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We present derivations of the band-gap shifts in, and photoluminescence spectra from, heavily
doped p-type semiconductors of zinc-blende and diamond type. The calculated final-state lifetimes
are taken into account in the derivation of the luminescence peaks. They stem from the imaginary
parts of the self-energy shifts due to electron-electron and electron—dopant-ion scattering. These
are derived within the same formalism as the real parts causing the band shifts. Our results are
compared in detail to those from photoluminescence experiments on p-type GaAs. The lifetime
broadening is found to explain fully the low-energy tailing of the luminescence peaks. No assump-

tion of band tailing is needed.

I. INTRODUCTION

The effect of heavy doping on the electronic states in
semiconductors is both an interesting and important prob-
lem which has attracted an increasing interest both experi-
mentally and theoretically. Experimentally it is a well-
known fact that the bands are shifted in energy due to the
presence of the ionized dopant ions and released charge
carriers. We refer to Refs. 1 and 2 for an extensive list of
references to earlier experimental and theoretical works
and to Refs. 3—9 for the up-to-date theory.

The bands are shifted in such a way that the band gap
decreases. However, the estimated band-gap narrowing
varies among the different types of experiments. The
band shifts are, in general, not rigid, i.e., different states
are shifted different amounts. This causes a deformation
of the density of states, for the conduction and valence
bands. The amount of deviation from rigid band shifts
varies from semiconductor to semiconductor and even
within the same semiconductor it depends on the type of
doping, n or p type. It also varies with doping level. This
deviation from rigid band shifts means that the band-gap
narrowing deduced from absorption and luminescence ex-
periments might differ, as these experiments involve tran-
sitions between different sets of states. Thus, one has to
specify what band-gap narrowing one is referring to.

Furthermore, it is very difficult to extract the “exact”
band-gap shifts because of the lifetime-broadening effects.
In the absorption measurements this shows up as a gradu-
al, and not abrupt, absorption threshold and in the
luminescence experiments the peaks are broadened, espe-
cially at the low-energy side.

Besides the band-gap narrowing an interesting question
is whether there are any band-tailing effects. With band
tailing one means the existence of a tail of localized states
below the conduction-band edge and/or above the
valence-band edge. These tails are expected to be caused
by the disordered distribution of dopant ions. If they do
exist they could easily be detected in the luminescence ex-
periments were it not for the lifetime broadening, causing
similar experimental effects. Some very nice experiments
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in this context are the piezo experiments'®!! on n-type

many-valley semiconductors. As a mechanical stress is
applied in a suitable symmetry direction electrons are
transferred between the conduction-band valleys. The op-
tical and transport properties of the sample are changed
due to the resulting symmetry change. At a high stress
point the electron transfer saturates as some of the valleys
are completely emptied. The change in the properties
close to the saturation point gives information about the
density of states near the conduction-band edges. The ex-
perimental results pointed to strong band-tailing effects,
but in Ref. 9 the same behavior was reproduced theoreti-
cally in the complete absence of band tailing. In Ref. 9 it
was found that the electron transfer as a function of ap-
plied stress is modified by the energy shifts of the
conduction-band states due to electron-electron and
electron-donor-ion interactions. This modification was
found to be such that the experimental behavior was
reproduced. What is especially interesting is that the elec-
tron transfer is not influenced by any finite lifetimes.’
The theoretical results were later supported by experi-
ments on the extrinsic plasmon energies as functions of
applied stress.!?

The best way to circumvent the problems with the
lifetime-broadening effects in the absorption and lumines-
cence experiments is to theoretically determine the self-
energy shifts for all states involved and calculate the
theoretical spectra, including the effects from the calcu-
lated lifetime broadening. From the comparison between
the experimental and theoretical results one can deduce an
estimate of the “real” experimental band-gap narrowing.
With “real” we mean the result one would obtain if the
lifetime-broadening effects were absent. In contrast we let
the “apparent” band gap denote the experimental band
gap obtained by extrapolating the linear part of the low-
energy side of the spectrum to zero intensity. We perform
such comparisons between theoretical and experimental
spectra for p-type GaAs in Sec. III. But first, in Sec. II
we extend the theoretical model from Refs. 3 and 4 to p-
type semiconductors of zinc-blende type, e.g., GaAs.
These results are also valid for p-type semiconductors of
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diamond type, like Si and Ge. This model worked well
for n-type Si (Ref. 13) and GaAs (Ref. 8). The theory is
much more involved for the p-type case because of the
complicated valence bands. We present a somewhat sim-
plified approach to get feasible results for p-type semicon-
ductors. Finally, in Sec. IV, we make a summary and
draw conclusions.

II. DERIVATION
OF SELF-ENERGY SHIFTS

In this section we will give a detailed derivation of the
different self-energies, in a heavily doped semiconductor,
due to the presence of the dopant. We use plane waves as
basis states and rely on the effective-mass approximation.
We assume that the doping level is so high that all dopant
charge carriers have been released. These are holes in a
p-type semiconductor and occupy the states at the top of
the valence band. In calculating the self-energies we start
from the total energy of this system of holes and dopant
ions. Experiments estimating the band-gap change from
doping always involve both states in the valence band and
in the conduction band. In order to obtain as well the
self-energy shifts for the conduction-band states we allow
a few electrons to be present in the calculation of the total
energy. We refer to these electrons as the few electrons in
what follows. The total energy, E, can be divided into
three contributions. The kinetic energy, E\;,, would be
the only contribution if all interactions among the elec-
trons, holes, and acceptor ions were neglected. The ex-
change and correlation energy, E,., could be divided into
the exchange energy for the holes, the exchange energy for
the electrons, and the correlation energy for the electron-
hole system. We have no reason for making this separa-
tion here. Instead we treat this energy as one entity. The
third, and last, contribution, E,,,, is due to the interaction
between the particles and acceptor ions. Thus, we have
made the following separation of the total energy:

E=Eqn+E+Eupg - 2.1

The valence bands in GaAs are warped and coupled.
This is treated in the same way as in Refs. 14 and 15. The
bands are replaced by a heavy-hole band and a light-hole
band whose dispersions are obtained by spherically
averaging the real dispersions. The coupling between the
bands is retained and the matrix elements for inter-
valence-band and intra-valence-band processes are angle
dependent. We will return to this, in more detail, later.
With these approximations the kinetic energy is given by

Ewn= 3 elni,, (2.2)
k,o
j=ehh,lh

where e, n, k, and o denote kinetic energy, occupation
number, wave vector, and spin, respectively. The index j
runs over electrons, heavy holes, and light holes denoted
by e, hh, and Ih, respectively. For the valence bands spin
is not a good quantum number, however, but the four
valence bands are still pairwise degenerate. We can use
the same index o, to run over the two degenerate bands.

The exchange and correlation energy can be expressed
as

LdA , ® .
EXC=— fO T {Eq ‘fo d(z)%[fk l(q,ﬁ))—l]

}LNv(g)

, 2.3
2k} @.3)

where the first integral is over the coupling constant A. Q
denotes the volume of the system and v(q) is the
Fourier-transformed Coulomb potential. The function
€(q,w) is the dielectric function for the combined system
of holes and few electrons we consider. The prime over
the ¥ denotes, here and in what follows, that q=0 is
omitted in the summation. All potentials are divided here
by the background-screening constant, k. We return to
this point later. The second term comes from omitting
the interaction of each particle with itself. Expressed in
another way it is &, the number of particles, times the in-
finite energy contained in the electric field from a unit
point charge. We rewrite this term to get a faster con-
verging integral but also to take the opportunity to make
the physics more transparent. We can rewrite Eq. (2.3) as

N R N T
Ex=— [, dl—}:% Jy dos e (q0)—1]

—legA(q@)—11},

(2.4)

where €y(q,) is the dielectric function one would have
for the system if the particles were occupying the same
states as now, but were noninteracting and were not obey-
ing the Pauli principle. With the last statement we mean
that they are allowed to scatter into states already occu-
pied. The indices A on the dielectric functions indicate
the functions for the particular coupling constant. We
perform the calculation within the random-phase approxi-
mation (RPA) and are hence using the RPA dielectric
function for e(q,w). If one wants to go beyond the pure
RPA, i.e., include local field corrections, one should use
the electron-test-particle dielectric function. If one is in-
terested in the exchange energy one should use the
Hartree-Fock dielectric function. This one is similar to ¢,
but in its derivation the particles are no longer allowed to
scatter into already occupied states. Performing the in-
tegration over coupling constant, one obtains

e, h _
Exc_-._zq fo dos—{~Ine(q,0)~[& (q0)—11},

(2.5)

where we have used the fact that the second term of the
integrand in Eq. (2.4) is proportional to A.

Now, let us return to the fact that we have divided all
potentials by «, i.e., we have treated the system as if em-
bedded in a dielectric medium, a medium unaffected by
the presence of the system.

Now, let us prove that this is the correct approach and
that we do not lose any contributions. What we are in-
terested in is the change in the energy of the entire system
due to the presence of the dopants. The origin of « is the
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polarizable valence electrons and to a lesser extent the po-
larizable core electrons. « is not a constant but a function
of the wave vector and frequency. However, it varies on
the scale of a reciprocal lattice vector and on the scale of
the band gap.
Let us now include all electrons in our system. The
dielectric function of Eq. (2.3) was given by
e=1+Aa/k, (2.6)
where the function a is the polarizability of the acceptor
holes and few electrons, mentioned above. The dielectric
function for the whole system can be written as
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We have included a coupling constant in front of B as
all electrons are treated on the same footing. Now we
have to agree on a reference system. We are interested
here in the change in energy for the electron states due to
the presence of the acceptor holes. The energy of the
reference system equals the sum of the N energy contribu-
tions obtained when particles are added to the system one
at a time. When performing this summation one has to be
careful not to multiple count the contributions from the
interaction energies in the pure, undoped system. To
avoid this multiple counting we subtract these energy con-
tributions from each term in Eq. (2.9) below. An alterna-
tive way to obtain the energy of the reference system is, as
in Eq. (2.4), to add all particles but assume that they are

e=1+AB+Aa, (2.7)  completely unaware of the presence of each other. Let
af , denote the polarizability from a particle in the state
where « has been expressed as specified by the indices k, o, and j. Equation (2.4) is now
k=1+p8. (2.8)  replaced by
|
- [t el
Exe 2m 14+Aa+AB 1+AB
1 1
— —_— 1| -1 . (2.9
kéj |1+ka{w+lﬁ ‘ 1+AB ” }
Integration over coupling constant yields
l1+a+B 1+a{(,a+B
=— L || & E In|—%0 ™%
xc 2 f w21Tl n 1+B +k§jn 1+B
—— 3 [ doz |~n[1+a/(1+B]+ 3, Inf1+af,/(1+B)]
a 2mi Koy
=—3 [“dol- | —nelqo)+ 3 Gha | (2.10)
q "0 27i Koy K

which is identical to Eq. (2.5). In the last step we made
use of the fact that af , is of the order 1/N. The function
k depends on wave vector and frequency but the integrand
gives important contributions only for wave numbers and
frequencies less or of the order of the kr and Ep, respec-
tively. Here kr and Ep denote the Fermi wave number
and Fermi energy, respectively, for the acceptor holes.
This means that « can be replaced by its zero wave num-
ber, zero frequency value in most cases. At the highest
doping levels, however, the wave-number dependence
starts to have an effect on the results. The frequency
dependence can always be neglected. The situation is
quite different in polar semiconductors. In a polar semi-
conductor the coupling to optical phonons gives rise to
frequency variations in « for low frequencies. Equation
(2.10) is valid also in that case. Here we have taken into
account the effects of correlation among all electrons in
the system. For a polar semiconductor one also includes

[

the correlation with the atoms. GaAs has a very weak po-
lar coupling and it can be neglected. We have neglected
one more thing in our derivation. Due to the presence of
the acceptor holes the function B is modified. One part of
B is due to virtual transitions from the top of the valence
band across the band gap. Now a small fraction of these
valence-band states are unoccupied and the corresponding
contribution to 3 should be missing. The effect of this is
very difficult to calculate. We believe it to be small and
hence neglect it.

The interaction with the acceptor ions gives rise to an
energy contribution which to second order in the impurity
potential is given by'®!’

eha-_z

Iwoq)|
v(q)

—1], (@11

a,(q)[e™!(q,0)

where w, and a; are the Fourier transforms of one impur-
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ity potential and the structure factor for the ions, respec-
tively. We will approximate here the impurity potentials
with pure Coulomb potentials and assume a random dis-
tribution of ions. This reduces Eq. (2.11) to

Eeha=~g—2'3%ﬂ[e—l(q,o>—1] : (2.12)
q

where 7 is the density of ions.

Here also we have divided all potentials by «. If we do
not do this and extend our system, as in the alternative
derivation above, to include all electrons in the system, the
only difference is that the 1 in Eq. (2.12) is replaced by «.
This change does not affect the energy of the states we are
interested in. It is important if, e.g., one wants to estimate
the change in binding of the crystal due to the presence of
the acceptor ions. In that case the energy will include a
term

23 'v(q)[k(q,0)—1], (2.13)

Eving=
24
representing the gain in energy when the core and valence
electrons adjust themselves to the ion potentials.

Our basic equations are (2.1), (2.2), (2.5) [or (2.10)], and
(2.12). These represent total energies and not energies per
particle. From these energies we obtain the quasiparticle
energy, E,, for a particle in state p according to the fol-
lowing definition

SE
Eng’;=ep+2p ’

(2.14)

where e, and 3, are the kinetic energy and self-energy,
respectively, for a particle in state p. Equation (2.14)
means that the energy of a particle in state p is defined as
the change in the total energy of the system when a parti-
cle is added to state p, if this state is unoccupied. The en-
ergy of a particle in state p is minus the change in total
energy when a particle is removed from state p if it is
originally occupied. The self-energy, 2, is due to the in-
teraction and comes from Eqgs. (2.5) and (2.12). Thus it
can be separated into two parts, one from the electron-
electron and one from electron-ion interactions. It con-

|

c,e___l_ /v(g) bl _1__
2= qu K lf—wdw2n'i

tains a real and an imaginary part. The real part gives the
energy shift of the state due to the interactions. The
imaginary part gives the particle lifetime.

Let us start deriving the self-energy for states in the
conduction band. In calculating =5°, the self-energy for a
state p in the conduction band due to electron-electron in-
teraction, we need the expression for the second term of
the integrand in Eq. (2.5)

o
K

& (qo)—1]1=— 3 (2.15)

k,o,j
We defer the contributions from the valence band until
they are needed. The contribution from the few electrons
is given by

of
D P L vy
——1 |, i
o—o(k,q)+in
where
ok,q)=(ex q—ey)/# . (2.17)

Here we see clearly how the occupation numbers enter the
expression. In the first term of Eq. (2.5) the occupation
numbers for the electrons enter the part of the polarizabil-
ity coming from the few conduction-band electrons. We
need the derivative of the polarizability with respect to an
occupation number, which is given by

Saf(q,w) _ viq)
8”;,0 kA

[Go,o(P+q, e, /fit+w)

+Gh,(p—q,ef/fi—w)], (218

where the index O on the Green’s function, G, denotes the
noninteracting function.

The self-energy for an electron in the conduction band
due to the electron-electron interaction can now be found
to be

Gi(p+q, e, /fi+w)/e(q,0)

1

2

o+o(p,q)—in - o—w(p,q)+in

} ) (2.19)

where we have made use of the fact that the time-ordered dielectric function is even in w and have extended the integra-
tion region to include negative frequencies. As no magnetic field is present, the self-energy is independent of the particle
spin, so we have dropped the index o. If we start from Eq. (2.3), instead of Eq. (2.5), we obtain

c,e___l__ , U(g) ®
EP -0 zq' K f_

0

dm;};[GS(p—!—q, ef /fitw)/e(quw)] ++

(2.20)
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Performing the derivative with respect to occupation i.e., the bands are parabolic in all directions but cubically
number on Eq. (2.12), we obtain the following result for =~ warped. We neglect this warping as is usually

the self-energy due to the interaction with the ions: done.!*1518=20 I doing this we get four pairwise degen-
@ 2 erate hole bands,'*'>?° two heavy-hole bands, and two

i n o, | v ight- =
= 3 [y [oram . e M ooy e 128
q ’ ent

from those between states in unlike bands. v(q) for pro-
cesses between k and k+q is replaced here by V;; for like
bands and by V', for unlike bands, where

Before we perform the analogous derivations for the
states in the valence bands we have to describe the polari-
zability from the acceptor holes in more detail. The ener-

gy dispersions of the valence bands in zinc-blende and Vii=v(q)(143cos’[kk+q))/8, (2.23)
diamond-type semiconductors are given by and
E (k)= AK?+[B%* + CHK2K2+ kK2 + kD] Viz=v(@)3sink,k+q]/8 . @24

The polarizability can with these approximations be ex-
(2.22) pressed as

2 ©
alqw)=— >3/ de—l—.{[Gé,’;(k,s>GSf',(k+q,a+w>+ng,-(k,e>ng,(k+q,e+m)]V,1(k,k+q>
kAQ T2 Y e 2mi
+[G¢(k,e)G ) (k+q, e +)
+Gi(k,e)Ghi(k+q, e+w)]Vi(kk+q)} . (2.25)
The contribution from the holes to Eq. (2.15) is
of,
[6(q0) —1lhae=— X — (2.26)
k,o K
j=hh,Ih
where
o= — 2nto 1 B 1
@ #Q o+ok,q)—in  o—oik,q)+in
1 1
—— - —— Vv (2.27)
o+ Fk,q)—in  o—oFkq)+in |
and
Uk,q)=(e} q—el)/# . (2.28)
Taking the derivative with respect to occupation number of Eq. (2.25),we obtain
2290) __2_(1Gi(pta, el /fitw)+Ghp—a, el /A—w)Vi(pp+q)
&n, KkHiQ)
+[G6™ (p+q, e /fi+w)+ GG (p—q, el /i—0) IV i2(p,p+)} , (2.29)

where we have dropped the index 0. We can do this as the two like bands are completely equivalent for the present cal-
culation.

Using these results we get the following contribution to the self-energy, for a hole state, from the electron-electron in-
teraction:

; 2 m 1 : .
She—=_ — % — J J
P Q0 Zq f_wdw 2 Go(p+q, ey /fi+w)/e(q,w)
1 1 1
T3 y - ¥ Vulp,p+q)
2 | w+ehip,q—in  w—wip,q)+in n'p,P+q
+ |G (p+q, ¢} /it w) /e(q0)
‘) 1 - 1 Via(p,p+q) (2.30)
2 |0t Fp,q—in  o—o ' Fpqtiqg || PRIV =
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In treating the self-interaction as in Eq. (2.3) we get the following result, analogous to that in Eq. (2.20)

1

i o , © 1 . .
>4 =_ES; 2f_wdmz—m,[V“(p,p+q)G{,(p+q, e /fi+w)
+V(p,p+a)Ge ™ (p+q, e, /fi+w))/e(q0)++ ] : 2.31)
The contribution from interactions with the impurities is
2

io2n <, | v(g) Vulp,p+q) _; ; Vi(pp+4q) . !
Shi=— G el /f ———G,y e, /fi . 2.32
=70 }q‘, relq,0) »(@) b(p+q, e /fitw)+ ’(Q) 0 (p+q, e, /fi+w) (2.32)

The results we need for the calculation are contained in
Egs. (2.19), (2.21), (2.30), and (2.32). The dielectric func-
tion entering these equations is given by 1 plus the polari-
zability from Eq. (2.25). Note that the contribution from
the few electrons is no longer present. It was needed in
obtaining the derivative with respect to the conduction-
band occupation number. The presence of the few elec-
trons was then crucial but has now negligible effect on the
screening.

The dielectric function is too complicated to be ob-
tained in analytical form. To make the calculation feasi-
ble we approximate it by the result for completely decou-
pled valence bands, i.e., we replace V;; by v(g)/2 and V',
by zero. We believe that the most important effects from
the coupling are still retained and that this approximation
will only have minor effects on the results. The contribu-
tion to the self-energy shifts from the exchange energy is
not affected at all by this approximation.

The calculation of the contributions from the interac-
tion with the ions is straightforward but the electron-
electron part needs some comments. The integrations
over o in Egs. (2.19) and (2.30) are along the real » axis.
We deform the integration path according to Fig. 2 in
Ref. 4, and instead end up with an integration along the
imaginary axis of the complex o plane. In addition we
obtain residue contributions from the poles within the in-
tegration path. One usually denotes these different contri-
butions as line and residue parts. The line parts are real
and give no contribution to the particle lifetime. The resi-
due contributions are complex. The separation between
line and residue parts is, however, not unique. As an ex-
ample of this we note that the self-interaction term in
Egs. (2.19) and (2.30) gives both a line and a residue con-
tribution. In Egs. (2.20) and (2.31), however, the same
contribution does not belong to either.

We feel we should mention some particular points from
the actual calculation. In the calculation of the residue
parts one ends up with a numerical integration over a lim-
ited part of the wg plane. The limits are determined by
the phase space available into which the particle in ques-
tion may decay. In the calculation of the imaginary parts
the integrand gives contributions only in the region of
electron-hole pair excitations and on the plasmon line.
These calculations are not trivial and have to be per-
formed with care to avoid numerical problems. We will
not go into this in detail. What we want to mention is a
trick we used to avoid numerical problems in calculating

the real part. When the kinetic energy of an electron in
the conduction band is larger than the plasmon energy for
the valence-band holes, the integration region includes a
part of the plasmon line. On the plasmon line the integral
diverges. However, this divergency is integrable, but still
causes numerical problems. We could circumvent these

problems by using the following sum rule:
J.” doRe[e !(g,0)—1]=0. (2.33)

Our frequency integral could be cast on the following
form:

Re [ [ doleqw)—1] ]

= —Re

f:ax( )dwlf"(q,w)—ll , (234
@ q

and for every q we were allowed to choose either of the
expressions on the two sides of the equation. In that way
we could avoid integrating over the plasmon line.

Another thing is worth mentioning. The light- and
heavy-hole states with zero wave number are both shifted
the same amount from the interactions. This is, however,
not true for states with larger wave numbers. This causes
a problem when dealing with p-doped semiconductors.
When we start our calculation, before the interaction is
turned on, the Fermi energy is the same in both hole
bands. After the states have been shifted in energy, the
states with Fermi wave vector no longer have the same en-
ergy in the heavy- and light-hole bands. This means that
the holes will redistribute themselves. What we did was
to redistribute the holes, perform the calculation, redistri-
bute them again and so on until convergence. These were
problems we had to encounter. The solution was more
time consuming, but the results were only marginally in-
fluenced by this.

Before we show the results we need to introduce some
more notation. Let E, denote the unperturbed band gap.
We introduce Eg ), Eg,, Egs, and Eg, E,, is the dis-
tance in energy from the bottom of the conduction band
to the top of the valence band, and would equal E; were it
not for the interactions. With E;, and E;; we mean the
difference in energy between states at kg, in the conduc-

tion band and the heavy-hole band, and in the conduction
band and light-hole band, respectively. Finally, Eg,
denotes the energy difference between states at kg,, in the

conduction band and in the heavy-hole band. kf, and
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kg,, represent the Fermi momentum in the light-hole and

heavy-hole band, respectively. The band-gap shifts are
defined as follows

AE,;=E;;—E,;; i=1,2,3,4. (2.35)

We should further point out that we treat the particles
in the valence bands as holes, i.e., the kinetic energy in-
creases with wave number and the Green’s functions in
Egs. (2.25)—(2.32) are hole Green’s functions with hole-
occupation numbers. With this convention all self-
energies are negative and the similarity between the elec-
trons in the conduction band and the holes in the valence
band is more transparent. In order to compare our results
to experiments at different temperatures we subtract the
unperturbed band-gap values from the experimental ener-
gies. At 4.2, 20, 77, and 300 K we use the values 1.518,
1.521, 1.512, and 1.426 eV, respectively. Furthermore, we
use for the electron mass, heavy-hole mass, and light-hole
mass the values 0.0665, 0.45, and 0.082, respectively. For
k we use the value 13.0. All these data are from Ref. 21.

Figure 1 shows the different band-gap shifts as func-
tions of the acceptor concentration, n. The circles
represent the experimental luminescence-peak positions
obtained at 77 K, in Ref. 22. The origin of the lumines-
cence peaks is the recombination between a small quantity
of thermalized electrons at the bottom of the conduction
band and holes at the top of the valence bands. We make
a more detailed comparison in the next section, but it is
interesting to see the correlation between the peak posi-
tions and AE,,, which is an estimate of the expected
low-energy edge of the peaks. In Fig. 2 we have expanded
the scales and added some experimental luminescence
peaks. The curves P, and P; are from Ref. 22, and P, is

1.06
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FIG. 1. The different band-gap shifts, defined in the text, as
functions of the acceptor density, n. The circles represent the
experimental luminescence-peak positions obtained in Ref. 22,
at 77 K.
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FIG. 2. The different band-gap shifts, defined in the text, as
functions of the acceptor density, n. The luminescence peaks
P, and P; are from Ref. 22 and P, is from Ref. 23. They were
all obtained at 77 K.

from Ref. 23, all obtained at 77 K. We find that it is dif-
ficult to define the low-energy threshold for the peaks.
Figure 3 shows the different self-energy contributions to
AE,;,. Both the light- and heavy-hole bands are shifted
the same amount at k=0. Hence we use v, as in the
valence band, to indicate these shifts. We find in Figs. 1
and 3 that the shifts are much more modest for the doped
p-type case than was found in the doped n-type case.?
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Energy (eV)
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I e 1 L

10° 10"a 10°
n (cm™)

FIG. 3. The different self-energy contributions to AE, ;. The
indices v and c indicate that the shifted states are in the valence
and conduction band, respectively, while e and i distinguish be-
tween contributions from electron-electron and electron-ion in-
teractions. Finally the index O specifies that the states in ques-
tion have zero wave numbers.
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The same was found experimentally in Ref. 22. This is
because of the much more effective screening from the
holes in the p-type case, due to their larger effective mass.

In the next section we calculate the theoretical lumines-
cence peaks in order to get a more detailed comparison be-
tween theory and experiments.

III. DERIVATION OF
THE LUMINESCENCE SPECTRA

In this section we derive the theoretical photolumines-
cence peaks and compare these to the experimental ones.
The results are based on the following assumptions. We
assume that the electrons taking part in the recombination
processes are completely thermalized. We do not know
the number of electrons that are collected at the bottom of
the conduction band. We use this number as an adjustable
parameter when comparing the results to experiments.
We further approximate the matrix elements for the pro-

I

A(k,k’,hv)=——8(k~-k’)i

Im(Z{+2{)
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cesses with a constant and assume that this constant is the
same for both hole types.

The photoluminescence intensity can with these as-
sumptions be expressed as

Ipp(hv)= 3 I (hv), 3.1
j=Ih,hh
where
I (hv)= [ dk [ dk' f(ef +ReZ)f (ef +ReZf)
X 4 (k,k',hv) (3.2)

in its most general form. The functions f are the Fermi-
Dirac distribution functions for the two particle types tak-
ing part in the processes. The energy hv is the photon en-
ergy after subtraction of the value of the unperturbed
band gap E;. We have used the following expression for
the function 4

We have assumed k conservation. If one wants to calcu-
late the result for nonvertical transitions, one omits the
delta function. This is the proper choice for indirect-gap
semiconductors like Si and Ge. That version should also
be used if one wants to estimate the contribution from
non-k-conserving processes due to the presence of the ac-
ceptor ions. It should be pointed out that the expression
we use is not theoretically well founded. It should be re-
garded as an approximation or a model.

If the finite lifetimes are neglected the function A
transforms into

A(kK hv)=8k—Kk')8(hv—[ef +ef

+Re(ZE+2{)]) . (3.4)
Equation (3.2) with the non-k-conserving version of this
function was used in Ref. 13 to study the photolumines-
cence in Si.

In Fi§. 4 we show our result for the acceptor density
6.8 10" cm~2 at 77 K. The solid curve gives the full re-
sult, while the dashed and dotted curves represent the con-
tributions from heavy and light holes, respectively. The
experimental peak from Ref. 22 is shown by the dash-
dotted curve. The corresponding comparison between
theory and experiment for a sample with density 4 x 10"’
cm~? and at the lower temperature 15 K is shown in Fig.
S. Here the experimental curve is from Ref. 24. In the
comparison we have normalized the curves to the same
peak value, varied the chemical potential in the conduc-
tion band, and rigidly shifted the theoretical peaks. In
Figs. 4 and 5 these shifts were 15 and 11 meV, respective-
ly. These shifts can be regarded as the deviation between
theoretical and experimental band-gap shifts. The overall
agreement between the experimental and theoretical peak
shapes was found to be very good. The experimental

7 ImX(SE+3{) +[ef +ef +Re(ZL+2{)—hv]®

(3.3)

[

broadening on the low-energy side was reproduced by the
lifetime broadening. One should note that the lifetime
broadening was really calculated and was not used as an
adjustable parameter. We compared our results to experi-
mental peaks in a large density range and found this good
agreement in all cases. The peak or shoulder on the high-

126

0.50 076 1.00

Intensity (arb. units)

0.25

006 000 006 0.10
Energy (eV)

FIG. 4. Comparison between the theoretical, solid curve, and
experimental, dash-dotted curve, photoluminescence peaks for a
sample with acceptor concentration 6.8 10" cm~3 at 77 K.
The experimental peak is from Ref. 22. The dashed and dotted
curves show the contribution from recombination with heavy
and light holes, respectively.
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FIG. 5. The same as in Fig. 4 except now for a sample from
Ref. 24 with density 4 X 10" cm 3 and obtained at 15 K.

energy side of the peaks seems to be common to all spec-
tra from high-density samples. In many papers®*—?’ this
structure has been interpreted as coming from non-k-
conserving processes due to the presence of the acceptor
ions. In these papers the upper edge of this structure is
referred to as Ey+ Ep, i.e., its energy position is expected
to be at the value of AE, | plus the Fermi energy. Howev-
er if this were the case the upper edge would be at 0.07
and 0.04 eV in Figs. 4 and 5, respectively. Taking the fi-
nite width of the electron distribution in the conduction

0.12
—

0.10

—AE,, (eV)

0.04 O.Cg 0.08

it Ll il L I

10° 10°, 10°
n{cm™)

0.00 0.02

FIG. 6. ‘“Real,” solid circles, and ‘“‘apparent,” open circles,
experimental band-gap narrowing, compared to the theoretical
results, solid curve. The dotted curve is the result obtained
neglecting the interaction with the acceptor ions. The experi-
ments are from Refs. 22 and 24—26.
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band into account the upper edge would move to even
higher energies. From this we can conclude that the
canonical explanation for this structure must be wrong.

We close this section by showing in Fig. 6 a plot of our
result for the band-gap narrowing in comparison with ex-
periments. The solid curve is the theoretical result. The
open circles are experimental so-called “apparent” band-
gap shifts, obtained from Refs. 22 and 24—26, by extrapo-
lating the low-energy edges of the peaks to the back-
ground. The solid circles represent the “real” band gaps
obtained from the comparison between the experimental
and theoretical luminescence peaks. The dotted curve is
the theoretical result if all interactions with the acceptor
ions are neglected.

IV. SUMMARY AND CONCLUSIONS

We have presented a derivation of the energy shifts, due
to doping, for the conduction- and valence-band states in
doped p-type semiconductors of zinc-blende and diamond
type. The complications caused by the coupling between
the valence bands were considered in an approximate way.
The results were compared to those from photolumines-
cence on doped p-type GaAs. Because of the finite life-
time for the final states the luminescence peaks are
broadened. This makes the experimental extraction of the
band shifts difficult. To get reliable estimates we calcu-
lated the expected photoluminescence peaks, taking the
lifetime broadening into account. The lifetimes of the fi-
nal states were obtained from the imaginary parts of the
self-energy shifts. The self-energy shifts contain contribu-
tions from electron-electron and electron-dopant-ion in-
teractions. The real parts cause the band shifts and the
imaginary parts the finite lifetimes, giving rise to the peak
broadening. The real and imaginary parts were calculated
quite consistently. The peak shapes agreed to such an ex-
tent that a “real” band-gap narrowing could be obtained
with the use of the experimental and theoretical peaks.
We use “real” to denote the shifts which would be ob-
tained in experiments where no lifetime effects are
present. In contrast, the “apparent” band-gap narrowing
denotes the narrowing obtained by extrapolating the low-
energy side of the peaks to the background.

Two things, in particular, were noted in the comparison
between the theoretical and experimental photolumines-
cence peaks. First of all, the tailing of the low-energy side
of the peaks, often believed to be due to band tailing
caused by fluctuations in the dopant concentration, was
fully reproduced by the lifetime broadening. The second
thing concerns the high-energy shoulder, which seems to
be common to all high-density samples, and which in
numerous papers is referred to as being due to non-k-
conserving processes. We found that its position was so
far off in energy that this explanation must be wrong.
This peak seems to be located at an energy slightly lower
than the energy of the band gap in the pure crystal. One
possible, but rather speculative, explanation for this peak
is the following. Assume there is a depletion region or an
undoped region somewhere in the sample. In this region
the size of the band gap is expected to be equal to that of
the pure crystal. Electrons excited to the conduction band
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just inside this region can recombine with holes from the
“normal” part of the crystal, preferably with those close
to the Fermi level, as those have wave functions extending
furthest into the depletion region. The Fermi level will,
for the highest doping levels, be just above the position of
the valence-band edge, in the depletion region, and move
upwards for lower doping levels. This is consistent with
the experimental behavior.

The theoretical band-gap narrowing showed an almost
perfect agreement with the “real” band-gap narrowing for
densities up to ~2X 10'. For higher densities the theory
gave values that were too high. In spite of this it was
clearly demonstrated that the electron-ion-interaction con-
tribution, used in our approach, improved the agreement
considerably over what would be obtained if it was
neglected. The agreement also strengthens the belief that
the distribution of ions is random and not of superlattice
type as suggested in Ref. 28. A distribution of the accep-
tors on a superlattice would give a nearly negligible
electron-ion contribution.” The agreement with experi-
ments obtained here and in Ref. 8 indirectly favors the ap-
proach presented in Refs. 3, 4, and 7 for n-type Si over
that described in Refs. 28 and 29. In the latter two refer-
ences one assumed that the ions were distributed on a su-
perlattice and found large intervalley and negligible intra-
valley contributions. The intervalley contributions were
similar to the intravalley contributions in Ref. 4 and the
agreement with experiments was good in both approaches.
In GaAs there is only one conduction-band minimum, in
contrast to the six equivalent band minima in Si, so here
the intervalley contributions are undoubtedly absent.

We cannot give a conclusive explanation for the devia-
tion between the theory and experiment at the high-
density limit, but merely speculate. It could be due to our
approximate treatment of the coupling between the
valence bands. If the resulting screening from the dopant

holes is too weak the correlation energy and the energy
from the interactions with the ions become too large. One
would in that case expect to find a deviation like the one
in Fig. 6. Another possibility is that the deviation is due
to our using a pure Coulomb potential for the electron-ion
interaction, and not a more realistic pseudopotential. The
effects of this will increase with density. The deviation
does not depend on the fact that the dopant positions are
restricted to host-atom positions. This will also cause de-
viations from higher densities and the deviations will be in
the right direction. These effects, however, are very small
in the density range considered here. We have tested this
by using a hard-sphere structure factor,**~3? simulating
the situation where no two Zn atoms can be closer to each
other than the nearest distance between two Ga atoms.
The effect was negligible.

Finally, we should also bear in mind that the ‘“real”
band gaps have several experimental uncertainties at-
tached to them. These include the uncertainty in the ener-
gy measurement and in the experimental pure band-gap
value. It also includes uncertainties due to the difficulties
in estimating the carrier concentration, effects from possi-
ble self-compensation and impurity clustering. What we
have done is to eliminate the error in the interpretation of
the experiments and in the extraction of the band-gap
shifts.
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