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Phonon frequency shifts in an anhai-iaonic lattice via the Wigner distribution function
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A recently developed perturbation expansion for quantum correlation functions expressed as

phase-space averages is applied to an anharmonic lattice, yielding the first-order frequency shift due

to quartic anharmonicity. Our method is novel in that me employ a representation of the %igner
distribution function in terms of phase-space equivalents of creation and annihilation operators,
rather than the customary (p, q) representation. Since no expansion in powers of A is involved, the

validity of the result is not restricted to the near-classical regime, in contrast to the usual %igner-
Kirkmood expansion.

I. INTRODUCTION

A problem of continuing interest in solid-state physics
is the effect of anharmonicity on phonon frequencies.
The frequency shift and finite phonon hfetime effects as-
sociated with anharmonicity are usually evaluated via the
Green's-function formalism, ' which affords a systemat-
ic, perturbative treatment of phonon-phonon interactions.
Interest in anharmonic corrections has received added im-
petus from attempts to understand the melting of two-
dimensional (2D} Wigner crystals. Recently, we showed3
that the Wigner distribution function (WDF) (Refs. 4—6)
could be employed to derive thermal and leading-order
quantum corrections to the frequency of a 1D anharmonic
oscillator. We have also shown how the WDF may be
employed to compute correlation functions, then frequen-
cy corrections to all orders in iit, for an anharmonic oscil-
lator. ' In this paper we extend our earlier work to the
case of a lattice with a quartic anharmonicity, and show
how the frequency shift given by the Green's-function

method may be derived using the WDF. Our calculation
employs, for the first time to our knowledge, a representa-
tion of the WDF in terms of phase-space equivalents of
creation and annihilation operators, rather than the usual
representation in terms of coordinates and momenta. In
Sec. II we introduce the model and show how the Hamil-
tonian and the WDF may be expressed in terms of classi-
cal quantities which correspond to creation and annihila-
tion operators. In Sec. III the dynamics of phase-space
quantities, as described by a generalized Liouvillian opera-
tor, is discussed, and in Sec. IV the correlation function
and the phonon frequency shift are evaluated. Finally, in

Sec. V, we give a brief summary of our results.

II. ANHARMONIC LATTICE

We consider the following Hamiltonian operator, which
describes a monatomic Bravais lattice with a quartic
anharmonicity [Ref. 1, Eqs. (4.5) and (4.6b)]

H= g irico(k, j)[a t(k, j)a(k,j)+ —,
'

]
k,j

k1 &J 1 ik2~J2!k3tJ3 i k4t J4 }
+ g b(ki+k2+k3+k4), A(ki, Jt)A(kgJ2)A(k3, J3)A(k~J4),

k), . . . , k4 [co«i ji }co«2 jz}co(k3 i3}co(4i4)]'"
J]y ~ ~ ~ g J4

where the k's range over the first Brillouin zone, and
a (ki,j), a(ki, j), and co(k,j}are, respectively, the creation
operator, annihilation operator, and frequency (in har-
monic approximation) of a phonon with wave vector k
and polarization j. b, (k) is unity if k is a reciprocal-
lattice vector, and is zero otherwise, and 3 is the com-
bination

A(k j)=a(k j)+a ( —k j) .

4(kt J t k2 J2 k3~j3 k4 J4 ), defined in conformity with the
notation of Born and Huang, is obtained as follows. Let

W pyg(R), R2, R3,R4)
4

(3)
c)u (Ri)c)utt(R2)Bur(R3)c)us(R4)

where N is the total potential energy of the lattice and
u(R) is the deviation of an atom from its equilibrium po-
sition, R. Then

1986 The American Physical Society



34 PHONON FREQUENCY SHIFTS IN AN ANHARMONIC LATTICE. . . S679

-2 i(k~ R~+k3 R3+k4 R4)
c'(k}iJiik2 J2ik3~J3~k4 J4)™ g e ea(kI~J1)egk2~J2)er(k3~J3)es(k4~J4)@aprs(0 R2 R3 R4)

k~, k3, k4

where m is the mass of an atom and R(k,j) is the polariza-
tion unit vector for the phonon with wave vector k and
polarization j. Implicit in this definition is the transla-
tional invariance of the lattice.

For the lattice problem considered here, it is convenient
to work with classical normal-mode amplitudes, rather
than the position and momenta of individual atoms. De-
fine

a'(k, j)=(2iii) '~ [(mco(k j))'~ U( —k j)
—i(mco(k, j))'~ P(k,j)],

~here

U(k,j):N—'~ pe(k, j) u(R)e
R

(9)

«k j)—= [ci«j)]w
a*(k,j)—= [u (k,j)]a,

(5)
and

(6) P(k,j):N—'~ m g e(k,j) u(R)e
R

(10)

where [O]ii indicates the Wigner phase-space equivalent

of operator O. If one refers to the definitions of ci(k,j)
and ci (k,j), and applies the Weyl correspondence rule, '0

one readily finds that

a(k,j)=(2A') '~ [(mco(k, j))'~ U(k,j)

where the overhead dot denotes the time derivative.
I et

A(k,j)—:a(k j)+a'( —k j) .

+i(mco(k, j)) ' P( —k,j)], (7) Then the phase-space equivalent of Eq. (1) is

H = +fico(k,j) ~

a(k,j)
~

k,j
@(kl Jl k2 J2 k3 J3 k4j 4)

b(ki+k2+k3+k4)
96N i, f~«i j2)~«2 j2)~(k3 j3)~«4 j4)l'"

Jl~ . ~J4

XA(ki ji)A(k2 j2)A(k3 j3)A(k4 j4) . (12)

In what follows we shall require the WDF for a canonical ensemble of harmonic lattices, i.e., systems whose Hamiltonian
comprises the first term in Eq. (12). Since this term is a sum of independent harmonic oscillators, the WDF will be a
product of harmonic oscillator WDF s, one for each mode. The canonical ensemble WDF for a one-dimensional har-
monic oscillator is '

1 f3fico 2 Pfico
Pi4 (q,p) = tanh exp — tanh

2

+ ~ NlN(g
2@i

(13)

If p and q are expressed in terms of a and a', the WDF becomes6
T

Pg (a,a') =ftPg (q,p) =ir 'tanh exp —2
~

a
~

2tanh
2

(14)

It follows that the WDF for the harmonic lattice may be written

Pg'(I (ka,j)j, I (ak,j)j)=ir "gtanh '
exp —2~a(k, j)

~

tanh
fico(k,j) . 2 fico(k,j)

k,j

Let us introduce the notation

(F(a,a')& = g I da(k, j) f da*(kj)P' 'F . (16)
k,j

Then

&a'(k j)a'(k', j')&o=&a(k j)a(k', j')&o=0,

&a*(k,j)a(k',J') &0 —— (19)

(17)
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III. TIME DEPENDENCE
OF PHASE-SPACE FUNCTIONS

In order to evaluate correlation functions we require the
rule for the time evolution of phase-space equivalents.
Consider a Heisenberg operator

O(t) itH/AOe itH/—A

—[0]w(t) = [—H O(t) O—(t)H ]wdt

= —
I He'"[Ol w —[o]we""H

Ifi

2
sinh —[0]w(t) . (23)

Its equation of motion is

dO(t) i
[H O( )]

dt
(20)

The formal solution of Eq. (23) is

[0]w(t) =e' '[0]w(0),

where L is the generalized Liouvillian

(24)

In the Appendix we prove the following product rule for
phase-space equivalents, expressed in terms of a and a': 2 . AI.=—H sinh

2
(25)

[AB]w(a a )=[A]w(a a')e [B]w(a,a')

=[B]w(a, a')e-""[A]w(a, a'),

where

(21)

Denote the first term in Eq. (12) by Ho, and the second by
H'. Using Eqs. (11), (22), and (25), it is not hard to show
that

2 . AI.p ———Hpsinh
2

a a
aa aa

a a
aa

(22) = g to(k, j) a"(k,j) —a(k,j)aa'(k, j) a k,j
the arrows indicating direction of operation. The evolu-
tion of the phase-space equivalent is therefore and

(26)

2, . AL'= —H'sinh
fi 2

~'«i A'k2 J2 k3 J3'k4 4)
LL(k, +k2+ k3+ k4)

24K ~ [~«i A)~(k2 j2)~(k3 j3)~«4J4)]'"
J]y ~ ~ ~ yJ4

a a
XA(kz j2)A(k„j3)A(k4 j4) — + ~ ~

aa (k),j)) aa —k),j)
(27)

where indicates a term involving third-order derivatives which is not required for the present calculation.
We note the following results, required for the evaluation of the correlation function.

L0A (k,j)=co(k,j)[a'( —k,j)—a(k, j)], (28)

1 . a(k j) a'( —k j)
s —iLO s +ice(k,j) s ice(k,j )— (29)

1,k . a"(k,j) a( —k,j)
s —/LO s —i'(k, j) s +i'(k,J)

(30)

a(k,j) @(+kJ;&z,j~;4i 3;k4,J.)
L g . = + Q 6(+k+k2+k3+kg), A(k2 jz)A(k3j3)A (k4j 4)

[~(k,j)~(k2,j2)~(k3,j3)(k4,j4)]' '
J2 J3 J4

where the upper sign is for L' acting on a(k&,j) and the lower for L' acting on a'(k, j).

(31)
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IV. CORRELATION FUNCTION AND RENORMALIZED SPECTRUM

5681

We now make use of the results developed in the preceding sections to evaluate the mode-amplitude correlation func-

tion, and then the first-order correction to the phonon spectrum. Consider

C(t)= —,Trfe ~H[A(kj;t)A (kj)+A (kj)A(kj;t)]]/Tr[e ~ ]

= A' kj cosh —A kj;t
2

(32)

where ( ) indicates a phase-space average with respect to
the WDF. Employing manipulations similar to those
used by Hynes et a1." in their study of correlation func-
tions, we rewrite Eq. (32) as

C(t)= g f da(k, j) f da"(k,j)
k,j

&& P~cosh —A'(k, j) e' 'A(k, j)

f da(k, j) f d a(k,j)P~A'(k, j)e' 'A(k, j)

We now turn to the full Hamiltonian, Eq. (12). Let

J(s)= f dte "C(t)

=(A "(k,j) . A(k, j)) .

As we showed in Ref. 7, to first order in H', J(s) may be
written as

J(s)= (A'(k j) A(k j))(
s —rLo

=(A'(kj)e'~tA(k, j)) . (33) X ~+
(A'(k, j) iL' . A(k, j))o

1 . , 1

s —lLp s —lL p

o A (1 ) e ~(kj )ta(k j)+eicos(kj)ta ( k j) (34)

Using this result in Eq. (33) yields, for a harmonic lattice,

C(t) = ( [a'(k,j)+a(—k,j)][e '"("'~"a(k,j)

+eica(kj )tao( k j)])

In the first line we performed an integration by parts. In
the second line only the first term in the expansion of
cosh(A/2) is retained, since A' is only first order in the
a's and a' 's.

It is instructive to evaluate Eq. (33) for the case of a
harmonic lattice. From Eq. (28) we have

(A "(k,j) . A(k,j)),
s —ELp

(37)

where ( ), indicates a phase-space average with respect to
a WDF which is correct to first order in H'. In Ref. 7 we
discussed hove such corrections may be computed, but
since this result is not required for determining the first-
order frequency shift, we shall not pursue this matter fur-
ther here.

Using Eq. (29), the denominator of the second term in
angular brackets in Eq. (37) may be written

(A'(k, j) . A(k, j)),
s —&Lp

e
—ic0(k,j)t(

~

a(k j)
~

2) +eic0(kJ)t(
/
a( , kj )

~

2)

cos[c0(k,j)t]

pleo(k, j)
2

(35)

2 S

tanh
P~(k ) s +to (k,j)sj

2

Similarly, the prefactor becomes

(38)

where we used Eqs. (18) and (19). As expect(xi, the auto-
correlation of the k,j mode oscillates with frequency
c0(k,j). Note that

s +cc) (k,j)
(39)

4( —k'k ''k ''k ')
cct(k,j) ~ ~ji Z~jZ~ 3~j3c 4~j4

s —iL()
' 12j(j' g2+et2(kj) k k k [co(k,j)co(k2,j2)to(k3, j3)co(k4 j4)]'

J2 J3*J4

xA(k~ j~)A(k3 j3)A(k4 j4), (40)
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where we used Eq. (31). This permits us to write

~(k,j) &,=, ,' g ~( —k+k, +k, +k, )
12N[s +co (k,j)]

@(—k,j;kz,jz;k3,j3,k4, j4)
[co(k)J )co(kz)Jz )co(k3)J3 )co(k4)J4)]

X (A(kz, jz)A(k3 j3))A(k4 j4)) . A'(kj)&o, (41)
s +iLo

where we performed an integration by parts. Using Eq. (30) we have

(~(kz jz)~(k3 j3)~(k4 j4} . ~'(k j}&o= .
'

. + .
'

. [a«z jz}+a*(—kz jz}1
1, . a'(k, j) a( —k,j)

s+]L s+ico kj s —ico kJ

X [a(k„j,)+a"( k„j,—)][a(k„j,)+a'( k„j,—)]) (42)

The nonvanishing phase-space averages have two a's and two a"s. Since variables 2, 3, and 4 are equivalent in Eq. (41),
we may replace the right-hand side (RHS) of Eq. (42), under the summation, by

&a (k J)a(kz Jz)a ( k3 J3)a(k4 J4) &o+ . . &a( —k j}a'(—kz Jz)a(k3 j3}a*(—k4~J4) &o (43)
s +i co(k,j )

' ' ' '
s ic—o(kj),

where the factor of 3 accounts for equivalent permutations. For the above phase-space averages, the a's and a"s must
occur in pairs with equal k and j. The argument of the 5 is zero unless either kz ——k and k3= —k4, or k4 ——k and

k3 ———kz. Hence expression (43) may be replaced with

k . & Ia(k j}I'Ia«3,j3) I'&o+ . k . & Ia( —k j) I'la(k3 j3) I'&o
s+ico k,j s —ico k,J

—1

3s p]riN(k, j) PS'(k3, J'3 )
tanh ' tan h

s +co (kj) 2

Equation (41) now becomes

(A*(k, ') . iL' . A(k )& =— s ~ 4( kj;k —j;k',j'; —k',j')
s —iLo s —iLo

' 4% tanh(p]5co(k, j)l2) [sz+coz(k, j)]2 ]c; co(k', j')tanh[P~(k', j')J'2]

(44)

(45)

Coinbining Eqs. (37), (38), (39), and (45), we find that to
first order,

where

co+(k,j)=co (k,j)+S(k,j) . (49)

J(s)= 2(
~

a(k,j)
~

&]
s +co (kj)

&(k,j)
s +co (k,J)

where

fi ~ 4( kj;k,j;k',j '; —k—',j')Sky=
](' j'

(ks ~ r) h
P~(k &tj

2

To first order in the anharmonicity, we may write

J(s)=2(
~

a(k, j)
~

&]

s +co (k j)
=2(

~

a(k,j) &] z zs +coj](k,j)

(46}

(47)

(48}

The first-order frequency shift is therefore

h(k, j)=co&(k,j)—co(k,j)= S(k,j)
2co(k,j)

in agreement with the result of the nonzero-temperature
Green's-function method [see Eq. (5.5a) of Ref. (1)].

V. SUMMARY

We have shown that using relatively straightforward
phase-space distribution function techniques, it is possible
to evaluate the phonon frequency shift in an anharmonic
lattice. Our method avoids, on the one hand, the com-
plexities of the nonzero-temperature Green's-function ap-
proach, and, on the other, the VA'gner-Kirkwood expan-
sion in powers of A.
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[eiiea +ra)q ei(na +~a))w=e

Now suppose A(a, a ) and B(a,a ) are operators with
Wigner phase-space equivalents A(a, a ) and B(a,a ).
The operator A may be expressed in the form

APPENDIX
A =ST' d gg D

Product rule for Signer phase-space equivalents ex-

pressed in terms of mode amplitudes.
The annihilation and creation operators are

a =(2R) '~ [(mco)'~ q+i(mco) '~ p],

a =(2t)1) '~ [(mco)'~ q —l(mco) ' ~P],

(A 1)

(A2)

i(crq~rp)s i(oq~rp)
) fV (A3)

and since a and o;~ are linear in q and p, the %'eyl

correspondence rule implies that

where q and p are the position and momentum operators
for a single degree of freedom. The Wigner phase-space
equivalents ct and a' of operators ct and a, are obtained

by replacing q with q, and P with p in the above expres-
sions. According to the Weyl correspondence rule'

D(f) =e»'

and

(A7)

A(a, ct')=sr ' f d ggz(g)e ~ +&

Tr AD e ~ +& . A9

Let B be given by (A5) with gtt instead of g„. Then the

Wigner phase-space equivalent of A B is

g„(g)—=Tr(A D(g)) . (AS)

In Eq. (A5), d g=d(Re()d(imp). Using (A5) and the
Acyl correspondence rule we have

(A B)n (cx,ct')=m f d2ge&'a &a" f d yi f d cog&(yi)gtt(co)Tr[D '(yi)D '(co)D(g)] . (A10)

By virtue of the Baker-Hausdorff theorem'

(tt Pill
) ye y lie

(
*— )/2In this last expression we may replace e'" " "' with

eA", where

e(yP" yPll2D(~ P—)

If we also note the identity

(A 1 1) 5 5
Ba* ~o'

(A14)

Tr(D(y)D '(P)) =~5'"(y —P),
where 5' '(g)=5(Re))5(lmg), then we may rewrite Eq.
(A10) as

(A B)p (a,a')=

Then (A13) becomes

(A 8)tt (ct,ct")=A(a,a")e B(u,ct*) . (A15)

f d yi f d coe " "g„(yi)

Xe'" " '~ e g (co) . (A13)

This result may also be obtained by eliminating p and q in
favor of a and a* in the usual product rule for phase-
space equivalents, expressed in terms of p and q.
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