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We present a theoretical study of the structural and electronic properties of pseudomorphic Si/Ge
interfaces, in which the layers are strained such that the lattice spacing parallel to the interface is

equal on both sides. The self-consistent calculations, based on the local density functional and
ab initio pseudopotentials, determine the atomic structures and strains of minimum energy, and the
lineup of the Si and Ge band structures. The presence of the strains causes significant shifts and

splittings of the bulk bands. We derive values for the band discontinuities for (001), (111),and (110)
interfaces under different strain conditions, and discuss the validity of the density-functional
methods for the analysis of the interface problem. Spin-orbit splitting effects in the valence bands
are included a posteriori. We express our results in terms of discontinuities in the valence bands,
and deformation potentials for the bulk bands, and compare them with recent experiments on

Si/Sil „Ge„heterostructures.

I. INTRODUCTION

It has recently become possible to grow epitaxial inter-
faces between materials which are lattice mismatched by
several percent, using the technique of molecular-beam
epitaxy (MBE). Lattice-mismatched heterostructures can
be grown with essentially no misfit defect generation if
the layers are sufficiently thin; the mismatch is then com-
pletely accommodated by uniform lattice strain. ' The lat-
tice constants parallel to the interfacial plane adjust so
that perfect matching of the two materials is obtained.
To compensate for this strain, the lattice constants per-
pendicular to the interface adjust independently for the
two materials to minimize the elastic energy. This so-
called pseudomorphic or commensurate growth lowers
the energy of the interfacial atoms, at the expense of
stored strain energy within the coherently strained layers.
These effects occur when a thin epitaxial layer is deposit-
ed on top of a substrate with a different lattice constant,
and also in strained-layer superlattices. ' By growing
layers on substrates of different lattice constants, or by
modifying the ratio of the thicknesses of the layers in a
free-standing superlattice, one can control the strains in
the layers, and, as we shall see, modify significantly the
electronic properties.

In this paper we will concentrate upon the Si/Ge
heterojunction, for which the lattice constants of the pure
elements Si and Ge are mismatched by 4%. Experimen-
tally, dislocation-free interfaces have been grown between
Si and Sii „Ge alloys with a Ge fraction x of up to
75%%uo, and even higher for very thin layers. Si/Ge inter-
faces are interesting from a technological point of view
because they offer the possibility of constructing hetero-
junctions which can be integrated directly with existing Si

circuits. ' Strained-layer structures also offer the advan-
tage that band gaps can be shifted by the strains, giving
added fiexibility in the design of electronic components.
The large magnitudes of the strains may be illustrated by
the example of a Si substrate with a thin layer of Ge on
top. The Si substrate remains in the cubic structure, with
a lattice constant as; ——5.43 A. The Ge layer (for which
the unstrained lattice constant is aG, ——5.65 A) is
compressed parallel to the interface, to match the Si lat-
tice constant in the plane: a

~ ~

——5.43 A. It therefore needs
to expand in the perpendicular direction, due to the Pois-
son effect. For a (100) interface, minimization of the elas-
tic energy gives a perpendicular lattice constant for Ge:
ao,j ——5.82 A. We will consider this case along with
many others with greatly different strains.

We will mainly be interested in the heterojunction band
lineups at the Si/Ge interfaces, information which is of
crucial importance for all device applications. These band
lineups will turn out to be dependent upon the interface
orientation, and also upon the strain conditions in the ma-
terials. We will find, however, that results for intermedi-
ate strains can be found by interpolating between two ex-
tremes: one in which the Si is unstrained (cubic Si sub-
strate with strained Ge), and the other in which Ge is un-
strained (cubic Ge with strained Si). It therefore suffices
to do the interface calculations for these extreme cases
only. It also suffices to consider only interfaces between
the pure materials Si and Ge; results for alloys can be ob-
tained by interpolation.

Our calculations are performed on a superlattice
geometry, as illustrated in Fig. 1. They are based on
local-density-functional theory, applied in the momen-
tum space formalism, ' and use nonlocal norm-con-
serving pseudopotentials. " These methods have been ap-
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FIG. 1. Schematic illustration of a superlattice used for
studying the Si/Ge interface. The superce11 contains four atoms
of each material and two interfaces. The lattice parameters a~~,

as;j, aa.,&, and d are defined.

deformation potentials, incorporating spin-orbit splitting
effects. Section V contains a further analysis of the strain
effects on the band structure, and results for deformation
potentials. In Sec. VI, we show full results for theoretical
band lineups for various strains and interface orientations.
Section VII will contain a comparison with other theories,
and with some recent experimental findings on Si/Ge in-
terfaces involving alloys of Si and Ge. The agreement
will prove quite satisfactory. Some concluding remarks
will be presented in Sec. VIII.

II. DETERMINATION OF THE STRUCTURE

plied to a wide variety of solid-state problems, 'o'2' and
provide a fundamental theoretical framework to address
the problem. They allow us to calculate total energy,
stress, and forces on the atoms, and thus determine the
minimum energy structure of the interface. From the
self-consistent potentials we obtain information about po-
tential shifts at the interface. Combining this with bulk
band-structure calculations will allow us to derive values
for valence- and conduction-band discontinuities. Spin-
orbit splitting effects in the valence bands are added in
a posteriori Finall. y, we need to consider the "band-gap
problem, "'" and examine to what extent the density-
functional method is able to produce a reliable description
of these heterojunction systems. Our discussion will indi-
cate that for cases like Si/Ge the lineup of the bands
should not be greatly modified by the known corrections
to the local-density approximation.

Self-consistent calculations such as those performed in
the present study provide the only way to take all the ef-
fects of the electronic structure of the interface into ac-
count. The present authors have used these methods to
systematically study a wide variety of interface systems;
specific results and some general conclusions have been
reported elsewhere. 's ' Other approaches to the hetero-
junction problem have included a number of "model"
theories, such as those by Frensley and Kroemer, ' Har-
rison, ' ' Tersoff, ' and by the present authors. '7 They
all rely on certain assumptions to define a "reference lev-
el" for each semiconductor, which is then used in lining
up the band structures. Although some of them are
reasonably successful at predicting lineups, none can
claim to take all the essential physics of the interface
problem into account. The present ab initio calculations
therefore provide a means of approaching the problem
without making any uncontrolled assumptions. To our
knowledge, they also constitute the first theoretical work
to predict the band offsets at strained-layer interfaces.

In Sec. II, we will describe the strained-layer systems
that we study, and show that these correspond to the
minimum of total energy obtained from ab initio calcula-
tions. Section III will deal with how we extract informa-
tion about band lineups from the self-consistent interface
calculations, illustrated with the example of a (001) inter-
face between cubic Si and strained Ge. We also examine
some of the problems inherent to the local-density-
functional approximation. In Sec. IV we will discuss how
to express the splitting of the valence bands in terms of

Dooi =2(ci2/cii)

Diio =(c i i +3c i2 —W~)/(cii +ci& +2c~),
(4a)

(4b)

Diii ——2(cii+2ci2 —2c~)/(cii+2ci2+4c44) . (4c)

We should remark that for orientations other than the
(001), the value given for a~~ does not correspond to the
actual lattice constant in the crystallographic plane of the
interface. Rather, a~~ and ai express how the diinensions
of the appropriate unit cell change with respect to the un-

strained bulk unit cell. The ratio of a~i and a;i to the un-
strained lattice constants determines the strain com-
ponents parallel and perpendicular to the interface:

e;i=(a;i/a; —1) . (5b)

We prefer using a~I and az instead of strain components,
since this eliminates the need for defining a coordinate
system and explicitly mentioning what material we are

The derivation of interface properties requires that one
first determine the positions of the atoms of minimum en-

ergy, i.e., the structure of the interface. We do this by
first constructing an ideal interface, following simple
macroscopic rules, and then examining how close this an-
satz is to the minimum energy structure as predicted by
full self-consistent calculations. The strains in the materi-
als, which are necessary to have a pseudomorphic inter-
face, can be determined by minimizing the macroscopic
elastic energy, under the constraint that the lattice con-
stant in the plane, a~~, remains the same throughout the
structure (lattice constants will be denoted by the letter a;
the subscripts

~ ~
and l are used to indicate lattice spacings

parallel or perpendicular to the plane of the interface).
For a system in which hs; and hG, are the respective
thicknesses of the (unstrained) Si and Ge layers, this yields
the following results:

(asiGsiiiSi+aoeGGe iGe )/(GSi~Si+GGeiioe) ~

a;i ——a;[1 D'(a~~/a; ——1)],
where i denotes the materials, Si or Ge, a; denotes the
equilibrium lattice constants, and 6; is the shear modulus,

G;=2(cii+2ci2)(1 D'/2) . — (3)

The constant D depends on the elastic constants cii, ci2,
and c~ of the respective materials, and on the interface
orientation:
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AE„{eV)

TABLE I. Heterojunction band lineups for Si/Ge interfaces; aLI and a& define the strain, conditions
of the materials, as described in the text; 4E„=E„G,—E„s; is the discontinuity in the top of the valence

band; hE„,„=E„G„„—E„s;,„ is the discontinuity in the {weighted) average of the valence bands;

~,=E,~—E, s; is the discontinuity in the minimum of the conduction band.

aI~ {A) as'J {A) aG,& (A) ~„,„{eV) AE, {eV)

5.43
5.52
5.65

5.43
5.36
5.26

5.82
5.75
5.65

0.84
0.61
0.31

0.54
0.53
0.51

0.28
0.41
0.55

5.43
5.65

5.43
5.33

5.73
5.65

0.85
0.37

0.58
0.56

0.25
0.28

(110) 5.43
5.65

5.43
5.32

5.75
5.65

0.76
0.22

0.52
0.50

0.03
0.24

referring the strains to.
We notice from Eq. (1) that when hs;/ho, ~co, then

a~~
——as;,' this corresponds to a Si substrate with strained

Ge on top. Similarly, when ho, /hs; ~ oo, then a~~
——ao„

corresponding to a Ge substrate. In general, if the layers
are grown on a substrate, the value of a~~ is determined by
the substrate and may be varied by using different sub-
strates. However, for free-standing superlattices a

~~
must

be determine by equations such as (1). Once a~~ is
known, a;~ can be obtained using Eq. (2).

As an ansatz, we assume that the atoms occupy the
ideal positions of the (appropriately strained) bulk lattice
structure of each material up to the interface, and that the
separation d between the Si and Ge layers at the interface
is taken to be the average of the layer spacings in the two
bulk materials. Now we examine to what extent these
simple rules for deriving the atomic positions really yield
the most stable structure, corresponding to the minimum
energy configuratian that can be found from the ab initio
calculations. The most detailed study was performed for
the case of the (001) interface between cubic Si at
as; ——5.43 A and (001) strained Ge with a~~

——5.43 A and
ao,j =5.82 A. We have carried out careful calculations
of total energy and the forces an the atoms for a superlat-
tice with four atoms per unit cell (two Si and two Ge).
The results show that the minimum energy structure is
very close to that we described above, within 0.1% for d
and 1% for ao,~. Furthermore, we will sm in the next
section that such small deviations from the ideal structure
give rise to only very small changes in the heterojunction
band lineups. We therefore conclude that determining the
structure of the interface from macroscopic arguments is
a very good ansatz. Incidentally, our result that d is equal
to the average of the bulk values may be an example of a
more generally applicable rule. Similar results were ob-
tained for an Al/Ge interface by Batra.

For the (111) and (110) pseudomorphic interfaces, the
strains reduce the crystal symmetry in such a way that the
separation of the two atoms in the bulk unit cell of the di-
amond structure is not uniquely determined from the
macroscopic strain. %'hen the materials are distorted
along these directions, internal displacements of the atoms
will occur. These are described by the internal displace-

ment parameter g. We used the values gs;=0.53 and

go, ——0.44, derived from theoretical calculations' which
used exactly the same methods and potentials as we use
here. In the case of strain along [111],the relative dis-
placement of the two atoms in the unit cell is given by

u= —(g/6)(o& —
o~~ )(x+y+z), (6a)

where x, y, and z are unit vectors along the Cartesian
axes. For strain along [110],the expression is

u = —(g/4)(a j —a
~ ~

)z . (6b)

III. DERIVATION OF BAND LINEUPS

A. Self-consistent calculations

The fundamental problem in deriving the band lineups
at heterojunctions is that for a bulk solid there is no in-
trinsic energy scale to which all energies are referred.
Therefore there can be no unique reference with which to
compare the potentials for two different solids. The

No attempt was made to actually minimize the total ener-

gy for these structures. Based on our findings for the
(001) interface, we assume that the actual positions of the
atoms will be close to those found from macroscopic ar-
guments.

From the description above, it follows that the strain
situation of the system can be characterized fully by the
interface orientation and the value of a~~, given the
prescriptions for evaluating the strains by minimizing the
elastic energy, and for calculating the internal displace-
ments. In the following sections, we will describe the cal-
culations that we have performed on (001), (111), and
(110) interfaces. For each of these, we have examined the
extreme cases in which all of the strain occurs in just one
of the materials (i.e., a~~

——5.43 or 5.65 A). For (001), we
also examined an intermediate case (a~~ ——5.52 A), corre-
sponding to a superlattice with layers of equal thickness;
this allows us to draw conclusions concerning the linear
behavior of the lineups as a function of strain. A list of
the values of a~~, as;z, and ao,~ for the cases that we
studied is given in Table I.
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reason for the ambiguity is that because of the long range
of the Coulomb interaction, the zero of energy is unde-
fined for an infinite (bulk) crystal. To derive the potential
shift which occurs at the junction of two materials, one
has to perform a calculation in which both types of ma-
terials are present. In the neighborhood of the interface,
the electron distribution will clearly differ from the bulk,
setting up a dipole moment which will cause shifts in the
bands, even far from the interface. The only way to ob-
tain a full picture of the interface problem is to carry out
self-consistent calculations in which the electrons are al-
lowmi to adjust to the specific environment around the
junction. Calculations have been done previously by Pick-
ett et a/. , which followed this approach; however, they
used empirical pseudopotentials, and considered only
lattice-matched cases. In our studies, we have extended
the method to strained-layer systems, and used the more
recent ab initio pseudopotentials. " This term indicates
that these potentials are generated using only theoretical
calculations on atoms, without introducing any type of
fitting to experimental band structures or other properties.
This implies that, in contrast with the empirical approach,
all elements are treated in the same way, which is particu-
larly important when we want to include different materi-
als in the same calculation, as for an interface.

Self-consistent solutions are obtained for the charge
density and the total potential, which is the sum of ionic,
Hartree, and exchange-correlation potentials. The latter is
calculated using the Ceperley-Alder form. In each cycle
of iteration a potential is used for generating the charge
density, from which a new potential can be calculated.
This is then used for constructing the input for the next
cycle. Convergence of the self-consistent iterations is ob-
tained with the help of the Broyden scheme. The first
cycle requires a trial potential, for which we can choose
the ionic potential screened by the dielectric function of a
free-electron gas. An even better choice in many instances
is the potential corresponding to a superposition of free-
atom charge densities.

A major problem that has to be faced in calculating the
electronic structure of an interface is the lack of transla-
tional invariance in the direction perpendicular to the in-
terface. Our calculational approach assumes translational
symmetry and exploits it in making Fourier expansions of
the wave functions, ' and in performing integrations
over occupied states, using special points in the Brillouin
zone. We can artificially introduce periodicity into the
problem by constructing a "supercell:" a large unit cell
which consists of two slabs of the respective semiconduc-
tors in a particular orientation. This unit cell is then re-
peated and the electronic structure of the system is calcu-
lated self-consistently. A typical cell for the (001}orienta-
tion is shown in Fig. 1; it contains eight atoms and two
identical interfaces. Of course, what we are really in-
terested in are the results for an isolated interface. These
can be derived from our calculations to the extent that the
interfaces in the periodic structure are weil separated. We
will establish a posteriori that this is the case, by examin-
ing charge densities and potentials in the intermediate re-
gions, and shing them to be bulklike.

%e mill describe in detail here the calculations per-

Ge Ge

0.10-

0.08

0.06

0 04

0.02

O.N

IW
-0.02-

V-0.04-

-0.06

position (z} = (001)

FKJ. 2. Variation of the averaged I = l component of the to-
tal potential V(z) [as defined in Eq. (7}]across the {001}inter-
face. The dashed lines represent the corresponding potentials
for the bulk materials. These coincide with V(z) in the regions
far from the interfaces. However, the average levels of the two
bulk potentials (dashed horizontal lines) are shifted with respect
to each other.

formed for the (001) interface between cubic Si and
strained Ge. Plane waves with kinetic energy up to 6 Ry
~ere included in the expansion of the wave functions
(=280 plane waves}. A set of four special points was used
for sampling k space. Test calculations described later
show that these choices are sufficient for the properties
we are examining here. In the final self-consistent solu-
tion, a redistribution of electrons has occurred which
changes the electric dipole in the interface region. The re-
sulting self-consistent potential across the supercell is
plotted in Fig. 2. Because the ab initio pseudopotentials
used here are nonlocal, the total potential consists of dif-
ferent parts corresponding to different angular momenta
l. We only show the l = 1 part of the potential here. In
the plot, the variation of the space coordinate r is limited
to the component perpendicular to the interface, and
values of the potentials are averaged over the remaining
two coordinates, i.e., averaged in the plane parallel to the
interface:

V(z)=[1/(Na )]JV(r)dx dy .

In the regions far from the interface, the crystal should
recover properties of the bulk. Therefore we also plot
(dashed lines) the potentials determined separately from
calculations on bulk Si and Ge (strained). We have chosen
the average potential for the bulk crystals to agree with
the interface calculation. One sees that already one layer
away from the interface the potential assumes the form of
the bulk potential. Similar results hold for the charge
density. This confirms, tt posteriori, that the two inter-
faces in our supercell are sufficiently far apart to be
decoupled, at least as far as charge densities and potentials
are concerned. The average levels of the (l =1) potentials
which correspond to the bulk regions are also indicated in
Fig. 2. %e denote these average levels by Vs; and VG„
and define the shift b, V= Vo, —Vs;.
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To get information about band discontinuities, we still
have to perform the band calculations for the bulk materi-
als, i.e., cubic Si and Ge strained as in the superlattice
layer. The energy cutoff has to be sufficiently high to
make sure that energy differences are converged. It turns
out that 12 Ry is sufficient for the valence bands; conduc-
tion bands, however, tend to show a larger dependence
upon the cutoff, so calculations with cutoffs up to 18 Ry
were performed to derive these values. We find that the
valence-band maximuin in Si is 11.19 eV above the aver-

age potential Vs;. In Ge, the strain along [001] splits the
top of the valence band. The topmost valence band
occurs at 11.08 eV, and the average energy of the three
I 25 valence band is 10.88 eV above VG, . Figure 3 illus-
trates the lineup procedure, using the result EV=0.85 eV,
derived from Fig. 2. All values were consistently obtained
with the 1=1 component chosen as the reference poten-
tial; the band lineups, however, are independent of this
choice. We see that this leads to a discontinuity in the
highest valence band of EE„=0.74 eV (upward step in
going from Si to Ge), or a discontinuity in the average
valence-band energy of AE„,„=0.54 eV. No spin-orbit

splitting effects were taken into account in these calcula-
tions. In the next six:tion, we will show how to incorpo-
rate these a posteriori. Our bulk band-structure calcula-
tions also give us conduction-band energies. In Si, the
minimum of the conduction band occurs near the X point,
at h. The conduction bands in Ge show significant shifts
and splittings due to the strain; the lowest gap occurs at
I., but the 6 minima are very close in energy. Following
the same procedure as for the valence band, we find
bE, =0.28 eV. We should point out that the magnitudes
of the theoretical (local-density approximation) band gapa
in each material do not agree with experiment; thus we
leave the gaps undefined in the figure. b,E„however,
which is derived from the relatiue positions of the conduc-
tion bands, is a priori just as meaningful a quantity as is
hE„. We will discuss this in fuller detail below.

We studied the sensitivity of our results to the pro-
cedures used. To test the dependence upon the energy
cutoff, calculations were performed including more plane
waves (up to 800), with kinetic energy up to 12 Ry. The
effect on the shift in average potential was less than 0.04
eV. The direction of this shift is such that the valence-
band discontinuity &E„ is slightly lowered at higher cut-
offs. We have also examined the effects of using a larger
number of special points in the integration over the Bril-
louin zone. At a constant energy cutoff of 6 Ry, we have
increased the number of special points to eight or nine;
the change in d V was less than 0.01 eV. Next, an alterna-
tive verification of our assumption that the interfaces are
sufficiently far apart was provided by performing a calcu-
lation on a cell with 12 atoms (six of each material). It
was found that our result for the shift in averaged poten-
tials is not significantly affected (by less than 0.02 eV)
when we include more atoms, thus confirming that a cell
with eight atoms suffices for our purposes. Finally, the
effect of a rearrangement of the atoms near the interface
was studied for the 12-atom cell. We displaced one plane
of Ge atoms at the interface, corresponding to a 4%
change in d, keeping all other atoms fixed. The resulting
change in hV was less than 0.02 eV. This indicates that
our results for hV (and &E„) are not very sensitive to the
details of the structure near the interface. Putting the in-
formation obtained from all the tests together, we expect
the values for band lineups to be numerically precise to
within 0.05—0.10 eV.

Si (cubic) Ge (st rained)

FIG. 3. Derivation of band lineups: relative position of the
average potentials Vs; and Vz„and of the Si and Ge valence
and conduction bands. All values shown are derived with the
I = l angular momentum component chosen as the reference po-
tential; the band lineups, however, are unique and independent
of this choice. Band sphttings result from strain in the materi-
als; for Ge, the spin-orbit splitting is indicated separately. In
each ease, the weighted average of the bands is also given
(dashed lines). The magnitude of the band gaps is left undefined
in the figure; only the relative position of the conduction bands
with respect to each other is meaningful. In Ge, both the
conduction-band minima at 5 and at I are shown„as derived
from the density-functional calculations without any adjust-
ments.

B. Comments on the accuracy
of the local-density approximation

So far, we have used the results from self-consistent cal-
culations on an interface supercell to derive the potential
shift hv, and bulk band-structure calculations to derive
the position of the valence and conduction bands with
respect to the average potential V. Density-functional
theory was used throughout, and it is appropriate to con-
sider what effects this method has upon the accuracy of
the results. b, V, as derived from the interface calculation,
is associated with the dipole that is set up across the inter-
face as a consequence of the redistribution of electrons.
This quantity is really a ground-state property of the in-
terface system, derived from information about filled
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TABLE II. Comparison of the present theoretical results with experiment (Ref. 34 except where not-
ed) for selected conduction-band critical points relative to the valence-band maximum in Si and Ge.
The column labeled "Corr." gives the difference, i.e., the correction needed for the theory to agree with
experiment.

I~5
Xl
L)

Expt.

3.37
1.30

2. 10'

Si
Theor.

2.55
0.64
1.45

Corr.

0.82
0.66
0.65

I 2t

X)
L)

Expt.

0.89
1.30
0.74

Ge
Theor.

0.02
0.61
0.09

Corr.

0.87
0.69
0.65

'R. Hulthen and N. C. Nilsson, Solid State Commun. 18, 1341 (1976).

valence states, and thus would be given exactly by the ex-
act density-functional theory. The successes of the
local-density approximation for other ground-state prop-
erties lead to the expectation that it is reliably given by
calculations such as the present work. Next, we consider
the band energies with respect to V, as derived from a
bulk calculation. Here, we are confronted with the well-
known problem that the band gaps of semiconductors are
severely underestimated, even though the general topology
of all bands is quite good. This deficiency of the density-
functional method has been the focus of a number of
thceretical investigations recently. ' It is therefore ap-
propriate to analyze this aspect of the computations in
more detail.

In Table II, we give an overview of the calculated ener-
gies for a number of conduction-band critical points for
unstrained Si and Ge, relative to the top of the valence
band. The theoretical values were derived from bulk cal-
culations with an energy cutoff of 18 Ry, using ten special
points, and are essentially converged. %e also list exper-
imental values, and the corrcetion that needs to be applied
to bring theory into agreement with experiment. Several
conclusions can be drawn from this table. First, we notice
that for each material the corrections at X and I. are al-
most equal. The correction at I is slightly larger (by
about 0.15 eV); this is to be expected, since the conduction
bands at I are particularly sensitive to details of the pseu-
dopotential, inclusion of relativistic effects, etc., as was
pointed out by Bachelet et a/. ' However, this minimum
of the conduction bands at I bears little relation to the
conduction band as a whole, and has only a small volume
of k space associated with it. From a calculational
point of view, none of the special points in our calculation
is close to I, so the details of the band structure there will
not influence the results. All this indicates that we can
safely concentrate upon the indirect minima of the con-
duction band as the representative bands which will enter
i.nto the lineup procedure. For these, we can draw the
conclusion that the corrections in Si and Ge are very simi-
lar, differing by less than 0.1 eV. This has several impor-
tant implications. First of all, it means that even though
the theoretical band gaps of both materials are in
disagreement with experiment, the corrections to the
theoretical values are very similar on both sides, and thus
the relative position of conduction bands is a meaningful
quantity. We could have gone through the operation of

shifting the conduction band in each material with respect
to the valence band, to reproduce the experim. ental gap
(the so-called "scissors operator" ), and afterwards look-
ing at the conduction band lineups. Because these correc-
tions are nearly equal on both sides, however, the relative
position of the conduction bands would hardly be affected
by this operation. Or, in other words, we can (to a good
approximation) apply one scissors operator to shift the
conduction bands on both sides of the heterojunction at
once.

Apart from the practical advantages of this scheme, it
has a more profound implication. So far, we have as-
sumed that a bulk band-structure calculation gives us the
positions of the bands with respect to the average poten-
tial V. This is, of course, only true within the limitations
of the local-density approximation, and certain correc-
tions are necessary, for instance to bring the band gaps
into agreement with experiment. One should keep in
mind that such procedures may involve shifts not only of
the conduction bands, but also of the valence band (with

respect to V). '" However, as long as the corrections that
need to be applied to the two materials are similar in mag-
nitude (within the accuracy of the calculations), one can
expect that this will not affect the &F-„and hE, that we
calculate (since the same scissors operator can be applied
to both materials at once). Thus the corrections to the
band offsets can be estimated to be on the order of the
difference in the band-gap corrections that need to be ap-
plied to the two materials, which in the present case we
saw to be approximately 0.1 eV. Therefore we conclude
that our theoretical results for Si/Ge should describe the
true band offsets to within =0.1 eV; for heterojunctions
between more dissimilar materials, there may be larger
corrections to the local-density results.

IV. STRAIN AND SPIN-ORBIT SPLITTING
OF THE VALENCE BANDS

In the preceding section, we determined how to line up
the band structures of two materials at the interface. %e
also pointed out that the presence of strains has a sizeable
effect on the bulk bands. In this section, we will add the
spin-orbit splitting. Since there is interaction between
strain and spin-orbit splittings, we proceed by expressing
the effects of strain upon the valence bands in terms of
deformation potentials.

%e have already shown that uniaxial strains give rise to
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~E.,= 3 ~o i 5Eooi—

~~., = —
6 ~o+ —'5~ooi

+ z [~o+~o5Eooi+ ~(5Eooi)']'",

~E., = 6~a+ .' 5Eooi——
z[~o+—~o5Eooi+ ~(5&ooi) ]'

(8a)

(8c)

In these equations, bo is the experimental spin-orbit split-
ting at I 2& in the unstrained material, and 5Eooi is the
linear splitting of the multiplet. We have chosen the
overall sign in Eqs. (8) such that a positive shift corre-
sponds to raising the energy of the band. The band u2 is a
pure

~

—,',—,
' ) state, while ui and u& are mixtures of

~

—', , —,
' ) and

~

—,', —,
' ). 5Eooi can be expressed in terms of

a splitting of the top of the valence band. So far, howev-

er, we have not talked about an additional effect on the
valence bands at I 25, namely the spin-orbit splitting.
This effect was not taken into account in our density-
functional calculations (although scalar relativistic effects
were included by the use of the ab initio pseudopoten-
tials"). For Si, the spin-orbit splitting of the valence band
at I is quite small: Ao ——0.04 eV, which is smaller than
the accuracy of our calculations. We therefore neglect it
altogether. For Ge, however, ho ——0.30 eV, which can
give rise to more sizeable corrections. %'e assume that
these corrections can be made a posteriori. For the un™
strained material, this amounts to splitting the sixfold de-
generate (including spin degeneracy} valence band at I"25

into a higher-lying fourfold p3/2 multiplet, and a lower-
lying pi~2 multiplet. These multiplets are separated by
ho, and their weighted average corresponds to the position
of the sixfold degenerate band we found in our calcula-
tions. Practically, it means that in unstrained Ge the top
of the valence band occurs at a position 0.1 eV higher in
energy than found in our calculations. In the strained
material, the spin-orbit and strain splittings will interact
and produce a total splitting of the valence band, which
can be conventionally expressed in terms of deformation
potentials. From the equations in Ref. 35, the following
shifts of the valence bands with respect to their weighted
average are calculated for a uniaxial stress along [001]:

the magnitude of the strain and the defo~ation potential
b, as follows:

5Eooi 2——b (e~ —e~ ), (9)

where e =(a~~ —ao, )/ao, and e =(ai o, —&o, )/ao,
are components of the strain tensor, and b is the appropri-
ate deformation potential constant; b is negative in Si
and Ge.

The total splitting of the bands, in the absence of spin-
orbit splitting, is equal to —,

~
5Eooi ~; this is the value that

we find from our density-functional calculations. Using
the derived value of 5Eoui, and the experimental value of
6Q we can then obtain the positions of all multiplets by
the use of Eqs. (8). From Eq. (9), we find that 5Eoui ~0
for the case where Ge is strained to match a Si substrate.
It can easily be checked from Eqs. (8) that the
u2 ——

~

—,', —,
' ) band will always be the one that is highest in

energy, when 5Eooi &0. We therefore find that the only
effect of taking spin-orbit splitting into account is to ef-
fectively shift the top of the valence band by 0.10 eV up-
ward in energy, increasing the discontinuity ~&„by this
value. The effect of incorporating the spin-orbit splitting
in Ge is illustrated in Fig. 3. %e should remark that the
strains in the Ge layer are quite sizeable, such that strictly
speaking we are outside the linear regime for which ex-
pressions such as Eqs. (8) and (9) were derived. Our pro-
cedure, however, starts from the explicitly calculated
strain splittings, so no linearization is involved in deriving
these. We therefore expect that use of Eqs. (8) to add the
spin-orbit effects will give quite accurate results. If we
want to use Eq. (9} to obtain a value for the deformation
potential constant b, however, we should confine our-
selves to the range of strains where nonlinearities are ex-
pected to be negligible. We have indeed performed calcu-
lations for bulk materials under smaller strains. For Si,
we found b= —2.35 eV. This is very close to the value
b = —2.28 eV obtained by Nielsen and Martin' from the
same type of pseudopotential calculations as the present
ones, but using a higher energy cutoff; it is also close to
the value b= —2.27 eV obtained by Christensen, using
the linear muffin-tin orbital method. The experimental
value3 is b = —2.10+0.10 eV. For Ge, we found
b = —2.55 eV (experiment gives —2.86+0.15 eV).
These values are listed in Table III.

TABLE III. Theoretical and experimental values for selected deformation potentials of the I zs

valence bands and EI and L, conduction bands in Si and Ge, in eV.

Si

'Reference 37.
Reference 40.

'Reference 38.

Theor.

1.72
—3.12
—2.35
—5.32

9.16
16.14

Expt.

1.50+0.30'

—2.10%0.10'
—4.85+0. 15'

8.6 +0.4'

Theor.

—2.78
—2.55
—5.50

9.42
15.13

Expt.

—2.0 +0.5
—2.8640. 15'
—5.28 +0.50

16.2 +0.4
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5Eooi 4b(e~ ———e ),
5Eiii ——(4/v 3)de„~ .

(1 la)

(1 lb)

We then use these values in the Hamiltonian matrix [Eq.
(12) from Ref. 35] and calculate the eigenvalues. For the
case without spin-orbit splitting, this reproduces the ener-

gy levels that we have derived independently from our
density-functional calculations (to within 0.03 eV for the
topmost band; the shift due to spin-orbit splitting will be
predicted with even greater accuracy). Going through the
numerical derivation, we find that putting in the spin-
orbit splitting for strained Ge on top of Si leads to an up-
ward shift of the top of the valence band by 0.09 eV.
From now on, all values quoted for valence-band discon-
tinuities will include the spin-orbit splitting in Ge.

V. DEFORMATION POTENTIALS IN Si AND Ge

In the preceding section, we analyzed the strain split-
ting of the valence bands in Si and Ge in terms of defor-
mation potentials. A similar approach can be followed
for the conduction bands; both the splitting of the bands
as a result of the uniaxial strain, and the shift of the
weighted average with respect to the valence band can be
expressed in terms of deformation potentials. Following
the notation of Herring and Vogt, ' the energy shift of
valley i for a homogeneous deformation described by the
strain tensor e can be expressed as

For the case of uniaxial stress along [111][strained Ge
on top of (111)Si], the equations are the same as for [001]
above, with the quantity 5E», replacing 5E00, . We see
that, again, the topmost valence band in strained Ge will
be shifted up by 0.10 eV due to inclusion of the spin-orbit
splitting. For [111],the expression for the deformation
potential is

5Eiii =2v 3de' &' (10}

where e„~= —,
' [(ai o, —ao, )/ao, —(a~~

—ao, )/ao, ]. In Si,
we found d = —5.32 eV, to be compared with the other
theoretical values, —5.47 eV (Ref. 10) and —5.29 eV (Ref.
36), and with experiment, —4.85+0.15 eV. In Ge, we
found d = —5.50 eV (experiment, —5.28+0.50 eV).

In the case of uniaxial stress along [110],the situation
is more complicated, as discussed in Ref. 35. No exact
expressions can be written down for the energy levels; the
splitting due to strain is a consequence of a mixture of the
deformation potentials 5Eooi and 5E~ii. We therefore
proceed as follows: we use the theoretical values of b and
d, as derived above, together with the strain components
e~, e, and e „,to calculate the value of the deformation
potentials in this case. The expressions are

The quantity (:-~+—,=„) is sometimes denoted as Ei. '

The shift in the mean energy of the valence-band extrema
(at k=0) is given by

AE„=a 1:e . (14)

From Eqs. (13) and (14), the shift in the mean energy gap
1S

b, Es (:-g——+ —,
' "„—a )1:F. (15)

for the bands along [001]and [001],and

] ~Q——,=„(e —e )

(16)

for the bands along [100], [100], [010], and [010]. The
superscript 6 on =„ indicates which conduction-band val-
ley we are considering. Sometimes the notation Ez is
used instead of:-„.'

Next, let us consider the conduction bands at L. They
remain degenerate under [001] strain, but split under [111]
strain according to

for the band along [111],and

2 ~L,—
3 -"u&xy

for the bands along [111],[ill], and [111].Under [110]
strain, the splitting becomes

The quantities (:-~+—,=„)and a are difficult to calculate
or measure, since they refer to changes in the bands on an
absolute scale; (:"z+—,

' =„—a ), however, refers to rela
tiue changes in the band positions (of conduction band
with respect to valence band}, and can straightforwardly
by extracted from our calculations. Results for this defor-
mation potential are given in Table III for Si and Ge, and
are compared with experimental values. Experiments typ-
ically concentrate on the lowest gap (b, in Si, L in Ge}; we
were not able to find any experimental values for b, in Ge,
or L in Si.

Next, we consider the splittings of the bands with
respect to the mean energy. For the valence bands, we
have already discussed this in Sec. IV, and have given re-
sults for the deformation potentials b and d. These are
also listed in Table III. For the conduction bands, we first
consider the minima of the conduction band at b„near the
X-points. Uniaxial strain along [111]leaves these minima
degenerate. Under uniaxial strain along [001] or [110],
however, they become inequivalent: The bands along
[100] and [010] will split off from the one along [001].
The splitting of the bands with respect to the mean energy
is then given by

+ —,=„(& —& )

hE,'=[:-„1+=„[a;a;J]:e (12) + 3-u
where 1 is the unit tensor, a; is a unit vector parallel to
the k vector of valley i, and j [ denotes a dyadic product.
The shift of the mean energy of the conduction-band ex-
trema is

for the bands along [111]and [ill],and

—
3 =sexy

(18)

b, E, =(:"g+—,
' =„)1:e. (13)

for the bands along [111]and [111). Results for =„and
:-„are given in Table III for Si and Ge. Once again, we
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could only find experimental information on the 6 gap in
Si, and the I. gap in Ge. We should remark that the de-
formation potentials d and:-„are quite sensitive to the
value of the internal displacement parameter g. We have
assumed here that the value of g, obtained by careful cal-
culations in Ref. 10, is the most appropriate one to use.

We now have calculated all the information we need to
derive band discontinuities: 6V (or hE„,„) tells us how to
line up the band structures, and the deformation poten-
tials describe the changes in the bulk bands due to the
strain. In the rest of the paper we will show results, and
apply them to practical situations.

0.51

0.84

Si {cubic)

valence
bands

0.31 j
0.51

Ge {strained) Si {strained) Ge {cubic)

conduction
barids

V

$0.12 " L
t 0.55

VI. RESULTS FOR BAND DISCONTINUITIES

(19)EE,(a
II

)=0 84 —2.41(a
ll
—5.43),

0

where a
~~

is in A, and AE„ is in eV.
bE„,„refers to the discontinuity in the weighted aver-

age of the valence bands at I z»', by performing such an
average, we eliminate the splittings due to strain and
spin-orbit effects (while keeping the shifts due to volume
changes). For all orientations, we notice that &E„,„ is al-
most constant: ~F-„„=0.54+0.04 eV. This suggests that
EE„,„might qualify as a parameter characteristic of the
heterojunction, irrespective of the orientation and strain
conditions. The splittings of the bands under strain are
such, though, that the discontinuities as measured from
the top of the valence bands vary by quite a large amount.
This is clearly illustrated in Fig. 4, which shows valence-
and conduction-band lineups for two extreme cases in the
(001) orientation: Figure 4(a) for a heterojunction between
cubic Si and strained Ge (all

——5.43 A.), and Fig. 4(b) «r a
heterojunction between cubic Ge and strained Si

(all ——5.65 A). We do not make any attempt to obtain the
correct value of the band gaps; as explained above, an
overall shift of the conduction bands on both sides of the
interface could take care of that to within =0.1 eV. In
the figure, we leave the value of the gaps undefined.

Table I also contains values for b,E, . For Si, the lowest
conduction band always occurs at 5, close to the X point.
The shift in the conduction band is due to a change in the
average band gap, caused by the hydrostatic part of the
strain, and a splitting of the band due to the uniaxial com-
ponents of the strain. %e mentioned in Sec. V that strain
along [001] or [110]splits the bands at 5 (the bands along

Table I contains a summary of our results for all the in-
terface orientations we have studied, for different strain
conditions (as specified by aIl, as;z, and aG,~). The
values of EE„ include the spin-orbit splittings, as dis-
cussed in Sec. IV. This accounts for the difference with
previously published values, ' which did not take spin-
orbit splittings into account. We consider the (001) orien-
tation in most detail, since that is the one used in the ex-
perimental studies on pseudomorphic interfaces that have
been reported so far.~ 45 b,E„refers to the discontinuity
in the top of the valence bands at I 2s. For the (001) inter-
face, we see that it varies almost linearly with all', this jus-
tifies linear interpolation between the two extreme cases
(all ——5.43 and 5.65 A) to obtain bE„ for intermediate
values of all.

FIG. 4. Band-structure discontinuities: Relative position of
the Si and Ge valence and conduction bands. Band splittings re-
sult from strain and spin-orbit splittings in the materials; in
each case, the weighted average (dashed line) is also given. (a) is
for the case a~~

——5.43 A (cubic Si, strained Ge). (b) is for
a~~

——5.65 A (cubic Ge, strained Si). The magnitude of the band

gaps is left undefined in the figure; only the relative position of
the conduction bands with respect to each other is meaningful.
Both the conduction-band minima at 6 and at I. are given for
Ge.

[100] and [010] become inequivalent to the one along
[001]), while strain along [111] leaves the 6 minima de-
generate. For Ge, the situation is somewhat more compli-
cated. In the unstrained material, the minimum of the
conduction band occurs at the L point. The bands at this
point are split by a [111]or a [110]uniaxial strain. In the
next section, we will compare our results with experiments
on interfaces between Si and Si& „Ge„alloys. In alloys
with Ge composition below 85%, the minimum of the
conduction band occurs at b„as in Si. Since we shall
obtain results for alloys by interpolation between Si and
Ge, it is important to also study this conduction-band
minimum h. It turns out that the theoretical results for
bE, at the pure SilGe interfaces, as given in Table I, all
involve the minimum at I. in Ge as the lowest
conduction-band point. The relative positions of the dif-
ferent conduction-band minima for two extreme cases of a
(001) interface are illustrated in Fig. 4.

VII. COMPARISON %'ITH OTHER THEORIES
AND %PITH EXPERIMENT

Finally, we would like to compare our results on inter-
faces with other theoretical and experimental information
that is available. As we emphasized throughout this pa-
per, the values of band discontinuities for a pseudomorph-
ic interface like Si/Ge are very sensitive to the particular
strain situation of the layers. Unfortunately, most of the
experimental values for EE, that have been reported
did not specify the exact structure of the interface. Kuech
et aI. used a chemical vapor deposition technique to
deposit Ge on (001) Si, and estimated the band discon-
tinuities from reverse-bias capacitance rneasurernents.
They found ~F.„=0.39+0.04 eV and hE, =0.05+0.04 eV.
Margaritondo et al. used photoemission spectro-
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scopy to determine shifts in core levels and valence-band
edges for thin overlayers of Ge on (111) Si, leading to
EE„=0.2 eV; they noted that different sample-
preparation techniques do not change ~&, by more then
0.2 eV. Mahowald et al. , using the same technique, ob-
tained bE„=0.4+0.1 eV for thin overlayers of Si on (111)
Ge. Presumably the interfaces that were studied in all
these cases were not pseudomorphic, and may have con-
tained a large number of dislocations to relieve the strain.
It is not clear what value of &E„ to expect in such a case.
It is tempting to consider ~k'„,„, which turns out to be
nearly the same for all orientations and strain situations
that we looked at—but one should not forget that &&„,„,
while eliminating the splitting effects due to the uniaxial
components of the strain, still contains a contribution due
to the volume change (hydrostatic component of the
strain). This contribution would also be absent for inter-
faces which are not pseudomorphic, so that even b,E„,„
cannot be simply related to any of the measured values for
nonpseudomorphic heterostructures.

The same type of problem occurs when we try to com-
pare our values with the results from model theories like
Harrison's [predicting ~&,=0.38 eV (Ref. 19) or 0.29 eV
(Ref. 20)], or Tersoff's ' (which predicts bE„=0.18 eV).
These theories are based upon the derivation of a refer-
ence level for each bulk semiconductor. These levels are
then matched up at the interface, and determine the band
lineups. It should, in principle, be possible to include the
effects of strain within these models; however, no
prescription to that extent was given by their authors, so
that it is not clear what the resulting lineups are for a
pseudomorphic interface.

Recently, however, several experimental groups have
succeeded in growing dislocation-free pseudomorphic
Si/Sii, Ge„ interfaces, and performing measurements
which, while not yielding an explicit value for &E„, still
provide qualitative information about the band lineups. It
is interesting to check whether our theoretical band line-

ups agree with the experimental results. To do this, we
will construct plots which will contain all the necessary
information to determine the valence- and conduction-
band lineups for a number of experimentally interesting
interfaces between Si or Ge and Sii „Ge, alloys. So far,
we have only shown results for interfaces between pure Si
and Ge. To derive results for alloys, we propose to inter-
polate the results for &E„. Although this is not a priori
obvious, it is supported by our finding that the average
bE„,„was almost constant for all strains tested; further-
more, we have found &E„ to be additive and transitive for
a great number of different interfaces, ' and to be well
described by a simple model that is manifestly linear in
the alloying. ' This is not true for the conduction bands,
and we should not attempt to interpolate AE, . Since non-
linearities in the band gap are known, we thus assume
that they occur in the relative positions of the conduction
bands. We therefore use experimental information about
band gaps, in conjunction with h.&„,to derive AE, .

To approach the problexn systematically, we will con-
sider the hydrostatic and uniaxial components of the
strain separately when examining their influence on the
bulk band structure. The uniaxial components introduce

2.0

0.84-

0.0

0
Si

0.5
Ge fractloA, x Ge

FIG. 5. Valence and conduction bands in strained Sil Ge„
alloys, matched to a Si(001) substrate. All energies are referred
to the top of the valence band in Si. The weighted averages of
the valence bands and of the 5 conduction bands are indicated
with dashed lines. Values for valence-band discontinuities, hy-
drostatic shifts of the gaps, and strain splittings of the bands
were derived from self-consistent calculations on pure Ge, and
interpolated to derive results for alloys. Band gaps for the un-
strained material were taken from experiment (Ref. 46).

a splitting with respect to the (weighted) average of
valence and conduction bands. The relative position of
the average valence and conduction band is affected by
the hydrostatic component. To determine how to line up
the band structures on either side of the interface, we will
focus upon the average valence-band discontinuity &8'„,„
for the reasons mentioned above. Figure 5 shows b,E„,„
for Si, „Ge alloys, grown on Si(001) substrates: it
changes linearly between 0 eV (pure Si on Si) and 0.53 eV
[average of the EE„,„values for pure Ge on Si(001), from
Table I]. The uniaxial component of the strain in the al-

loy lmds to a splitting of the valence band. This splitting
including spin-orbit effe:ts, was calculated in Sec. IV
[Eqs (8)]. For the alloy, we perform a linear interpolation
fo«he values of 5Eooi (strain splitting) and ho (spin-orbit
splitting), between 0 and the value for pure Ge. Due to
the nature of Eqs. (8), this leads to a slight (almost unno-
ticeable) nonlinearity in the splitting of the valence band
for the alloy.

To put the conduction bands into the picture, we use
the experimental alloy band-gap data from Ref. 46. This
determines where to place the (average) conduction band
with respect to the (average) valence band in the alloy,
provided we include the shift in the band gap due to the
hydrostatic component of the strain. This shift is, once
again, found by linear interpolation starting from our cal-
culated value for pure Ge. In a next step, we introduce
the splitting of the conduction band. It is important to
point out that the lowest conduction band in the un-
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strained alloy has 6 character up to 85% Ge, and be-
comes L-like above that. Therefore, we include both
minima in the plot. For alloys on Si(001) substrates, the
conduction band at I. shows no splitting, and the
minimum at 6 is lower over the whole range of alloy
compositions.

The distance between the top of the valence band and
the lowest conduction band tells us what the band gap is
in the alloy with Ge fraction x, appropriately strained to
match a Si(001) substrate. In Fig. 6 we plot the distance
from the Ui and U2 valence bands to the lowest conduc-
tion band, and compare it with experimental data from
Ref. 45. We see that the agreement is better than 0.05 eV;
the small deviations may be due to inaccuracies in the (un-
strained) alloy band gap. 6 We see that the alloy gap is
significantly narrowed by the strain, in comparison with
the unstrained material.

I.et us now compare the results of Fig. 5 with experi-
mental information. People et al. have observed modu-
lation doping effects in Si/Sio sGeo i heterojunctions
grown by molecular-beam epitaxy. High peak hole mobil-
ities at low temperatures were measured, indicating the
presence of a two-dimensional hole gas at the heterointer-
face. Since the occurrence of modulation doping requires
a sufficiently large discontinuity in the band edge, these
results shed light on the relative band alignment between
Si and Sio sGeo 2. Identical measurements on n-type
heterojunctions failed to show a sustained enhancement of
the mobility at low temperatures. This was interpreted as

1.$7

evidence that hE„~&hE, . From Fig. 5 we find that for
x=0.2, bE, =0.17 eV, which is sufficient to observe
modulation doping effects for holes. In contrast, Fig. 5

shows that hF-', is essentially zero. Therefore, no n-type
modulation doping effect is expected to be observed, in
agreement with the experimental results. This result for
AE, is very close to that obtained by People and Bean,
who used our values for bE„(without spin-orbit splitting,
however), in conjunction with experimental deformation
potentials to derive hE, .

We have constructed a number of other plots, which
may be useful in studying practical applications of the
strained-layer interfaces. Figure 7 shows results for an al-

loy layer deposited on a Ge substrate. Here, we notice
that in the range 0.8 ~x ~ 1.0 the alloy band gap is larger
than the Ge gap, which leads to a type-I (straddling) line-

up, with the Ge gap completely inside the alloy gap. Fig-
ures 8 and 9, finally, give information about the lineups
for (111)and (110) interfaces. When strained in the [111]
direction, the alloy does not show any splitting of the 6
minimum, in contrast to the minimum at I.. For strains
in the [110] direction, both conduction-band minima are
split. We should remark that the hE, values for pure
Si/Ge interfaces that can be derived from Figs. 5, 7, 8,
and 9 (i.e. at the end points x =0 or x =1) may be slight-
ly different from those listed in Table I. That is because
the values in the table are directly derived from the calcu-
lations, whereas the ones in the figures have been adjusted
to reproduce the experimental band gaps. In particular,
the 6 gap in Ge, as extrapolated from the alloy data of
Ref. 46, occurs at a lower energy with respect to other
conduction-band features than in the calculations. This
brings it below the L gap for pure Ge on top of (001) Si
(Fig. 5) or (110) Si (Fig. 9).

Now we would like to compare our results with the ex-

1.0 0.96 2.0

0.74

0.5
1.0

0.96

Si

0.5
Ge fraction, x Ge

Energy gap (eV)

FIG. 6. Energy gap of strained SiI „Ge„alloys, matched to
a Si substrate. The top curve shows the experimental data for
the unstrained alloy band gap (from Ref. 46). Values for hydro-
static shifts of the gaps and strain splittings of the bands were
derived from self-consistent calculations on pure Ge, and inter-
polated to derive results for alloys. %'e plot the distance be-
tween the UI and U2 valence bands, and the lowest conduction
band. Circles and squares correspond to experimental data from
Ref. 45.
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1
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FIG. 7. Valence and conduction bands in strained Si& „Ge„
alloys, matched to a Ge(001} substrate. All values were derived
and plotted in the same way as in Fig. 5.
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FIG. 8. Valence and conduction bands in strained Si~ „Ge„
alloys, matched to a SiI', 111}substrate. All values were derived
and plotted in the same way as in Fig. 5.
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Conduction Bands

periments of Abstreiter et al. They have done experi-
ments on a (001) superlattice consisting of a periodic se-
quence of equally thick Si and Si05Geoq layers. This
structure was grown on a buffer layer of Sio 75Geo i5 in or-
der to achieve a medium lattice spacing between that of Si
(as; ——5.43 A) and that of Si05Ge05 (a,»,„=5.54 A).
Enhanced electron mobilities were found in samples where
the Sio 5Geo 5 layers were doped. This indicates that, even

though this is the smaller band-gap material, the
conduction-band edge in Sio 56ea 5 would be higher than
in Si. %e will use this structure as an example to illus-
trate how to derive the lineups in a general case. Both
types of layers are strained here; applying Eqs. (1)—(4),
with elastic constants for the alloy obtained by inter-
polation, we find that at~

——5.48 A, as;z ——5.39 A, and
Q Ji y$ 5.59 A. Proceeding as described above, we obtain
b,E„,„=0.265 eV. From the values of a~~ and as;i, we
find e~=e~~=9.21X10, and @~=7.37)&10 in Si.
We now calculate the positions of valence and conduction
bands. Equation (9) gives 5Eooi ——0.078 eV; the top of the
valence band will be raised by this amount above the

weiIIhted average. From Eq. (15), we find that
~+g ——0.019 eV. Finally, the lowest conduction band will

be 0.101 eV below the mean [Eq. (16}]. The gap in Si is
therefore equal to (1.17 + 0.019—0.078 —0.101) eV = 1.01
eV. For the alloy, we calculate the change in band gap
by interpolating the values of the deformation potentials.
We find from Table III: b = —2.45 eV,
(:"~+—,

' =„—a) =1.515 eV, and:-„=9.29 eV. This leads
to 5Ecoi ———0.094 eV, a shift for the top of the valence
band of 0.097 eV, b,Eg —0.020——eV, and a lowering of
the conduction band by O.OS9 eV. The unstrained alloy
band gap at x=0.5 is 0.99 eV (Fig. 6); since we are refer-
ring all energies to the mean valence band, we have to add
0.05 eV to this to compensate for spin-orbit splitting. The
strained alloy band gap is therefore equal to
(0.99 + 0.05 —0.020—0.097—0.059} eV =0.86 eV. Final-
ly, we obtain EE„=(0.265 + 0.0097—0.078) eV =0.28 eV,
and hE, =DE„+Eg'""—Eg' ——0.13 eV. The conclusion is
that we find the conduction band on the Sio sGeo & side to
be above the conduction band on the Si side, which agrees
with Abstreiter's results (type-II lineup). Note that this
result is quite different from what one would have ob-
tained for Sio 5Geo q layers on an unstrained Si substrate.
The band lineups in that case can be derived from Fig. 5:
AE„=0.38 eV, Es"""=0.77 eV, and therefore bE,
=(0.38+ 0.77—1.17) eV= —0.02 eV, which corresponds
to a type-I lineup.

1.17

1.0—

0.71—

0.0

0
Si

0.5
Ge f rection, x

FIG. 9. Valence and conduction bands in strained Sil „Ge„
alloys, matched to a Si(110) substrate. All values were derived
and plotted in the same way as in Pig. 5.

VIII. CONCLUSIONS

In this paper, we have presented the first fully self-
consistent theoretical study of atomic and electronic
structure of pseudomorphic Si/Ge interfaces. Our total-
energy calculations have led to the conclusion that the
structure of the interface can be determined from macro-
scopic arguments, with the strains determined by the
mimmum of the elastic energy, and the interplanar dis-
tance at the interface by the average of the bulk distances.
The results for band discontinuities depend strongly upon
the specific strain conditions. The valence-band discon-
tinuity, AE„, can be changed by as much as 0.5 eV by
varying the strain, and the lineups can be changed from
type I to type II. It is convenient to express them in terms
of the discontinuity in the average of the valence bands,
AE„,„(Table I), which determines how to line up the
band structures of the appropriately strained bulk materi-
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als. The shifts and splittings of the bulk bands can be ex-

pressed in terms of deformation potentials, for which we

have given results in Table III. This approach makes it
possible to obtain results for alloys by linear interpolation;
the comparison with experiments on pseudomorphic inter-

faces ' ' is satisfactory. Together with theoretical ar-

guments about the validity of the local-density approxi-
mation, this gives us confidence that the self-consistent
density-functional method provides a valuable fundamen-

tal approach to the interface problem.
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