorithms were used in both the inner and the
outer regions. Even though Fig. 2 points to the need for
larger values of p;„and p,„, in the case of m =2 and
m =3, we have kept the same computational conditions
for three cases, i.e., m =1, 2, and 3, in order to have a
first idea of the sensitivity of the results with respect to
these parameters. In the inner region, 31 p points and six
abscissas for the 8 variables have been used; in the outer
region five p nodes were used, while the number of 8

I

abscissas was the same as in the inner region. Finally, p;„
was set equal to 7 and the number of k points in half the
Brillouin zone was eight.

Equation (29) has been directly integrated as it reads.
In the case of Eq. (43), pertaining to the total energy, a
Gaussian function has been added and subtracted as indi-
cated in Eq. (69) of Ref. 15, so as to improve upon the ill-
conditioned numerical behavior of the integrand. The ex-
ponent 8 (8 =7.243) of the function was the same for all
three expansions, i.e., m = 1, 2, and 3.

In the case of exchange a somewhat more involved
treatment, which we outline hereafter, has been applied.
The exchange contribution Xr(k, p),

JX, (k,p)=X (k,p)= —(2mao) 'g f, , f dk'8(k')W(k', k, q„+I, k)p (k', p —q„~k k),
qi+ (p +k' k) az

is rewritten in a more compact form,

dqyX (k,p)=
„ f qi+(@+k' —k)

1/4
X f dk'G(k', k, p, q„+k k), (50)

where the limits of the k' integration are explicitly indi-
cated and G(k', k, p, q„+k k) has been introduced to
represent the numerator of Eq. (49),

G (k', k, p q„+/, k ) = ——(27rao)
' W(k', k, qp+k k )

Xp (k', p —q„+k k) . (51)

(}~1 I I I ) I I I I
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FIG. 1. Graphical representation of the various components, exp{ —P,p ), entering Eq. {48) for the three expansions m =1,2, 3.
The values of the parameters are taken from Table I.
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=0
The procedure amounts to choosing r) small enough,

r1=0.04, so that G(k', k, p, q„+k k) is nearly constant,
with respect to q, awhile the dependence in k is approxi-
mated by a second-degree polynomial over subintervals of

cp (kg~ )

II
@=0.240 G(k', k, p)=a +bk'+c(k'), (52)

m=1
fll=3 0.131

in a given subinterval of [——,', ~ ]. The resulting expres-
sion is written as

k-0.046

2

FIG. 2. Graph of the Bloch states as a function of v and k at
p=0. Gaussian expansions m =1 and 3 are represented. The
selected values of k are 0.046, 0.131,and 0.240, and those for ao
and P, are taken from Table I. The scales are arbitrary.

X (k,p)=[X (k,p)]„+[X (k,p)]„„s, (53)

Xz(k,p)„= f dk'[a+bk'+c(k') j f ze qj+(k' —k)

where, for a given subinterval S of the variable k' we have
the following quantities to evaluate:

Because 8{k')=2 for
~

k'
~

& —,', the singularities occur
only for p, =O when k'=k. The terms for p&0 are
directly integrated using the Gauss-Legendre quadrature.
In the case p=0, the inner region of radius p;„ is parti-
tioned in a small circular region d (O, g) of radius g and a
ring (rl,p;„). The integration in the ring is done using the
Gauss-Legendre quadrature while an approximate analyti-
cal treatment is applied in d (O, ri ).

The qz integration can be made explicitly, ~

Xz{k,p)„=2m. f dk'[a+bk'+c(k') ]

X [ln
~

ri'+(k' —k)'
[
—ln

~

(k' —k)'
[ ],
(55)

and similarly the k' integrations in Eq. (55) have tabular
entries from which Xz(k, p)z can be given the following

rrn:

Xq(k, p)z —2' ln(k +ri ) [a+bk'+c(k') ]k+ (k +ri )+—k
b+2ck' 2 2 c

—21n~k
~

[a+bk'+c(k') jk+ k +—k +2ri k[a+bk+c(k') ]
b +2ck' 2 c

+2ri tan ' —[a+bk'+c(k') ]+2r) tan ' — a+bk'+c(k') —ri—
g 3 s

Computational checks have demonstrated the sensitivity
of [Xr(k,p)]z with respect to the value of r) which has to
be small enough to make G(k', k, p, q„+k k) nearly con-
stant in d(O, rl) but at the same time large enough to
prevent dramatic losses of accuracy in the numerical

I

evaluation of [X (k, p)]„„s.
Table II gives the results on the total energy and its

Coulomb exchange and kinetic contributions obtained by
the numerical procedures outlined above. The corre-
sponding values by the algebraic approaches' are writ-

TABLE II. Ground-state RHF energies of (H)„ for different Gaussian expansions of the 1s hydro-
genic function g (data in atomic units). Corresponding values of algebraic approaches (Refs. 15 and 33)
are given within parentheses.

Total
Coulomb

—0.6488
(—0.6487)

Total
exchange

—0.2919
(—0.2983)

Total
kinetic

0.4745
(0.4745)

Total
energy

—0.4653
( —0.4726)

—0.7283
(—0.7307)

—0.2916
(—0.2983)

0.5149
(0.5149)

—0.5050
(—0.5149)

—0.7445
(—0.7536)

—0.2900
(—0.296S)

0.5248
(0.5248)

—0.5197
(—0.5253)
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TABLE III. Selected values (in a.u. ) of the energy band of {H)„for m =3. Corresponding values by
algebraic approaches (Refs. 15 and 33) are given within parentheses.

Coulonbic
energy

—0.4332
{—0.4289)

Exchange
energy

—0.6293
(—0.6365)

Kinetic
energy

0.3570
{0.3571)

Total
energy

—0.7056
( —0.7083)

0.131 —0.4731
{—0.4655)

—0.6009
(—0.6114)

0.4880
(0.4871)

—0.5860
(—0.5926)

0.199 —O.S367
(—0.5318)

—0.5413
{—0.5531)

0.6939
(0.6933)

—0.3841
( —0.3915)

—0.5907
( —0.5860)

—0.4643
( —0.4793)

0.8687
(0.8684)

—0.1864
( —0.1856)

ten between parentheses. As expected the values obtained
for m =1 are in closer agreement with the results provid-
ed by the algebraic approach than the other two (m =2
and m =3). The exchange contribution exhibits a notice-
able departure which emphasizes the still insufficient
treatment of the exchange singularity. The overall pro-
gressive degradation of the results when going from
m =1 to m =3 is obvious and is due to the arbitrary
small values chosen for p;„and p,„,. Table III gives ener-
gies of the occupied band for k =0.046, 0.131,0.199, and
0.240 in the case m =3. Corresponding values calculated
with algebraic approach are given in parentheses.

Despite their preliminary nature, these data obtained by
a straightforward numerical implementation of the equa-
tions of Sec. II compare consistently with the results of
the algebraic approaches, '5' constitute a numerical veri-
fication of the expressions deduced in Sec. II, and provide
useful indications as to where and what type of improve-
ments are needed.

At this stage, absolute computing times are not
representative of the future needs owing to the specific
and straightforward code developed. However, it can al-
ready be appreciated as being a major advantage of the
numerical approach that the computing resources were
identical for the three cases (m =1, 2, and 3), contrary to
what is noticed for the algebraic procedures. There the
computing time increases significantly with the number of
basis functions.

V. CONCLUDING REMARKS

General momentum-space RHF expressions for extend-
ed periodic model chains have been deduced and analyzed
in this work. The separation of particle coordinates and
the integral form of the final expressions obtained by
transforming the direct-space RHF equations to momen-
turn space are important properties to be used in the nu-
merical determination of their solutions. Preliminary cal-
culations on the (H}„model chain have been performed in
order to test the consistency of the formalism and estab-
lish a first contact with the numerical problems raised by
actual implementations of the project.

The mathematical characteristics of the momentum-
space RHF equations are favorable for a direct numerical

determination of their solutions and thereby go beyond
the limitations to the accuracy obtainable in calculations
relying on basis sets. The calculations reported on the in-
tegral part have given support to this assertion. However,
several adjustments have to be made before considering
the iteration steps and true numerical solutions can be
claimed. During our attempts to reproduce the results ob-
tained by algebraic approaches, the following points have
been identified as requiring improvements.

(I) Generally, there is a need to use several concentric
circular rings to perform more accurately and with
greater versatility the integrations over the p and 8 vari-
ables as well as to sample the one-electron states further
away from the origin. Indeed, the Coulombic nature of
the interactions in the potential terms induce singular
points (cusps) in the direct-space graph of the one-electron
states. A large part of the electronic energy is attached to
these cusps and in momentum space this is carried over

by the large p values.
(2} The computer time needed by a fully numerical ap-

proach aiming for high accuracy is expected to quickly
become prohibitive. A procedure, where the classical
algebraic methods (more effective in the description of the
integrand tails in momentum space) and the numerical ap-
proach would be combined, seems appropriate to over-
come these problems. It would also have the advantage of
providing the explicit knowledge required to use analyti-
cal devices for summing the slowly convergent series.

(3) Exchange remains a problem; from our calculations
it turns out that more flexibility has to be imparted in the
approximation form of the integrand.

%'e are presently working on these points and hope to
have soon a better control on the integration part to con-
sider the iteration steps and ultimately be in a position to
report on truly numerical HF solutions for quasi-1D
model systems.
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