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Quasiperiodic lattice: Electronic properties, phonon properties, and diffusion
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Results of a renormalization-group analysis augmented by numerical calculations are presented
for the electronic and phonon properties of a one-dimensional quasiperiodic lattice. Qualitative
differences in the electronic and phonon band structure are predicted analytically and confirmed nu-
merically. An exactly evaluated wave function shows a power-law behavior. Results of a calcula-

tion of the diffusion coefficient are also presented.

Following the recent experimental discovery of the
quasicrystal phase in metallic alloys,' there has been a re-
generation of interest in the studies of the physical proper-
ties of quasiperiodic systems in one dimension.” Even
more recently, Merlin et al.3 have succeeded in growing a
realization of a quasiperiodic superlattice and have carried
out x-ray and raman scattering measurements on it.

In this paper we study the electronic and the phonon
problem on a one-dimensional lattice which consists of
two types of bonds, 4 and B. More specifically, the dis-
tribution of 4 and B follows the Fibonacci sequence S,
which is constructed recursively as Sy, ;={S;,S;_,} with
S1={A} and S, ={A4,B}. A key result of our analysis is
that while we can map one problem onto the other in a
straightforward way, the scaling index (to be defined later)
for the phonon spectrum depends on the frequency o,
whereas it is independent of the energy E in the electronic
problem. This leads to qualitative differences in the two
band structures—a result we have confirmed by numerical
analysis (Fig. 1). The wave function (normal mode) for a
special energy E(w) is obtained exactly, and it is shown to
be self-similar and therefore intermediate between a local-
ized and extended state (Fig. 2). We calculate the scaling
behavior of the density of states for phonons in the w—0
limit and show that the Fibonacci lattice may be charac-
terized by a spectral dimension (d;) of 1 and a random-
walk dimension (d,,) of 2. Results of a calculation of the
diffusion coefficient are also presented (Fig. 3).

I. ELECTRONIC AND PHONON SPECTRA

Consider the tight-binding model for the electronic
problem

tn+1¢n+l+tn'/)n——l=E¢n ’ (1)

where 9, denotes the wave function at the nth site and
{t;] is the Fibonacci sequence with two kinds of hopping
matrix elements ¢, and t3. The phonon problem, on the
other hand, is described by an equation of motion

___0)2"’" =Kn+l¢n+l+Kn¢n—1"(Kn+l+Kn )')[’n ’ (2)

where 1, now denotes the displacement from its equilibri-
um position of the nth atom and the K’s form a Fibonac-
ci sequence with two kinds of spring constants K, and
Kp. Kohmoto, Kadanoff, and Tang* (and also, indepen-
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dently, Ostlund et al.’) have studied a similar electronic
problem: ¥, +¢,_1+ V,¥,=Ey,, where the V,’s fol-
low a Fibonacci sequence. The method of Kohmoto et al.
is used to study the present problems with some modifica-
tion.

The tight-binding model (1) may be written in the form
Yn 1 =M(t, . 1,1,)¢,, where 9, is a column vector

Un
"pn -1
and M(¢;,t;) is a transfer matrix given by

E/y —t/1
1 0

M(t;,t)=
For the phonon problem, one simply makes the replace-
ments t;,—K; and E ——w’+K; +Kj, i.e,

(-’ +K;+K;)/K; —K;/K;

M(K;,K))=— . 0

The solution to (1) [or (2)] may be written, using prod-
ucts of the matrices, as ¥, , ;=M (n)y; where

M(n)=M(tn+lstn IM(ty,t, 1) - - M(t5,t,) .

The key problem is therefore to calculate this transfer ma-
trix M(n). The Fibonacci lattice permits an extremely ef-
fective method for doing this. The Fibonacci numbers are
given by F;  =F,_|+F, with Fo=F,=1. When n is a
Fibonacci number, M(n) can be obtained recursively. De-
fine M;=M(F;), then

M =M_ M, (3)

with Ml:‘M(tA’tA) and M2=M(IA)tB)M(tB7tA)' The
transfer matrix for a general value of n is given by
Mn)=M, - -M M, , 4)

where n=F; +F; + - -~ +F’.- and [/, >1,> - >1;.

The recursion relation (3) gives a powerful calculational
scheme. However, the essential importance rather lies in
the fact that it defines a nonlinear dynamical map and we

can therefore use theories and concepts of dynamical sys-
6
tems.

563 ©1986 The American Physical Society



564 MAHITO KOHMOTO AND JAYANTH R. BANAVAR 34

Defining x; = trM ;, one can show that
X|41=2X1%) 1 —X[_2 , (5)

which leads to the result that on successive iterations the
quantity

2 2, .2
IT=x{ \+xj+xj_1—2x; X111 —1

is a constant of the motion (i.e., independent of /). It has
been shown by Kohmoto and Oono® that the map given
by (5) yields to a fixed-point analysis. A scaling index a
for three iterations was found to be given by

a=[1+414+1?]"242(14+1) . (6)

Physically, a denotes the scaling index for the self-similar
band structure.” Also, the quantity I determines the size
of the band gaps—a large I implies large gaps and I—0
implies a vanishing gap.

The key difference between the electronic and phonon
problems arises in the expressions for I:

2
tp ¢
=B o)
4 |t, 1t
and
o1 1)
=2 | — 8
T4 Ky K, &

The important point is that a depends on w for the
phonon case, while it is independent of E for the electron-
ic case. This leads to qualitative differences in the band
structure which are best seen in the numerical results
shown in Fig. 1. In the electronic case, there is uniform
scaling, whereas in the phonon case, at low values of w,
there are large bands and small gaps while for higher
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FIG. 1. (a) The allowed energies for the electronic problem
for t,=1.0 and t3=2.0. (b) The allowed w? for the vibrational
problem for K,=1.0 and K3=2.0. The band structures for
1=2,3,4,5, and 6 are shown.

values of w the bands are very narrow.

The phonon problem with the spring constants uniform
and the masses in a Fibonacci sequence is dual to the pho-
non problem discussed above, and has a very similar band
structure.

It can be shown for both electronic and phonon prob-
lems that the gaps are distributed densely and there are no
isolated states such as states in a gap.® Sets of this kind
are called Cantor sets.

II. SELF-SIMILAR WAVE FUNCTION

We consider the electronic problem at the center of the
spectrum, E=0. This value of E actually is in the spec-
trum, and we can exactly evaluate the wave function for
this special value of the energy. The mapping (3) for
E =0 gives the six cycle:

0 —1 R 0
Mi=1y o | Ma=| o _ymr|>
0 1/R 0 —1
M]z _R 0 ’ M4= 1 0 ’
1/R 0 0 -R
Ms=1o R Me=|1/r o

and M ; (=M, where R=tp/t,. Figure 2 shows a plot
of the modulus of ¥, versus the site label n along the
chain for R =2. There are a series of peaks which have
values of a power of R. These peaks correspond to the
transfer matrix (4) which have eigenvalues R”. First note
that
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FIG. 2. The self-similar electronic wave function at E =0 for

R=15/t4,=2.0. The figure is a plot of || versus the site
number along the quasiperiodic lattice.
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and M ;,¢=M ;. From this, the transfer matrix
Mn)=M Mg -+ M;y

with an eigenvalue R?% is constructed where p is an in-
teger. Therefore, there are a series of peaks

U =Ry, o)
with

n=F3+F¢+Fo+Fj4 """ +F3y3, .
There is another series of the transfer matrices:

Mn)=M MMM oM s " Mi3y2p+1)»
which gives the peaks

Ya=—R¥?*1y,, (10
with

n=14+F+Fs+ - +F3x2p+1) »
and

p=123,....

The two series of peaks (9) and (10) give the fundamental
structure of the wave function. They are the peaks of or-
der of magnitude R? which are encountered sequentially
as n is increased. The self-similarity of this wave func-
tion can be described precisely as follows: take
|| = | ¢, | =1, for example. Then the modulus of the
wave function is invariant under the scale transformation
of n—n/oy and |¢|—|¢|/R Gf |¢¥|>1) or
|| —R|¢¥| (f |¢| <1), where og is the golden mean
(V5+1)/2.

These rescaling parameters o5 and R are related to the
power-law behavior of the peaks (9) and (10):

d’n"'"ﬂ >

3 (11

B=1InR /Inog .
Although we have the exact wave function only at the
special energy E =0, there are many other energies at
which the wave functions behave similarly. Those ener-
gies are at the centers of the clusters. The corresponding
orbits for the mapping (3) are attracted to the six cycle.
Therefore, the wave functions are similar to the one at
E =0 on a large length scale.

For these special values of energy, the wave functions
are neither extended nor localized in a standard way and
are probably characteristic of a wave function at the mo-
bility edge. Some special wave functions have been ob-
tained in other incommensurate models.’

There are infinitely many eigenvalues in the energy
spectrum of the type described above. However, they are
still very rare in a sense that if one picks an element of the
spectral set, then, with probability 1, the corresponding
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FIG. 3. A plot of the diffusion coefficient versus W ,.

orbit is chaotic rather than a limit cycle. An important
unresolved issue is to understand the wave functions
which correspond to chaotic orbits.°

For the phonon problem, ¥, is regarded as describing
the displacement and this behaves similarly to the wave
function at the corresponding energy. There is a one-to-
one correspondence between the phonon and the electronic
spectra.

III. SPECTRAL DIMENSION,
FRACTAL DIMENSION, AND DIFFUSION

We now switch to the phonon problem in the low-
frequency limit. This part of the spectrum is an edge of
the total spectrum and it can be shown that a two cycle of
the map (5) governs the edges of the spectrum. Note that
as w—0, I =0 and this two cycle becomes the fixed point
x,=I. A fixed-point analysis gives the Van Hove—type
behavior of the integrated density of states, namely it is
proportional to the square root of w?. Hence, the low-
frequency integrated density of states of the phonons is
linear in @. We have verified this analytic result numeri-
cally. This implies a linear low-temperature specific heat
and a value of the spectral dimension d; equal to one. It
is easy to show using the mass-volume relationship that
the Fibonacci lattice has a fractal dimension dy=1.
Therefore, one expects that the random-walk dimension
d,=2(d;/d,) (defined by (r?) ~r*"*) is equal to 2 and
that there is no anomalous diffusive behavior.!!

Using the results for the diffusion coefficient for a
periodic one-dimensional hopping model of arbitrary
period N derived by Derrida,'> we have numerically
evaluated the velocity and diffusion coefficient on a Fi-
bonacci lattice.

We find, indeed, that the velocity is zero and that the
diffusion coefficient is well defined. Figure 3 shows a
plot of the diffusion coefficient D versus W,, where W,
denotes the probability of jumping across an A band per
unit time. For convenience, W, and Wjp were normal-
ized as
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WA0G+ WB(I—UG)=O.5 ’

so that the average of W’s on the lattice is constant. The
diffusion coefficient has a maximum for W= W3 =0.5,
a situation corresponding to the usual random walk and is
asymmetric about the peak.
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