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The dielectric function of selenium was calculated from first principles, including local-field ef-

fects in both the random-phase approximation and Hartree-Fock formulations. The requisite inver-

sion of an infinitely large matrix was performed by transforming to finite matrices which span %an-
nier functions. The appearance of excitonic effects leads to a possible mechanism for photoconduc-
tivity.

I. INTRODUCTION

When an external electric field is applied to a real sub-

stance, an internal redisposition is known to take place
which generates a polarization field; the sum of the exter-
nal field and the polarization is the actual fiel which is
observed inside the material. The most basic treatment of
local-field effects considers each atom as a simple dipole,
exhibiting a linear response to the field surrounding it.
This method results in the standard Lorenz-Lorentz for-
mula. '-'

These assumptions survive in the traditional view of
many-body effects, that such effects are long-lived, with
little or no interaction between them. This leads to the
specification of physical properties in terms of linear-

response functions which produce elementary excitations
of matter in response to small external perturbations using
the quantum field theory formalism, and then evaluated

according to a number of different assumptions.
The dielectric tensor function, defined as the inverse ra-

tio of the total electric field to the externally applied field,
is one of these linear-response functions. The dielectric is
an appropriate vehicle for the study of the many-body ef-
fects of electrons in solids; from it, such other properties
as optical loss and reflectivity can be readily evaluated.
Microscopically, the polarization field is due to various
deformations of the electronic clouds surrounding the nu-
clei. The significance of this is that the internal redistri-
bution of charge is not a uniform reaction, nor one which
simply follows the wavelength of the applied field, but
rather it varies markmliy on the scale of the atoms and
crystalline cells of the substance.

In fact, if a crystal is excited by an external field of
wave vector q, then the periodicity of the lattice will give
rise to microscopic fields of q+G, where G represents all
of the reciprocal lattice vectors. Quantum field theory
provides the definition for the dielectric matrix, whose
components span a space of reciprocal-lattice vectors.
Calculation of an observable dielectric function requires
that this infinite-dimensional matrix be formally inverted,
after which a limiting process is taken for small external
wavevector. The problem of the inversion has been a
stumbling block in this process.

The inversion can be done using the method of Hanke

and Sham, ' which involves transforming the matrix into
a fmite-dimensional space, spanned by Wannier functions.
In this way, the most important interaction terms are in-
cluded in the smaller matrices, from which the terms
which have less importance are neglected. Then the
electron™electron correlation potential can be included as a
straightforward operation. This effect, which is conven-
tionally known as the random phase approximation, ' or
"RPA," is equivalent to the time-dependent Hartree ap-
proximation. Using the matrix formulation, it is relative-
ly simple to extend the RPA treatment' to include ex-
change effects; the extended RPA treatment then is
equivalent to the time-dependent Hartree-Fock approxi-
mation.

Standard theoretical treatments, such as the empirical
pseudopotential method, " attempt to fit the gaps of their
calculated band structure to the locations of the peaks
which are seen in optical experiments. When a dielectric
function is computed from such a fitted band structure,
invariably the strengths of the transitions disagree with
the experiments to which the band structures were fitted.
In particular, the theoretical dielectric functions always
show too much strength at high energies, and not enough
at low ones.

The observation has been made ' that inclusion of
local-field correlation in the RPA worsens the comparison
between theory and experiment, but that when both corre-
lation and exchange effects are used the agreement is
greatly improved. This is also the case when the inversion
is done by directly inverting large finite subsets of the
dielectric matrix. ' The problem of the incorrect weight-
ing of the dielectric function transitions is seen primarily
in group-IV elements, and compounds of types III-V and
II-VI.

The treatment of diamond by Hanke and Sham showed
the time-dependent Hartree-Fock approximation to be a
substantial improvement over both the RPA and nonin-
teracting models. Because trigonal selenium can be
vie~ed as a collection of parallel chains, this one dimen-
sionality can be expected to produce an even stronger
local-fiel effect. Pressure-dependent reflectivity measure-
ments' suggest that substantial local-field effects exist in
selenium, although pseudopotential calculations purport
to show that these results are caused by interchain interac-
tions.
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II. DESCRIPTION OF SELENIUM

Selenium has outer electron shells of 4s 4p; it thus
behaves chemically like sulfur and tellurium. It crystal-
lizes into several forms, only one of which, the trigonal
structure, is treated here. Trigonal selenium is composed
of spiral chains of atoms, with three atoms making up
each turn of the helix (each turn is a unit cell). In a crys-
tal, many chains are stacked together in parallel to form a
hexagonal superlattice, as shown in Fi . 1. Such a crystal
can be described by the space group D3,' the enantiomorph
D 3 also exists, but only the former will be treated. The
angle formed by the two chain bonds on each site is 105',
which can cause the lattice to look almost cubic from
another direction. Figure 2 shows the Brillouin cell for
this structure.

In hexagonal coordinates, the positions of successive
members of a chain are (u, 0,0), ( —u, —u, —,

'
), (O, u, —', ),

etc. The dimension of a unit cell in the z direction (down
the chain) is ca ——4.94945 A, while the distance between
the center of one chain and its nearest neighbor is
aa ——4.35517 A, with the radius of the spiral being
u =0.217a0. It can be calculated that the nearest-
neighbor distance within a chain is 2.32409 A, while the
minimum interchain atom-to-atom distance is 3.467 14 A;
this difference can justify using a model in which inter-
chain bonding is ignored.

It is possible to take advantage of the spiral chain struc-
ture to calculate energy bands using a one-dimensional
model, ' ' in which the 105' bond angle is treated as a
perturbation on a 90 case. Such calculations basically
produce bands which are fairly fiat, although they do
show the symmetry point Z as being the location of the
minimum direct gap between valence snd conduction
bands. In the most straightforward models, ' ' the gap
comes out to be significantly larger than 2 eV, however.

Trigonal selenium has long been known for its strong
photoconductivity in the visible (2—2.5 eV) region; by way
of contrast, the amorphous form shows only a very weak
effect. Photon absorption measurements with photovolta-
ic cells of trigonal selenium have indicated that the

FIG. 2. The Brillouin zone for trigonal selenium.

minimum energy absorption edge is actually due to in-
direct transitions. ' A three-dimensional (3D) band struc-
ture calculation, ' using the Korringa-Kohn-Rostoker
method, indicated that the minimum gap is at symmetry
point H, as did an empirical pseudopotential calculation. '

Reflectivity measurements have been only partially suc-
cessful in assigning observed features to points in the Bril-
louin zone, leading to the belief that a number of exciton-
assisted interactions are present.

Irradiation of crystals with lasers produce numerous
photoluminescent spectral lines, which have been ascribed
to excitonic decay, a conclusion which has also been
made by measurement of the reflectivity near the band
edge, based upon Urbach's law. Optical absorption ex-
periments indicate that indirect transitions are observed
when the applied electric field is parallel to the chain axis
of a crystal, while an exciton accounts for the exponential
tail observed when the electric field is in the perpendicular
direction. Measurements of electroreflectance report
five excitons between 1.8 and 3.2 eV.

Temperature-dependent electroabsorption experiments
lead to the conclusion that the minimum transition takes
place from the valence band at H to the conduction band
at Z, using Elliot's theory of indirect transitions. Large
scale orthogonalized plane wave calculations have also
been reported, ' ' but they include some strange results,
including a minimum dirix:t gap of only 1;0 eV. A small
calculation of local-field corrections has been done by
Nizzoli. Unfortunately, his work was restricted to the
case of a static (co=0) applied field, and was directly in-
verted in subsets of the reciprocal-lattice space. His re-
sults did, however, indicate that inclusion of local-field ef-
fects is essential for calculation of a dielectric constant
which reproduces experiment.

III. ATOMIC ORBITAL MODELS AND INTEGRALS

FIG. 1. The trigonal seleniuIn lattice, viewed down the chain
axis.

In 1950, Boys proposed the use of functions of the
form xy z"exp( —ar ) to compose the basis set for



KENNETH G. HAMILTON 34

molecular calculations. The formulation lends itself to
particularly simple analytic results. Many integrals can
be obtained for s orbitals, and then differentiated to pro-
duce similar quantities for orbitals of higher angular
momentum. In this system, the elementary functions

and

yo(r;a) =exp( —ar ) (3.1)

y;(r;a)=r;exp( u—r ) (3.2)

can be used to make up s and p orbitals as the linear su-

perpositions

4o(r)= g GIV o(r, ~r) (3.3)
FIG. 3. Naming scheme for the interatomic bonds.

be nine distinct energy bands. The band wave functions
are given by the Bloch formulation,

respectively. The calculation of overlap integrals between
two s orbitals on different sites is a fairly simple task;
since the elementary functions are related by

(3.5)

Psq(r)=X ' ' g Cb (k)exp(ik r, )P (r —r,, ),
j,s,a

where b =1,2, 3, . . . , 9 enumerates the bands.
Schrodinger's equation takes the form of

(4.2)

it follows that the overlap between two p orbitals can be
obtained by two partial derivatives of the s case. Impor-
tant matrix elements, including those involving the posi-
tion vector r and the Laplacian operator V, can be con-
veniently produced in close form. The general four-center
potential integral,

V= r —A r —BU r —r'

)&P(r' —C)P(r' —D)d r d r' (3.6)

can also be calculated by means of a rapidly convergent
numerical procedure, for both s and p orbitals.

IV. BAND THEORY

Consider a "nearly cubical" crystal, in which three p-
type orbitals reside on each atomic site, and in which
three sites make up each unit cell. The sites within the
cell can be labeled as s =A,B,C. The vector which con-
nects A to 8 can be designated R„, the vector from 8 to
C can be called R„, and the vector which runs from site C
in one cell to site A of the next cell may be referred to as
R~. This arrangement is shown in Fig. 3. These vectors
are related to the conventional Cartesian coordinate sys-
tem if we specify that the axis of the selenium chain runs
along z; then

0a s' as bk~a s' as = (4.3)

H~j = f P*(r rj, )HP (r—rj, )d3r— (4.4)

~as', as a' r rj's' a r rjs (4.5)

Given that on each side there is a local Schrodinger's
equation,

[——,
'

V +U(r})P (r)=E,Q (r), (4.6)

(4.7)

"I

when certain terms are ignored, where ha~ is the ma-
trix element of the Laplacian operator, of a form similar
to Eq. (4.4). Because of the use of Boys-type orbitals, the
members of S and b can readily be given values.

Assuming only nearest-neighbor interactions, Eq. (4.3)
becomes a 9 X9 matrix problem. If the rows and columns
are arranged in the order

which is governed by an atomic energy parameter E„we
find that

R„+R„+Rg——c=(0,0,co) . (4.1)
as =@A,pB,pc, vB, vC, vA, XC,XA, AB,

Since p, v, and A, are orthogonal axes, we can use them for
the directions of the atomic orbitals, which we can call

p&, p„, and p~, just as though we were dealing with p„,
p„, and p, . Then sites A and 8 are connected by one
strong o bond, which we call pzp&o. , and by two weaker m.

bonds, p„p„m and p~~m. Since there are three types of
atomic wave functions on each of three sites, there must

then the problem breaks down into three 3&(3 blocks.
The k and k~ dependence of the problem can be removed
by a unitary rotation, leaving the energy eigenvalue prob-
lem dependent only upon k, . Because of the block-
diagonal form of the problem, each of the three threefold
degenerate energy bands is simply given as a solution of a
cubic equation; the eigenvector coefficients can then be
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TABLE I. Orbital parameters for model I.

62.8545
3.6523
0.2551
0.015

25.155 572
—2.171 301

0.232 335
0.002 462

obtained as a solution of simultaneous equations.
We will define and use two separate sets of orbital pa-

rameters, tu;, 6;I. The first set ("model I") was chosen
so as to produce a direct gap of approximately 2.6 eV; this
allows the model to conform to the observation that
selenium has its lowest-energy response in the visible re-
gion. A set of parameters which satisfy these require-
ments are those specified in Table I. The overlap values,
and matrix elements of position, and I.aplacian and Ham-
iltonian operators which derive from this model are listed
in Table II, with energies given in Hartrees. The atomic
energy used in the computation of the Hamiltonian ma-
trix elements is —6.5 eV. The resulting band structures
for model I are shown in Fig. 4, while Fig. 5 displays the
relative amplitudes of the k=0 wave vectors on the three
sites making up a unit cell.

Clementi and Roetti have calculated isolated-atom
electronic wave functions in the Roothaan-Hartree-Fock
approximation. Their results were expressed in terms of
sums of Slater functions to various levels of complexity.
The radial component of their most comprehensive solu-
tion is used as an ideal to which a Boys-type orbita1 wave
function was fitted. The parameters specified in Table III
provide the fit shown in Fig. 6, which will be called
"model II." When this model is used to calculate matrix
elements, the results are as shown in Table IV, and atomic
energy of —8 eV is assumed. Figure 7 shows the energy
bands calculated from this model: As can be seen, the
direct gap is a startling 9.4 eV, a substantial variance from
the generally accepted value of 2—3 V.

Q. 1-
Q.Q-

Q )

m-Q 2-
S

Q)
C

ui -0.3-

0

CD

tD
C

8 w

-Q 4-
Q 5o.o

I I I I

0.2 0.4 0.6 0.8
Normalized Wave Vector

FIG. 4. The energy-band structure of model I.

V. DERIVATION OF THE DIELECTRIC TENSOR

e(q+ G, q+ G', co) =5o G —v(q+G)X(q+G, q+G', m),

I'++Q

Band 3

A. Separation of the irreducible polarizability

Many-body theory provides us with a definition for the
proper polarizability, P, which allows us to write the
dielectric matrix as

TABLE II. Integral values from model I: overlaps (S), and
matrix elements of position (X), Laplacian operator (b), and
Hamiltonian (H), for same-site (0), sigma bond (o ) and pi bond
(n.). 6 and H are in units of hartrees.

I%a
Ikg &~l

Band 2

So ——1.0
S = —0.1678134
S =0.2249262
Xo ——0.0
X = —0.3685091
X =0.4939255
60———5.327 700
6 =0.1803179
6 = —0.01783332
Ho ———0.238 882 8

H~ =0.1703344
H„=—0.116378 7

FIG. 5. Relative amplitudes for bands 1, 2, and 3, at k, =0.
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TABLE III. Orbital parameters for model II.

62.8545
3.6523
0.2551
0.1

20.428 91
—1.763 32

0.188 68
0.026 33

2 ~

STO

BTQ

where v(q)=4' /q Qo is the ordinary Coulomb poten-
tial, and Qo is the volume of a unit cell. Equation (5.1) in-

cludes the reciprocal lattice vectors G and G', which
make it possible to describe Umklapp scattering. The in-

verse dielectric matrix is e ', which has the property
0.5 1.0 2.0

g e(q+ G, q+ K, co)e '(q+ K, q+ 0', co) =6o o .

(5.2)

If the inverse dielectric matrix can be obtained, then the
limiting process

1
e(co ) = lim

s-0 e '(q, q, m)
(5.3)

when applied to the G=G'=0 term produces the observ-
able dielectric function. The various elements of the fam-

iliar 3)&3 dielectric tensor are obtained by taking the limit

I

FIG. 6. Comparison between radial parts of the Clementi-

Roetti 4p Slater-type orbital ("STO") and the Boys-type orbital
("BTO")of model II.

as the wave vector goes to zero from different directions.
The major hurdle to calculation is the inversion of e to
e ', since both are ao &( oo matrices.

If Eq. (5.1) is postmultiplied by e ', and the inner sum
taken, then we obtain a recursive definition for the inverse
dielectric matrix,

'(q+ G, q+ G', co ) =5o o + g v(q+ G)X(q+ G, q+ K, co)e '(q+ K, q+ G', co) . (5.4)

When this relation is inserted into itself repeatedly, the result (summations being assumed) is

=6+vX+ vXvX+ vXvXvX+

The polarization due to Bloch waves is

(5.5)

X(q+G, q+G', co) =
bl, b2, b3, b4

k, k'

(b2, k
~
exp[ i (q+G—) r]

~
b&, k+q)X(br, k+q;b2, k;b3, k';bq, k'+q;q, cu)

&((b4,k'/q
~

exp[i(q+G') r]
~
b4, k') (5.6)

0.3

TABLE IV. Integral values from model II.

So ——1.0
S = —0.3708440
S„=0.176 688 5

Xo =0-0
X = —0.8143531
X„=0.387 998 2

5o ———3.809 853
6 =0.2726822
5 = —0.04391357
Ho ———0.292 9330
H =0.353 606 1

H = —0.125 472 8

-0.500 0.2 0.4 0.6 0.8
Normalized Wave Vector

FIG. 7. The energy-band structure of model II.

0
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where the bands are nuinbered by the b; indexes. The first matrix element in Eq. (5.6) is then

(b2, k
~
exp[ i—(q+G) r]

~
bi, k+q) = Cb ~ ~ (k)Cb, (k+q)exp[i(k+q) R, )A, , J(q+G), (5.7)

with J=j& —j2, and introducing the function

, J(q)= f exp( —iq. u)t)tt' (u —R,, )tI), (u —R, —RJ)d u .

Defining the polarizability core as

Nqp (q, co) =
bl, b2, b3, b4

k, k'

Cb... ,(k)Cb...~ (k+q)exp[ —i (k+q) Rz]

XX(bi,k+q;b2, k;b3, k', b4, k'+q;q, co)exp[ i (k—'+q) RJ ]Cb, (k'+q)Cb (k'), (5.9)

where p =—[tzi, ~ i,&2,&2,JI, p'=
I a4, s4, a3,s3,J' J, then we have the polarizability recast as

&(q+G, q+G', ~)= g A~(q+G)Np~ (q, ro)Aq'(q+G') .
PtP

Equation (3.5) then becomes

(5.10)

with the modified polarizability core being defined by

S =i'(l VX)—
and V = »»s the correlation potential matrix, which has the explicit form

lii (q)= +exp( —iq R ) f d r f d r'p, (r R, —R—)p', (r—r, ,
—R~ —R )

(5.11)

(5.12)

Xu(r —r')P', (r' —R, )P (r' —R, —RJ ) . (5.13)

The aggregate indices p and p point to sites and orbitals. %e can, and do, choose to sum on1y over nearest-neighbor
sites. When we do this, we have effectively reduced the infinite matrices to finite size in a manner which retains the
dominant terms and drops off the less-significant portions. This provides a definition for e in which the inversion of
Eq. (5.12) can be performed in place of the massive one indicated by Eq. (5.2).

The polarizability function, X, in Eq. (5.6) is given, in the RPA or time-dependent Hartree approximation by

(b1 k+q b2 k b3»b4 k +q q ~) ~kk'~b b ~b b XO( i k+q b2 k tu) (5.14)

where

fb, k+q fb,k-
X0(b &,k+q;b2, k;ro) =-

bi k+q b2k

where Ebk and fbk are single-electron energy and occupation numbers for the Bloch state ( b, k).

(5.15)

B. The Hartree-Fock (HF) approximation

Fermion exchange is produced by using the Bethe-Salpeter relation, which takes the form

X "(bi,k+qtb2tktb3, k';b4, k'+q) =X (bi, k+q;b2, k;b3tk tb4tk'+q)

j. X" (bi, k+q;b2, k;b5, k";bb, k"+q)
bs„b6, b7, bs

ktl kttl

Xu"(b6,k"+q; ,b5";k,b7"'k; ,bs"'k+)q

XX""(b„k"'+q;b, ,k"',b3, k";b4,k'+q) (5.16)
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using the exchange potential

u'(b6, k"+q;b, ,k";b7,k"',bs, k"'+q)= f d'r f d'r'fb, i, +q(r)fs, ~-(r')u(r r—')gb, i,-(r')gs, i,"+,(r) (5.17)

The Hartree-Fock polarizability core can then be described in terms of the RPA one by

'
plp2

using the exchange potential matrix

Vgz (q)= +exp( —iq R ) f d r f d r'P, (r' —R,,—R )P,(r —R, ,
—RJ —R )

(5.18)

Xu(r —r')P', (r' —R,, )P (r—R, —RJ ) .

Inclusion of exchange effects can thus be produced by revising Eq. (5.12) to become

S =N [I—( V —V")N]

(5.19)

(5.20)

C. The limit of small wave vector

The inverse dielectric function can be written as

e '(q+G, q+G', co)=5oo +v(q+G)X(q+G, q+G', co),

where

X(q+G, q+G', co)=X(q+G, q+G', co)+ QX(q+G, q+K, co)v(q+K)X(q+K, q+G', co) .

(5.21)

(5.22}

Ambegaoker and Kohn defined X as the sum of all polarization processes not involving the long-range part of the
Coulomb interaction,

X(q+G, q+G', co)=X(q+G, q+G', co)+ g X(q+G, q+K, co)v(q+K}X(q+K, q+G', co) .
K (~0)

(5.23)

Kohn also showed that, for insulating crystals, X(q, q, co)
is proportional to q as q~O. Equation (5.23) provides

the same property to 7, so that we have

4 2

'n'( )='9'9 g p pp p (5.28)

X(q, q, co)=X' (co)q +0(q ) .

The two functions X and X are related by

X(q, q, co) =X(q,q, co)/[1 —v(q)X(q, q, co)] .

In light of this, we find that

(5.24)

(5.25}

= 1 —v(q)X(q, q, co)
e '(q, q, co)

so that, in the limit as q~O, we have

e(co)=1—X' '(co}4ire /Qo .

(5.26}

(5.27)

D. Three dielectric formulations

We can, at this point, define three methods of defining
the dielectric functions. In the simplest, we completely
ignore local-field effects by assuming that all of the off-
diagonal (G~G') elements of the dielectric matrix are
zero. The inversion of a diagonal matrix is trivial, and
the dielectric function attains the definition

where

fp"= f pq4', (p R.,)0,(p (5.29)

with ri being one of the principal axes of the crystal. This
definition is arrived at by taking the limit for small wave
vector of A (q).

The next order of approximation consists of including
the correlation, but leaving out the exchange potential, so
that

2

Ao
(5.30)

with S(co) being defined by Eq. (5.12) in the q~O limit.
Finally, in the full Hartree-Pock approximation, the

dielectric is again given by Eq. (5.30), but with S(co) de-
fined by the small wave vector limit of Eq. (5.20). It
should be noted that terms of the f vector are matrix ele-
ments of position, calculable by the methods described in
Sec. III, and that in the q~O limit, the potential matrices
of Eqs. (5.13) and (5.19) are integrals of the form given in
Eq. (3.6) and are also easily computed due to our orbital
formulation.
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VI. IMPLEMENTATION OF THE SOLUTION 25 I- +

For the purposes of actually computing the dielectric
functions, the problem was broken into three phases: (a)
calculation of the potential matrices V and V", (b) evalua-
tion of the Hartree polarizability core X, and (c) produc-
tion of the final dielectric functions. These phases were
carried out by three separate computer programs. %%en
the potential matrices are analyzed in detail, it turns out
that there are only 24 distinct four-center integrals in
which the centers are actually located on only one or two
sites. These values are independent of co, and so were cal-
culated first.

The Hartree polarizability core is defined as the q~0
limit of Eq. (5.9), when Eqs. (5.14) and (5.15) are substi-
tuted. Bix:ause of the manner in which the band structure
was set up, especially the analytic handling of the k„and
k» dependence, the summation over kk' collapses into a
single one-dimensional integral over k, . The integration
was performed, for each value of co, by a numerical pro-
cedure based on Simpson's rule. Detailed inspection of
the terms of the polarizability core matrix was used to
limit the calculation to only the unique terms, which were

all computed to the same accuracy.
The third major program was used to effect the matrix

multiplications and inversions implied by Eqs. (5.12),
(5.20}, (5.28), and (5.30}, thus resulting in the three dielec-

tric functions e, Pp, and PF. The functions were calcu-
lated for values of energy from 0 to 2 hartrees, in steps of
0.05.

VII. OPTICAL SPECTRUM OF SELENIUM

It appears that the best experimental data for compar-
ison of the theoretical results is by Bammes et a!., who
measured optical reflectivity at near normal incidence us-

ing synchrotron radiation. Their procedures were con-
ducted using a strongly polarized source; as a result they
were able to observe that trigonal selenium has distinct
differences when the incident radiation is polarized paral-
lel and perpendicular to the chain axis. They measured
reflectance from bulk selenium crystals, and from that,
then calculated dielectric functions in both principal
directions.

Figure 8 shows the iinaginary part of the parallel
dielectric function for the model I theory (indicated for
the three calculational methods by different symbols),
compared to experiment. The dielectric with no local-
field effects included shows its first peak in the 3-eV re-

gion, but does not come anywhere near to matching the
strength indicated by experiment. The F results also ex-
hibit peaks in the 8—10 eV area, which generaHy match
the location of a couple of experimental response peaks,
although the theoretical numbers are much too high.

The RPA theory shows a small, sharp response in the
3-eV region, but the most noticeable change from F is the
increase in strength of the higher energy peaks. %hen ex-

change terms are included, the strength is shifted down in

energy considerably, with the greatest response being at 2

eV; this is the same phenomenon which has been observed
in silicon.

The real part of the dielectric function is shown in Fig.
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FIG. 9. The real part of the parallel dielectric function for
model I.

9. While demonstrating, generally, the same shifts in
strengths as the imaginary part does, this calculation leads
to an explanation of Nizzoli's observation ' that ex-
change interactions boost the value of the static dielectric
constant, and seem to be necessary to obtain agreement
with experiment. Our shifting down of strengths and his
static increase are thus the same. Figures 10 and 11
display the imaginary and real parts of the dielectric func-
tion for model I in the direction perpendicular to the
chain axis. The shifting up of strength in the RPA and
sliding down in Hartree-Fock are again seen. It is in-
teresting to note that the major response of the HF curve
occurs at an experimental peak, but not at the largest one.

A comparison of the imaginary parallel model II calcu-
lations to the experimental data is visible in Fig. 12. It
can be seen that, in the absence of local-fleld effects, there
is no response below the direct gap of 9 eV, with the ma-
jor response lying between 15 and 20 eV. %Shen correla-
tion effects only are included, the 9 eV peak is sharpened,
but another, more substantial response occurs in the area
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FIG. 10. The imaginary part of the perpendicular dielectric
function for model I.

of 24 eV. Remarkable agreement with experiment is
achieved when both correlation and exchange potentials
are used. Then the largest peak in the HF calculation
occurs at about 4 eV, where it matches very closely in lo-
cation and strength; an additional two peaks are at 9 and
13 eV, where they generally match a pair of experimental
responses.

The real part of the parallel dielectric function appears
in Fig. 13. As before, the HF computation yields the best
agreement with the major response, although the strength
in the 7—12 eV regime is high. Figures 14 and 15 demon-
strate the dielectric function in the perpendicular direc-
tion. The now-expected shifting of strengths occur, even
though th HF calculation predicts a strength of the major
peak which is somewhat low.

VIII. DISCUSSION

In both models I and II excitonic response (below the
direct gap) dominates the Hartree-Fock results. The na-
ture of these excitons seems to differ somewhat from
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FIG. 11. The real part of the perpendicular dielectric func-
tion for model I.
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FIG. 12. The imaginary part of the parallel dielectric func-

tion for model II.

those which are ordinarily encountered in other materials.
These are two types of excitons which are recognized by

solid state theory. The Frenkel exciton is highly local-
ized, and is best regarded as an excited state of a single
atom; typically, it can show a binding energy of several
electron volts. A Wannier exciton, on the other hand,
extends over a large area of space, several times the inter-
atomic distance of the crystal. Because of this relatively
large distance between the electron and its hole partner, a
Wannier exciton customarily has a binding energy of only
a fraction of an electron volt. The atomic system which
was used here contained no information about any elec-
tron states other than the 4p ones. Thus, the creation of a
true Frenkel exciton was not possible. On the other hand,
the binding energies seen for the calculated excitons is
much too large for a traditional Wannier exciton.

The normal derivation of a Wannier exciton begins by
assuming that the electrical field within the crystal is uni-
form throughout, so that the electrons and holes can see
one another over large distances. This, of course, is the
exact opposite of the situation which we are assuming to
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FIG. 13. The real part of the paraHel dielectric function for
model II.
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be the case in selenium. Instead of a fiat electric paten-
tial, we have presumed the existence of a strongly varying
one. Since a crystal has a regular lattice structure, and the
fields generated by the nuclei and orbitals are emplaced in
this regular pattern, it follows that the electric field has a
periodic behavior over space. If the local-field effect is
strong, then this periodic disturbance consists of major
areas of high potential and substantial iowa. This situa-
tion should make it possible for those electrons which are
bound into excitans to travel around in the valleys of po-
tential energy, while their partner holes move in the high-
potential areas. This is a situation in which the excitons
can be rather strongly bound: In fact, the binding energy
of the excitons should be a good indication of the magni-
tude of the inhomogeneities in the electric potential.

The kind of exciton which we have generated in the
theoretical calculations may best be thought of as a highly
modified form of Wannier exciton, in which the bound
pair is mobile within the crystal. Experimentally, a situa-
tion similar to this has been observed ' in the absorption
spectrum of thin films of inert gasses, where excitons of a
nature between Frenkel and %annier types were present.
The same phenomenon has been seen in the cubic semi-
conductors CuBr and ZnSe.

An objection can be raised to the fact that the lowest-
energy peak in the selenium theory is excitonic in nature.
Surely, one can argue, there must be some sort of a true
interband transition in the visible (2—3 eV) region, since
selenium is a well-known photoconductor. An exciton,
being neutral, cannot carry charge, and therefore a band-
to-band transition is required to explain the photoconduc-
tivity. It seems, however, that photoconductivity can be
produced by excitons. The mechanism goes as follows:
Suppose that light produces an exciton, which is mobile

and travels until it encounters a defect in the lattice,
where it becoines trapped. While there, the exciton is col-
lided with by a second exciton, which decays, providing
the energy to free the ariginal electron and hole. An alter-
native mechanism would involve absorption of a second
photon by the exciton, with the same result, an unbound
pair. This type of phenomenon was observed a number of
years aga s in Cu20 and CdS (a useful photoconductor, if
there ever was one) and also in ZnS. The existence of
excitons in CI20 has also been observed.

A highly convincing argument for excitonically pro-
duced photoconductivity comes from Gross and Novi-
kov who observed that all crystals which have a complex
absorption edge structure (as would be expected in the
presence of Wannier excitons) are strong photoconductors,
while similar crystals which do not have excitons exhibit
very little photoconductivity. As examples of the first
group, they point to Cu20, CdS, CdSe, ZnS, HgI, PbI2,
and AgI; for the secand class of crystals, they cite MoO&,
8103 V205 As2S3, and yellow PbO. In particular, they
point to HgI2, which has two modifications: the red form
has exciton lines and a strong photoeffect, while in the
yellow form, the exciton lines are missing and so, for all
practical purposes, is photoconductivity.
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