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A stochastic model is presented for stage transformation in graphite intercalation compounds. By
introducing three types of intercalation processes into the domain model of Daumas and Herold, we

derive a nonlinear Langevin equation which describes the stochastic motion of intercalant islands.

Results of simulation of the Langevin equation show that the stage transformation proceeds via ini-

tial nucleation of new stage regions followed by their growth. When the chemical potential of inter-

calants in the final state, pf, is taken in a certain range in the phase diagram, the time evolution of
the structure factor demonstrates the coexistence and no significant broadening of peaks correspond-

ing to the initial and final stage structures, in good agreement with experimental results. For other
values of pf, the system transforms to the final stable stage via an intermediate disordered state or

stays in a mixed state of stable stage and metastable stage. The appearance of metastable fractional

stage units in the final state of the transformation is discussed.

I. INTRODUCTION

Graphite intercalation compounds (GIC's) are formed
by the insertion of atomic or molex:ular layers of a dif-
ferent chemical species called the intercalant between
layers in a host graphite material. ' The intercalant layers
in the ordered state of these compounds are arranged
periodically along the c axis in the matrix of graphite
layers. Thus, GIC's are classified by the stage number n

denoting the number of carbon layers sandwiched between
adjacent intercalant layers. This staging phenomenon
characterized by the formation of ordered sequence of the
host and intercalant layers and the staging transition asso-
ciated with a change of stage number n are undoubtedly
one of the most intriguing properties of GIC's and have
been the subject of active studies over the past few years.

Although most of the experimental and theoretical
work have been developed to investigate the equilibrium
properties of staging phenomena, e.g. , phase diagrams for
staging, stage disorder, and staging transitions, some as-
pects of the kinetics of staging phenomena have been ex-
plored as well. An itnportant detail of the staging transi-
tion is that it is considered to proceed by the formation
and migration of islands of intercalants as was first pro-
posed by Daumas and Herold. A physical rationale for
the inhomogeneous distribution of intercalants was first
suggested by Safran based on the theory of spinodal
decomposition. Later, Hawrylak and Subbaswamy have
investigated the kinetics of intercalation and staging tran-
sition using the time-dependent Landau-Ginzburg ap-
proach and have concluded that the formation of inter-
calant islands is a natura1 consequence of the kinetic con-
straint imposed by the intercalation mechanism. More
detailed study of staging transition by taking account of
the stacking entropy of intercalant layers has been carried
out by Kirczenow, in which it is suggested that the stag-
ing transitions proceed via stage-disordered states. This
prediction seems to be qualitatively consistent with recent
experiments by Misenheimer and Zabel in which it was

shown that high-stage K-GIC with n &2 exhibits, in
thermal equilibrium, stage mixing and that the staging
transitions from stage 5 to stage 4 and from stage 4 to
stage 3 involve disordered states characterized by a
broadening of the Bragg reflection.

Of greater interest, however, are recent experimental
studies on the nonequilibrium properties in stage transfor-
mation which occur when GIC's are subject to a sudden
change of vapor pressure of intercalants or temperature of
specimen. Nishitani et al. have performed in situ x-ray
diffraction measurements of the isothermal stage transfor-
mation from stage 3 to stage 2 in K-GIC after a sudden
change of vapor pressure of intercalants while the tem-
perature of GIC is kept constant, and have obtained the
result that the diffraction pattern corresponding to stage 2
grows gradually at the expense of the stage-3 pattern
without showing any evidence for stage disorder. Similar
results have been obtained by Misenheimer and Zabel in
the in situ observation of isobaric stage transformation
from stage 1 to stage 2 in K-GIC after a sudden change of
temperature of GIC in which the vapor pressure of inter-
calants is kept constant. It seems that the differences in
the degree of stage disorder described in the above are not
completely understood in terms of any theoretical model
published so far. It is interesting, therefore, to study the
nonequilibrium processes of stage transformation in order
to see if the stage disorder is brought about during the
stage transformation. The study of kinetics of staging
may also provide us with a more detailed picture of stage
transformations and intercalation processes.

In the present paper, we focus ourselves on the non-
equilibrium processes and present a stochastic mode1 of
stage transformation which is based on the domain model
of Daumas and Herold (DH model) and the expression of
free energy similar to that developed by Safran and oth-
ers. ' In our stochastic model, the stage transformation is
brought about by a simultaneous lateral translation of a
slanting array of intercalant islands, a simultaneous
shunting motion of the nearest-neighbor islands in adja-
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cent layers, and a growth or diminution of islands due to
intercalation or deintercalation from the edges of speci-
men. By dividing the crystal into columns along the c
axis and introducing the average density of intercalants in
a gallery within a column as the order parameter, we
derive a nonlinear Langevin equation which describes the
stochastic motion of intercalant islands. Simulation of
the Langevin equation yields a snapshot of the motion of
islands and, correspondingly, the time evolution of the x-
ray structure factor, in the isothermal stage transforma-
tion from stage 3 to stage 2 after a sudden change of
chemical potential or, equivalently, the vapor pressure of
intercalants, our computer simulation shows that two
well o-rdered stages coexist during the transformation with
no evidence for stage disorder. In agreement with experi-
ment by Nishitani et al. Similar results are obtained for
the case of isobaric transformation from stage 1 to stage 2
after a sudden change of temperature of GIC, which are
also in qualitative agreement with experiment. It is to be
noticed that those transformations accompanying no stage
disorder can be realized only for cases where the final
values of chemical potential or temperature fall in a cer-
tain range of values in the phase diagram.

A variety of cases of transformations realized within
the present model are simulated by varying values of
chemical potential of intercalants, temperature of GIC,
and relevant parameters. For the case of stage transfor-
mation from stage 3 to stage 2 after a sudden change of
temperature of GIC, but with constant chemical potential,
it is found that the transformation proceeds via an inter-
mediate disordered state in contrast to the results
described above. It is also found that lowering the tem-
perature of GIC makes intercalation processes slower and
produces an intermediate state composed of stage-2 and
stage-3 regions without showing tendency to approach a
stable pure stage state. Discussion is made on the case
when a fractional stage state appears in the course of stage
transformation.

The outline of the present paper is as follows. In Sec.
II, we describe our stochastic model of stage transforma-
tion. We give the expression of free energy of the present
system and derive the nonlinear Langevin equation. In
Sec. III, equilibrium phase diagram is determined from
the free energy of the system and discussion is made con-
cerning the appearance of fractional stages in the phase
diagram. Simulating the Langevin equation, we present
the results of time evolution of stage transformation in
Sec. IV and compare them with experimental results. Sec-
tion V is the conclusion with a discussion of the results.

II. STOCHASTIC MODEL OF STAGE
TRANSFORMATION

An important detail of the mechanism of staging pro-
posed by Daumas and Herold is that the intercalation
proceeds by the formation of islands of intercalants in
such a way that intercalants are distributed inhomogene-
ously between every pair of contiguous graphite layers.
Inhomogeneous distribution of intercalants causes the
elastic deformation of the host graphite layers. " This

elastic deformation of graphite layers not only contributes
to the cohesion of intercalants, i.e., the formation of inter-
calant islands, but also gives rise to the attractive interpla-
nar interaction between islands for certain oblique direc-
tions. ' Thus, the staggered juxtaposition of intercalant
islands, in which the nearest-neighbor islands in adjacent
gallaries occupy a staggered position in an oblique direc-
tion, is stabilized by the attractive interplanar interaction
due to the elastic deformation of graphite layers. Figure
1(a) shows an example of staggered arrays of islands
representing the stage-3 DH domain structure. According
to the DH domain model, then, the stage transformation
proceeds by the redistribution of intercalant islands inside
the host graphite without the need for gross interdiffusion
of intercalants between different layers.

In the present paper, we introduce in the DH domain
model three types of intercalation processes for the stage
transformation. The first is a simultaneous lateral
translation of a slanting array of islands shown in Fig.
1(a). Since the slanting array of islands is stabilized by
the attractive interaction between islands in an oblique
direction, islands in an array tend to move simultaneously
rather than separately. This simultaneous lateral transla-
tion of islands is driven by a successive intercalation or
deintercalation from the edges of a sample. Thus, in the
stage transformation from stage 3 to stage 2, slanting ar-
rays are pushed inwards and the stage-2 regions grow in-
side the sample as shown in Fig. 1(a).

In Fig. 1(b) we show another example of stage-3 DH
domain structure which gives the same structure factor
S(q~~) with q~~ parallel to the c axis as that in Fig. 1(a). It
is to be noticed that such an initial configuration of is-
lands as shown in Fig. 1(b) cannot be transformed into a
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FIG. 1. Three types of intercalation processes are introduced
in the present model. (a) Daumas-Herold domain model for
stage-3 structure. Arrows indicate a simultaneous lateral
translation of a slanting array of islands. (b) Simultaneous
shunting motion of islands shown by the arrows and dotted cir-
cles. (c) Growth process of islands shown by dotted circles,
which produces two neighboring stage-2 units from the stage-4
unit.
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stage-2 structure only by means of simultaneous lateral
translations of islands. Therefore, we introduce the
second type of intercalation process which is shown in
Fig. 1(b), in which nearest-neighbor islands in adjacent
layers move to their mirror position by means of mutual
rotation. This simultaneous shunting motion of islands
transforms two adjacent stage-3 units into stage-2 and
stage-4 units. To recover the regular array we have to in-
troduce the third type of intercalation process, which is a
growth or diminution of islands in an empty interlayer
space resulting from the diffusion of intercalants. This
intercalation process produces two adjacent stage-2 units
from the stage-4 unit as shown in Fig. 1(c).

For simplicity of discussion, we assume that the size of
intercalant islands is almost equal to each other and
remains unchanged even during the stage transformation.
We divide the crystal into a set of columns along the c
axis. Each column is subdivided into cells bounded by ad-
jacent two-carbon layers. The size of the cell is taken to
be large enough to accommodate only one intercalant is-
land. Then, the well-ordered stage structure can be identi-
fied as a periodic occupation of cells by intercalant islands
along the c axis. The mean density of intercalants in the
nth cell of mth column, p„, is taken as a stochastic vari-
able which is defined by the number of intercalants E„
in the cell divided by the number of sites No available for
the intercalants within the cell and is assumed to take a
continuous value between 0 and 1.

In the following, we focus ourselves on the single
column and describe the stage transformation in terms of
a set of mean density of intercalants, p„, in the nth cell
within the single column. This model is called a single-
column model. Within the framework of the single-
column model, the simultaneous lateral translation and
shunting motion of islands can be interpreted as an effec-
tive diffusion of intercalants along the c axis as shown in
Fig. 1(b). Therefore, the stage transformation within the
present model is brought about by an effective diffusion
of intercalants along the c axis and a growth or diminu-
tion of islands within a cell of the column.

The free energy of a single-column model consists of
two parts. One part is the intracolumn free energy 4i
first given by Safran, and is written in terms of a set of
mean density Ip„j within a column as

C'i= i UOX~. +—2 X I'., v.v

+kg T g [p„lnp„+(1—p„)ln(1 —p„)]

4,= Wog [—2(p„+p„+i)'+(p„+p.+i) ] (2.3)

It is seen that the intercolumn interaction 42 takes a
minimum energy —Wo when the sum of intercalant den-
sities in adjacent cells is equal to unity in correspondence
to the most favorable configuration of islands.

Since the free energy within the framework of the
single-column model is written in terms of mean density
of intercalants in each cell Ip„j, we take Ip„j as stochas-
tic variables and derive a nonlinear Langevin equation
which describes the stochastic motion of islands within a
column. Details of its derivation are given in the Appen-
d1X,

—„p„=—g b,„P(c,+4,)+f„(t), (2.4)

where b,„~ is a kinetic coefficient given by

2A+B, n =m
n =m+1 (2.5)

P= 1!keT, and f„(t) is the Gaussian-Markovian random
forces satisfying the fiuctuation-dissipation theorem,

tive parameter. ' The third term in Eq. (2.1) is a mean-
field entropy in the Bragg-Williams approximation, and p
in the last term represents the chemical potential of inter-
calants.

The other part of the free energy represents the inter-
column interaction originating from the elastic interaction
between islands in different layers of different
columns. ' '" Elastic interaction is a long-range interac-
tion and attractive between islands in different layers
when islands are far apart. When they come close to each
other and overlap along the c axis, the interaction be-
comes strongly repulsive. Therefore, the elastic interac-
tion is responsible for the stabilization of staggered juxta-
position of islands. Stabilization of a juxtaposed configu-
ration of islands can also be explained by considering the
domain boundary energy of islands. Since the domain
boundary energy is positive, the system tends to reduce its
contribution to the total energy by letting the islands
share common boundaries, resulting in the staggered con-
figuration of islands shown in Figs. 1. Within the frame-
work of the single-column model, the juxtaposed configu-
ration of islands can be represented by the condition

p„+p„+i——1 in terms of a set of mean density Ip„j. In
the present paper, therefore, we take into account the in-
tercolumn interaction by adopting the expression

(2.1)
(f„(&)f (t') ) =26,„5(r i') . — (2.6)

Here, the first term is the in-plane attractive interaction
between intercalants (Uo&0) and contributes to the for-
mation of islands. The second term represents the repul-
sive electrostatic interaction between ionized islands in the
nth and mth cells along the c axis with V„~ given by

(2.2)

where z„ is the distance between cells n and m mea-
sured in units of the c-axis lattice spacing, and a is a posi-

In the expression of kinetic coefficients (2.5), A and g
represent the effective diffusion rate of intercalants along
the e axis and the growth or diminution rate of islands
within a cell, respectively. It is to be noted that if we take
the total number of intercalants within a column as the
order parameter, the effective diffusion process conserves
the order parameter, while the growth or diminution pro-
cess does not conserve it. Therefore, the present system is
not only nonlinear in a sense that its time evolution is
governed by a nonlinear Langevin equation, but also



34 STOCHASTIC MODEL QF STAGE TRANSFORMATION IN. . .

represents the most general case of phase transformation
including both conserving and nonconserving processes of
order parameters.

III. EQUILIBRIUM PHASE DIAGRAM

Before discussing the results of simulation, we give the
equilibrium phase diagram of the present system and see
what kind of role the intercolumn interaction 4z plays to
establish the equilibrium state of the system. The equili-
brium phase diagram is determined by minimizing the
free energy 4~+42 with respect to a set of mean density

Ip„j. Figure 2 shows an example of the equilibrium
phase diagram as a function of temperature of GIC, TG,
and chemical potential for intercalants, p. Here, the
values of relevant parameters are taken in units of in-

plane attractive interaction Uo as Vo ——0.2 and a =3 for
repulsive electrostatic interaction and 8'0 ——0.02 for inter-
column interaction. In describing various phases which
appear in the phase diagram, we use the term "stage-
(n/m) phase" to mean a periodic structure consisting of n

cells m of which are occupied by the intercalant islands.
Stage n (case of m =1) refers to the pure stage which has
been observed experimentally. All the stages (n /m) with
m+ I are called fractional stages.

0.4
'

0.2

0.0

-0.5

In the determination of phase diagram shown in Fig. 2,
we restrict the number of stage to be less than 6 and com-
pare free energy of every configuration of islands within
this restriction including not only the pure stage struc-
tures but also the fractional stages of —,', —,', —', , —,', and —,'.
Then, we found for adopted values of parameters that all
the fractional stages except —', are either unstable or meta-
stable and do not appear as an absolutely stable state in
the phase diagram. The fractional stage- —', phase appear-

ing in the phase diagram at low temperatures between
stage-2 and stage-3 phases consists of an alternate stack-
ing of stage-2- and stage-3-like units.

All the fractional stages except —,
' have a common

feature that some of the adjacent cells in a repeat unit are
simultaneously occupied by intercalant islands. For such
a configuration of islands, the intercolumn interaction 42
becomes strongly repulsive so that the fractional stages
like —', ceases to be stable.

It should be noted that Millman and Kirczenow' have
also obtained a phase diagram in which no fractional
stage phases appear by adopting a strongly screened elec-
trostatic interaction between islands "

~n, m VO~n, m 9n, m (3.1)

where g„=1 if there is no intercalant islands between
cells n and m and g„=0 otherwise. In the present
work, we take no account of this strong screening of the
electrostatic interaction, since one of the purposes of the
present paper is to investigate the role of the intercolumn
interaction C)2 in the equilibrium as well as nonequilibri-
um properties of staging phenomena.

The dashed line in the stage-2 region of the phase dia-
gram in Fig. 2 represents the chemical potential p' which
is the boundary between the metastable stage-3 phase and
fractional stage- —,

'
phase. For a region of chemical poten-

tial higher than p', the fractional stage- —', phase has lower
free energy than the pure stage-3 phase, both of which, of
course, have higher free energy than that of stage-2 phase.
As will be discussed in Sec. IV, p* represents a critical
value for the chemical potential concerning the appear-
ance of metastable fractional stage units in the final
equilibrium state of the stage transformation.

0.2 0 3

TEMPERATURE T/U

FIG. 2. Equilibrium phase diagram for V0=0.2UO, a=3,
and 8'0=0.02Uo plotted as a function of temperature Tz and
chemical potential p, both normalized to Uo. Integers and frac-
tion, 2, in parentheses are the stable stage phases within the

maximum stage number to be 5. Dashed line in the stage-2
phase represents the chemical potential p which is concerned
with metastable stage-3 and stage- 2 states as is described in the

text.

IV. TIME EVOLUTION OF STAGE
TRANSFORMATION

Based on the discussion of equilibrium properties of the
present system in Sec. III, we study the time evolution of
stage transformation for a variety of cases by simulating
the Langevin equation (2.4). In the simulation, the size of
the system is taken to be 60 cells and the periodic boun-
dary condition is imposed for the mean density of inter-
calants in each cell p„. Numerical integration of the
equation is carried out with the aid of Rung-Kutta
method. After evaluating the systematic forces due to
free energy of the system at each step of integration, we
add to the right-hand side (rhs) of Eq. (2.4) random forces
If„(t)I generated in accordance with Eq. (2.6).' As for
the magnitude of random forces, we have introduced a
factor y which reduces f„(t) to yf„(t) at each cell We.
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found in the simulation that the density fiuctuation of
each cell in the case without the reduction factor y be-

comes large so that it takes too long a time for the system
to settle down to a new equilibrium state. The reason for
the introduction of reduction factor y is simply to shorten
the computation time of simulation. In the following, we

present the results of simulation for stage transformations
from stage 3 to stage 2 and from stage 1 to stage 2, since
we are particularly interested in the experimental results
described in Sec. I.

A. Isothermal stage transformation from stage 3
to stage 2 after a sudden change of p

As an example of isothermal stage transformation, we
consider the case of transformation from stage 3 to stage
2 after a sudden change of the chemical potential from

p = —0.5 at which the system is in equilibrium pure stage
3 to p, = —0.16 which corresponds to stage 2. Here, in-

plane attractive interaction Uo is taken as the units of en-

ergy which was estimated to be about 2400 K in Cs-GIC
by Safran. During the transformation, temperature of
GIC, TG, is kept constant at TG ——0.2. Other values of
parameters are as follows: Vo ——0.2 and a=3 for electro-
static interaction. %0=0.02 for intercolumn interaction,
A =3.0 and 8=15.0 for effective diffusion rate and
growth rate, respectively, and y=0.01 for the reduction
factor of random forces.

An interesting point of the present simulation is that we
can directly observe the snapshot of density profile

rp„(t) I of the system during the stage transformation as
shown in Fig. 3. From the figure, we can see that the
stage transformation begins with a local change of two
adjacent stage-3 units into three stage-2 units. Then, the
nucleated stage-2 region grows in size, producing a large
well-ordered region of stage 2. This growth process of the
stage-2 region can be interpreted as the propagation of
boundaries between well-ordered stage-2 and stage-3 re-

S(q, t) =—g (p„(t)p~(t) )exp[ iq (n——m)c],
n„rn

(4.1)

where N is the total number of cells within a column and
c is the thickness of each cell. Here, the thickness of the
cell c is assumed to be constant during the stage transfor-
mation for simplicity of calculation, which does not
change the qualitative conclusion of the present study.
The notation ( ) means the ensemble average. Figure
4 shows the time evolution of structure factor S(q, t) aver-

aged over ten runs of simulation. Sharp peaks at

q =2m /3c and q =a /c correspond, respectively, to the in-
itial stage-3 and final stage-2 structures. It is interesting
to observe from the figure that the stage-2 peak grows
gradually at the expense of the initial stage-3 peak and
that both peaks coexist in the course of stage transforma-
tion without any significant broadening of peaks. These
results are in good agreement with the results of in situ
isothermal experiment and supports a simple picture of
stage transformation that stage transformation proceeds
via a propagation of boundaries between well-ordered
stage regions. From the width of the stage-2 peak, the
correlation length along the c axis of the final stage-2

gions. The well-ordered stage-2 region grows up further
by the collision with other stage-2 regions accompanying
the vanishment of boundaries. There are cases when the
collision of the boundaries leaves a metastable stage-3 unit
behind, since the initial nucleation of stage-2 units takes
place at random by the random forces. Remaining meta-
stable stage-3 units bring about in the structure factor the
broadening of the peak which corresponds to the well-
ordered stage-2 structure.

From the values of mean density I p„(t) I at each step of
simulation, we can evaluate the structure factor S(q, t} de-
fined by

STRUCTURE FACTOR S(q, t}
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FIG. 3. Time evolution of density profile Ip„(t)) in the iso-
thermal stage transformation from stage 3 to stage 2. Values of
parameters are TG ——0.2„Vo——0.2, and 8 o ——0.02 in units of Uo
and a=3. Chemical potential is changed from p= —0.5 to

p = —0.16. Kinetic coefficients, A and 8, are taken as 3.0 and
15.0, respectively. Reduction factor y for random forces is tak-
en to be 0.01.

XZVE VECTOR

FKJ. 4. Time evolution of structure factor $(q, t) averaged
over ten runs of simulation for the same values of parameters
and change of chemical potential as in the case shown in Fig. 3.
c is the thickness of cell. Plot of S(q, t) at q =0 is omitted for
clarity.
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structure is estimated to be about 30 cells. It is confirmed
that this correlation length is almost the same irrespective
of the size of the system for the same values of parame-
ters.

The value of chemical potential pf in the final equili-
briuin state has a significant influence on the time evolu-
tion of stage transformation. In the simulation described
above, we have chosen the value of JMf to be just below p,

'
shown by the dashed line in the phase diagram in Fig. 2.
When pf exceeds p', the final state of the system general-
ly contains fractional stage units instead of metastable
stage-3 units as a consequence of the fact that for value of
pf & JM,

' the metastable fractional stage state has lower
free energy than the stage-3 state. For values of JMf

chosen to be in the vicinity of the phase boundary between
stages 1 and 2, we observe that the system first transforms
into stage-1 state and then to the final equilibrium stage-2
state, and the coexistence of stage-2 and stage-3 peaks in
the structure factor becomes less noticeable.

In the opposite case of pf ~JM', the intercalation pro-
cess becomes slower for lower values of JMf. Figure 5

shows the time evolution of structure factor for the case
of pf = —0.2 at constant temperature To ——0.2. We can
see that the growth of the stage-2 peak becomes slower
and the stage-2 peak finally becomes much broader than
in the case of pf = —0. 16 shown in Fig. 4. This broaden-
ing of the stage-2 peak reflects the fact that the final state
of the system consists of a mixture of well-ordered stage-2
regions and metastable stage-3 regions with the size ex-
tending from a minimum of 3 cells to an even 21 cells.
Therefore, the lower value of JMf is responsible for the ap-
pearance of an intermediate mixed state composed of
stage-2 and stage-3 regions and eventually prevents the
system from approaching the final equilibrium stage-2
state.

General features of the isothermal stage transformation
in response to Juf described above are not found to be sig-
nificantl affected by the temperature of GIC, even
though the transformation becomes slower at lower tem-
peratures.

B. Stage transformation from stage 3 to stage 2 after
a sudden change of T~ for constant p,

In contrast to the isothermal stage transformation, the
results of stage transformation from stage 3 to stage 2
after a sudden change of temperature of GIC, TG, for a
constant value of chemical potential p shows a remark-
able difference in the time evolution of structure factor
and density profile. In Fig. 6, we show the time evolution
of structure factor S(q, t} averaged over ten runs of simu-
lation in which p is kept constant at p = —0.48 and TG is
suddenly changed from TG ——0.14 at which the system is
in equilibrium pure stage 3 to TG ——0.245 which corre-
sponds to stage 2. Other values of parameters are the
same as in the isothermal stage transformation shown in
Figs. 3 and 4. The structure factor exhibits double peaks
in the vicinity of q =@/c in the intermediate state of
simulation and the stage-2 peak in the final state remains
broad in contrast to the case of isothermal transformation.
The correlation length along the c axis of the final stage-2
state is about ten cells. Thus, the time evolution of struc-
ture factor indicates the presence of disorder in the course
of stage transformation.

From the time evolution of density profile in the
present case, it is found that the transformation proceeds
via an intermediate state in which stage-l, stage-2, and
stage-3 units are mixed up. Instead of initial local change
from two adjacent stage-3 units to three stage-2 units, ad-
jacent stage-3 units first become stage-1 regions and then
the stage-2 structure grows gradually. This feature of
transformation can be understood by the fact that we have
chosen the final T~ in the vicinity of phase boundary be-
tween stage-) and stage-2 states in the phase diagram. It
is found that the feature of time evolution of the system is
sensitive to the final value of TG.

STRUCTURE FACTOR S(q, t)
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FIG. 5. Time evolution of structure factor S(q, t) corre-
sponding to the isothermal stage transformation from stage 3 to
stage 2 at TG ——0.2, where the chemical potential is changed
from p = —0.5 to p =—0.2. Other values of parameters are the
same as in the case shown in Fig. 3.
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FIG. 6. Time evolution of structure factor S(q, t) corre-
sponding to the stage transformation from stage 3 to stage 2 in
which temperature of GIC is suddenly changed from Tz ——0. 14
to TG ——0.245. Value of chemical potential is fixed as @=0.48.
Reduction factor y for random force is chosen as @=0.05.
Other values of parameters are the same as in the case shown in
Fig. 3. Components of S(q, t) at t =0 are reduced to one-half
for clarity.
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D. Stage transformation from stage 1 to stage 2

We have also carried out simulations of isobaric stage
transformation from stage 1 to stage 2. In Fig. 7, we
show a typical example of the time evolution of structure
factor S{q,t) averaged over ten runs of simulation. In the
simulation, values of p and TG are initially taken as
@=0.4 and TG ——0.18, at which point the system is in
pure stage-1 state, and are suddenly changed to JM=0.0
and TG ——0.2 corresponding to the stage-2 state. Other
values of parameters are the same as in the case shown in
Fig. 4. Peaks in the vicinity of q =0 and q =n/c corre-
spond to stage-1 and stage-2 structures, respectively. It is
seen that the growth or diminution of these peaks is ac-
companied by no significant broadening, in agreement

STRUCTURE FACTOR S{q,tl

0 2&/3c

jlg

II
&o.o

m/c

BLAUE VECTOR

FIG. 7. Time evolution of structure factor S(q, t) corre-
sponding to the stage transformation from stage 1 to stage 2. In
the simulation, values of chemical potential p and temperature
of GIC T~ are simultaneously changed as p: 0.4~0.0, and
TG. 0.18~0.2. Components of S(q, t) at q =0 are reduced to
one-tenth.

C. Isobaric stage transformation from stage 3 to stage 2

In the isobaric stage transformation one changes the
temperature of CHIC Tz while keeping the vapor pressure
of intercalants constant. Since the chemical potential p of
intercalants is given as a function of TG as well as vapor
pressure, a sudden change of TG inevitably involves the
change of chemical potential. In the isobaric transforma-
tion, therefore, both the values of TG and p are suddenly
changed simultaneously. In order to see the difference of
time evolution of isothermal and isobaric transformations
from stage 3 to stage 2 we have performed simulations of
stage transformation in which we vary the initial values of
p and TG while fixing their final values as p= —0. 16 and
TG ——0.2. It is found that the final pattern of the struc-
ture factor is almost independent of the initial state of the
system. However, the time evolution of stage transforma-
tion is found to be sensitive to the value of py. This
dependence on p~ is qualitatively the same as that
described in Sec. IVA. VA'thin the present model, there-
fore, we observe almost no difference of the time evolu-
tion between the isothermal and isobaric transformations.

with the experimental results. Time evolution of density
profile again confirms a simple picture of stage transfor-
mation in that the transformation proceeds with an initial
nucleation of stage-2 units followed by the growth of
stage-2 regions.

The isothermal stage transformation from stage 1 to
stage 2 for a sudden change of chemical potential was also
simulated. Note that the simulation for the case of
@=0.4~p=0.0 at constant temperature T~ ——0.2 gives
the same pattern of structure factor as that shown in Fig.
7. The same pattern is also obtained for stage transforma-
tion for a sudden change of temperature from TG ——0.31
to TG ——0.2 at constant chemical potential p =0.0. These
simulations confirm the fact that the stage transformation
is insensitive to the initial state of the system as is the case
for the stage transformation from stage 3 to stage 2
described in Sec. IV A.

V. DISCUSSION AND SUMMARY

As has been pointed out in Sec. IV A the time evolution
of stage transformation depends sensitively on the final
values of chemical potential and temperature of GIC. It
also depends on the intercolumn interaction 42 and kinet-
ic coefficients, i.e., effective diffusion rate A along the c
axis and growth rate 8. In what follows we discuss the
role of these parameters in the time evolution of the sys-
tem, based on the results of simulation of the isothermal
stage transformation.

The fact that the stage transformation becomes faster
for higher values of p~ seems to be associated with the de-
crease of potential barrier between initial stage-3 and final
stage-2 states. However, since it is difficult to estimate
the magnitude of the potential barrier, we describe the p~
dependence of the transformation process in terms of the
time evolution of density profile Ipil. In response to a
sudden increase of p, the total density of intercalants in-
creases in a way that the difference of density of each cell
tends to diminish, and consequently it becomes easy to
produce the final stage-2 state.

On the other hand, for lower values of p&, the transfor-
mation becomes slow and the system transforms into a
mixed state consisting of stage-2 and metastable stage-3
regions. This tendency, of course, is entirely dependent of
the fact that there exists a metastable state with free ener-

gy close to that of the absolutely stable state for chosen
values of py and TG

Let us discuss the role of intercolumn interaction 4z.
In the case for p~ just above p', if the magnitude of 4z,
i.e., 8'0 is reduced to smaller values, e.g., 0.005, we ob-
serve that it takes too long a time for the system to begin
the initial nucleation in response to the sudden change of
p. This is in contrast to the case for 8'0 ——0.02 described
in Sec. IV. For higher values of py, the transformation
towards the stage-2 state occurs more easily. However,
the stage-2 peak of the structure factor in the final state
becomes broader, and final density profile becomes a mix-
ture of stage-2 and metastable fractional stage- —,

' units.
From these results it is concluded that in the present
model the intercolumn interaction 4z plays an essential
role in inducing the initial nucleation of stage-2 units and
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in depressing the appearance of fractional stage units in
the stage transformation from stage 3 to stage 2.

Next, we discuss the role of kinetic coefficients, i.e., the
effective diffusion rate A along the c axis and the growth
rate 8, in the stage transformation. We have carried out
simulations of stage transformation from stage 3 to stage
2 for extreme cases of A »8 and A «8. It is found
that it takes longer time for the system to start the initial
nucleation process for the case of A »8 than the case of
A «8. We have also observed that larger value of 8
shortens the time for the system to reach the final equili-
brium state but broadens the final stage-2 peak.

Since the stage transformation is necessarily accom-
panied by the change of the total number of intercalants
within the sample, the growth process is expected to play
an important role in the transformation. When the
growth process dominates over the diffusion process, i.e.,
A «8, it is confirmed that the initial nucleation of
stage-2 units takes place at the early stage of transforma-
tion. Besides, initial nucleation processes take place al-
most simultaneously with a short correlation length along
the c axis so that the final stage-2 peak in the structure
factor becomes broad. On the other hand, when the dif-
fusion process dominates over the growth process, i.e.,
A »8, the system first transforms into a metastable
stage-3 state and then there occurs the nucleation and
growth of stage-2 region. The nucleation and growth of
stage-2 region proceeds accompanying a long correlation
along the c axis. Thus, the final stage-2 state in this case
is well ordered and gives a sharp stage-2 peak in the struc-
ture factor.

It shou1d be noted that the stage disorder found in the
present simulation is a consequence of the kinetics of in-
tercalation in accordance with the suggestion by Bak and
Forgacs. ' Although Kirczenow has argued that the en-
tropy due to the stacking disorder of intercalant islands is
crucial in yielding static stage-disordered states, the term
representing the entropy due to stacking disorder was not
introduced in the present single-column model, because
the existence of stage-disordered states was not assumed
a priori. This result of the appearance of stage disorder,
which is induced kinetically, is also consistent with the re-
cent three-dimensional Monte Carlo simulation by
Kirczenow. '

So far we have summarized the details of simulation for
stage transformations from stage 3 to stage 2 and stage 1

to stage 2. Although the present single-column model
seems to be suitable in describing those cases which in-
volve the stage-2 state as a final state, it is not entirely ap-
propriate to present the more general guideline on when
stage order or disorder is to be expected for higher stages.
In fact, while the intercolumn interaction 42 is favorable
in producing the stage-2 units during the stage transfor-
mation, it is not necessarily responsible for the appearance
of the stage-3 units, for example. The same argument ap-
plies to the case of simulation of successive stage transfor-
mations. ' We have simulated the stage transformations
from stage 4 to stage 2 and from stage 5 to stage 2 for a
sudden change of p, but have found no indication of suc-
cessive transformations, i.e., 4~3~2 or 5~4—+3~2.
Therefore, it seems necessary to improve the present

single-column model by taking into account a proper ef-
fect of intercoluinn interaction which would be respon-
sible for the initial nucleation of not only stage-2 but also
stage-3 units. The details will be published in a separate
paper.

These results of the present study of the time evolution
of stage transformation are summarized as follows. (i} In
the isothermal stage transformation from stage 3 to stage
2 after a sudden change of chemical potential to pf which
is just below p' (cf. Fig. 2), well-ordered regions of stage-
2 and stage-3 states coexist and the structure factor shows
no significant broadening of peaks during the stage
transformation. These features are in qualitative agree-
ment with experimental results. The time evolution of
density profile provides us with a simple picture of stage
transformation that the stage transformation is initiated
by the nucleation of stage-2 units due to the local change
of stage-3 units into stage-2 units and then proceeds with
the propagation of boundaries between well-ordered stage
regions. (ii) This simple picture of stage transformation is
found to be applicable to other cases of stage transforma-
tion from stage 1 to stage 2. Time evolution of the corre-
sponding structure factor shows a growth of the sharp
stage-2 peak in agreement with the results of isobaric ex-
periments. (iii) In general, time evolution of the system is
governed by the final values of chemical potential pf, but
is almost independent of the initial state of the system.
General features of the stage transformation seem to de-
pend on how the metastable phases come close to the most
stable phase in the final state. For higher values of pf
beyond p, ', the density profile of initial stage 3 changes to
a pattern composed of well-ordered stage-2 regions
separated either by the metastable stage-3 or fractional
stage- —,

' units. It is also found that in some cases where

pf &p', the system transforms into intermediate states
composed of randomly mixed stage-2 and stage-3 regions
and eventually ceases to approach the absolutely stable
pure stage-2 structure. (iv) Intercolumn interaction pro-
vides a potential barrier to the formation of fractional
stage units and depresses the appearance of these units in
the final state of the system. On the other hand, this in-
teraction plays a role of promoting the initial nucleation
of stage-2 units from the stage-3 region. (v) When the ef-
fective diffusion of intercalants along the c axis dominates
over the growth of intercalants in each cell, the system
transforms to a metastable stage-3 state and then to the fi-
nal stage-2 state by the systematic nucleation and growth
of stage-2 regions. This yields a sharp stage-2 peak in the
final state of the structure factor. In the opposite case,
the stage transformation becomes faster but the final
structure factor shows a broad stage-2 peak.
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APPENDIX

In this appendix we give the derivation of the Langevin
equation (2.4). We start with a master equation of the dis-
tribution function P({PIj,t) for a set of mean densities

{prj of intercalants in each cell in the single column.
Then, the Fokker-Planck equation is derived from the
master equation. Finally, we construct the Langevin
equation by introducing Gaussian-Markovian random
forces, which is equivalent to the Fokker-Planck equation.

As has been described in the text, the simultaneous la-

terai translation and shunting motion of islands can be in-
terpreted within the framework of a single-column model
as an effective diffusion of intercalants along the c axis.
In correspondence to this diffusion process, we introduce
the transition probability W (p„~p„+6;p~ ~p —b, )
which describes an exchange of intercalants by an amount
b, between nth and mth cells. We also define the growth
rate U„(p„~p„+6)for the change of intercalant density
at nth cell. Then, it is straightforward to write down the
master equation for the distribution function P({pij,t)
which is equal to the probability that the system F11 be
found in the configuration {pij at time t,

P({pi j,t)= —g g W~~(p~~p~ 5'p~~p~+b)P({. . . ,p„, . . . ,p~, . . . j,t)
(n m)

+ g X W (P +A~p P E'~P—)P({.. . ,P„+5 P b, . . . j,t—)
(n, m)

—g g U„(p„~p„b,)I'( {..—. ,p„, . . . j,t)

+ g g U„(p„+b, p„)P({.. . ,p„+6,. . . j,t) .

The transition probabilities W„and U„satisfy the detailed balance condition. In the present paper, we adopt the fol-
lowing expressions for the transition probabilities which satisfy the detailed balance condition:

W„(p„p„+b,;p p —b)=(a„ /6 )exp ——[4({.. . ,p„+b„.. . ,p b„. . . j)—
2

" j)l

U„(p„~p„+6)=(b„/b, )exp ——[4({.. . ,p„+b„. . . j ) —4( {.. . ,p„, . . . j )]
2

(A3)

—P({p&j)= g A„(P) P, —2 +, +P
ar P' „., " ap'„ap„ap. ap. ap„

B2 82 B2
+ —2 + 2

P ~p ~p

where 4 is the free energy of the system and P= 1/k&T. Coefficients a„and b„are symmetric in the configurations

{pi j before and after the transition.
We shall assume that b. is small and the distribution function P({p&j,t) and free energy 4 are slowly varying func-

tions of {pi j within the interval of size b, . Thus, we can expand the rhs of Eq. (Al) in powers of b, . Keeping only the
terms which are finite in the limit of b, ~O, we obtain the following equation for P ( {pi j,t):

a a

~pn

B4 B4++~.(n) o, +e, +
n ~pn Pn Pn ~pm

(A4)

Here, we have assumed that a„and b„as functions of 6
are sharply peaked in the vicinity of b =0, and performed
the summation over b, in the rhs of Eq. (Al) over a„and
b„. This yields the following expressions for A„and 8„
in Eq. (A4):

A„~(P)= —, ga„(b„P),

a„(p)= ,' g~„(~,13) . -

Equation (A4) can easily be transformed into a more fam-
iliar form of the Fokker-Planck equation if we introduce
dimensionless free energy 4=PC and take into account
the fact that A„ is symmetric with respect to the inter-
change of the subscripts n and m,

Z
~({pij)=X~.

Z Z +ZBt n, m ~p& ~pm ~pm
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where b,„represents the kinetic coefficients given by

g A„t(p}+8„(p), n =m
, l{~n)
—A„(p), n~m .

where Ig„(t)J are independent, Gaussian and 5 correlated
random forces with zero mean and unit intensities

(A 1 1)

In the present paper, we assume that the exchange pro-
cess, i.e., diffusion process, takes place only between
nearest-neighbor cells so that matrix elements of A„are
nonzero only between n =m+1. Besides, we neglect the
temperature dependence of the matrix elements of A„
and B„and take theID as constant,

A„(p)=
0, otherwise

(A8)
&„(p)=& .

Substitution of Eq. (AS) into Eq. (A7) yields the following
expression for b,„

g GntGtm =2~a~
l

(A13)

if we assume that 6„ is independent of Itot I. Substitu-
tion of Eq. (A12) into Eq. (A10) yields the systematic
term in the rhs of the Langevin equation (2.4).

Equations (A10) and (A13) suggest that we can con-
veniently introduce a new set of random forces instead of
g„(t}defined by

Then, the expressions for F„and G„are given in terms
of b„~ and 4 by

(A12)

zA +8,
nm —A,

f„(t)= g G„g (t) . (A14)

where z is the coordination number of cells which is equal
to two in the present sing1e-column model.

It is straightforward to derive the Langevin equation
which is equivalent to the Fokker-Planck equation (A6).
Suppose we have the following Langevin equation:

As is shown from Eqs. (All) and (A13), this set of ran-
dom forces satisfy the following relations:

(A15)

dt
—p„=F„(Ipt ])+g G„g (t) (n =1,2, . . . ,p),

(A10)
This completes the derivation of the Langevin equation
(2A).
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