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The hierarchy of fractional quantum Hall states of a two-dimensional electron gas in a high mag-
netic field is studied quantitatively. The effect of impurities is found to rescale, eventually terminat-
ing the hierarchy. The conditions on the impurities and the magnetic fields for the existence of the
fractional quantum Hall effect at rational Landau-level fillings are derived.

INTRODUCTION

The purpose of this paper is to report a quantitative
study of the hierarchy of fractional quantum Hall states
of the two-dimensional (2D) electron gas with no impurity
as well as with randomly distributed static, charged im-
purities. We show that the effect of impurities rescales,
eventually terminates the hierarchy. Thus only a finite
number of fractional states are quantized in real samples.
By assuming that the dominant interaction among the
quasiparticles is a pairwise charged Coulomb interaction,
the excitation energies at all rational Landau-level fillings
v of the pure system can be estimated in terms of those at
v=1/m, with m odd integers.

Soon after the observation of the integral quantum Hall
effect in Si-MOSFETs (Ref. 1) and the other materials,
the fractional quantum Hall effect (FQHE) was observed?
in GaAs-Ga,_,Al,As heterostructures with high mobili-
ties at low temperatures. Laughlin® proposed a variation-
al ground state to explain the state at v=1/m, and argued
that the elementary excitations of stable states are
fractional-charged quasiparticles. Laughlin’s theory has
been extended to explain the other observed fractional
Hall steps, which are the hierarchical high-order states of
the 1/m state. Among the proposed hierarchical schemes
are the descriptions of three kinds of statistics of the
quasiparticles: Bose,*> Fermi,® and fractional.”® These
schemes lead to the same hierarchy of rational quantiza-
tion of the Hall effect. There are strong experimental evi-
dences in which sample impurities play a crucial role in
destroying the FQHE. The observation of FQHE at
higher levels of the hierarchy requires higher mobility in
samples. Yoshioka®’ has argued that the higher levels are
more fragile to impurity effect because of the decreased
Coulomb energy. Laughlin et al.'® have recently proposed
a scaling theory to explain the disorder effect. However,
the theory is based on “guesswork.” In this paper, we
shall adopt Haldane’s boson version of statistics for the
quasiparticles® to study the hierarchy for both clean and
dirty systems. We observe that the hierarchy scheme of
Haldane’s may be put in a more quantitative fashion. As
a hierarchy develops, the impurity-quasiparticle interac-
tion becomes more and more important, and the disorder
of the sample in the quasiparticle point of view is re-
scaled. The increasing rescaling of the impurity effect
eventually terminates the hierarchy by making the excita-
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tion energy of the incompressible liquid state vanish. The
conditions on the impurities and the magnetic fields for
FQHE are derived as a function of rational fillings.

Following Haldane,” we consider a 2D electron gas of
N particles on a spherical surface of radius R, in a radial
magnetic field B=7cS/eR?% where 2S is the total mag-
netic flux through the surface in units of the flux quan-
tum h/e, and v=(N —1)/2S. We assume that the mag-
netic field is sufficiently high so that only the spin polar-
ized states in the lowest Landau level need to be con-
sidered. The total number of single-electron states is thus
2S5 +1. We assume that the impurities are charged, static,
and randomly distributed on the surface. The role of im-
purities in this model is to produce a spatial charge fluc-
tuation of the background. In addition to the clean
system’s Hamiltonian H,, we have the impurity-electron
interaction

H=3 [

j=1

el g (1)
elr—r;| ’

with p(€)) being the inhomogeneous part of the back-
ground charge per solid angle at angle coordinate (), € the
background dielectric constant. The impurity-impurity
interaction in this model gives the Hamiltonian an overall
constant and has no significance for physical quantities.
In the thermodynamic limit, the statistical average of ran-
dom impurity systems gives (p(Q))=0, and
(p(Q)p(Q))=W?(Q—Q'), with W the width of the
charge fluctuation. For a system with point-charged im-
purities, W?= Y (Z;e)’N;, with Z,e and N; being the
charge and the number of the ith type of impurities,
respectively.

LAUGHLIN STATE AT v=1/m

The Hamiltonian (1) can be treated as a perturbation.
The ground state of H, at v=1/m, according to Laugh-
lin, is a quantum liquid state with a finite excitation ener-
gy (defined as the energy cost to produce a well-separated
pair of quasiparticles with opposite charge). Since the
magnetic length /,=(#c /eB)'/? is the only length scale in
the problem, this energy can be written in a general form,
E(v)=(e*/ely)fr(m), where fr(m) is dimensionless. In
the presence of impurities, the (N + 1)-fold degeneracy of
the excitation states> are broken and the excitation ener-
gy (defined as the minimum energy cost to produce a
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well-separated pair of quasiparticles) is reduced by a finite
amount.!! This reduction can be written in a general
form based on dimensional analysis,

AE (v)=(e*/ely)gr(rgym) ,

where we have defined a disorder parameter
Ao=W?/2Se®. The function gy is dimensionless. For
fixed m, gr is a monotonic increasing function of A,. The
disorder parameter is related to the magnetic field B,
Ao=w?hc /eB, with w*=W?/4mR?. L, is a measure of
the charge fluctuation against the magnetic field. The
quantum Hall state requires a gap between the ground
state and the excitation state. The condition for the pres-
ence of FQHE at v=1/m is given by E(v)—AE(v)>0.
If the sample is sufficiently dirty, i.e., Ay is large, the
FQHE collapses. This corresponds to the lower mobility
and lower magnetic field situation in experiments.

HIERARCHY, EXCITATION ENERGY OF H,

The hierarchy in the absence of the impurities has been
studied in Ref. 5. Here we show that the excitation ener-
gy at any hierarchy level may be approximately related to
the excitation energy for the 1/m state. According to
Haldane, a Laughlin fluid state

vim;a,p1;Q2,P2;- - ;0nDPy)

of the excitation can be constructed from its parent state

vim;a,p1;ap2; « 30y —15Pn —1)

if S;=(N,—1)p,/2, where p; are even integers (Bose
statistics), N, and 2S;+1 are the number of the excita-
tions and the degeneracy of the excitations of the parent
state, respectively. The filling v of state

v(m;a,p;a,pa;. - -50y,Pn)

is given® by a finite continued fraction

[m;a,pi;02,p2;5- - ;QnPa] S

where a=+1. The excitation energy of this new fluid
state is equal to that of a system!? consisting of N, parti-
cles with fractional charge e,, obeying Bose statistics, on
a spherical surface with radius R, in a radial magnetic
field B, =#cS, /e,R>. The magnetic length of the quasi-
particle system is I, =(fic /e,B,)"/*. If we assume that
the interaction of the quasiparticles can be approximated
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by the pairwise Coulomb interaction between point parti-
cles of charge e,, then the excitation energy of the quasi-
particle system (hence that of the corresponding electron
system) is

E(v)=(e]/€ly)fp(pa) , (2)

where fp(p,) is the value of the excitation energy of a
Bose system at filling v,=1/p,, in units of eqz/elq.
Neglecting the finite size of the quasiparticles, fz(p,)
does not depend on the details of the hierarchical con-
struction, and on the hierarchy label n. The charge of the
quasiparticle e, and /, can be easily found from the
hierarchy equations,’ and the results are e,=e/Q,_; and
ly=10(Qy /Dn )12, with Q, and Q, _, being the denomina-
tors of the rational fillings of the state and its parent state,
respectively. Furthermore, fp(p,) can be related to
fr(m), an excitation energy of the elementary Laughlin
state for the electron system.

Using electron-hole symmetry, which is exact in the
lowest Landau level, E(1—1/m)=E (1/m), at fixed mag-
netic field, and that the 1 —1/m state may be regarded as
[1; m — 1] state, we derive

feltm —D)=[m/(m —1)]"?*fp(m) .

Thus the excitation energy at a hierarchy is
172

fF(Pn+” .

e? 1 pnt1

Tl Q2 | Qn

Electron-hole symmetry is preserved in Eq. (3) for all ra-
tional fillings

The values of the excitation energy at various fillings
are listed in Table I in units of the value at 5. The latter
has been studied extensively,>'>!® and fr(3)~0.1. In
particular, we find E(v=%)=2 K, while E(v=1)=23
K at B=20T and e=12.8.

E(v) (3)

HIERARCHY, EXCITATION ENERGY REDUCTION
BY IMPURITIES

In the presence of impurities, the excitation energy of a
high-order fluid state is equal to that of a system with
background charge fluctuation width W in addition to the
corresponding pure quasiparticle gas. Note that impuri-
ties themselves are not rescaled, while both the charge and
the number of the quasiparticles are reduced as we consid-
er higher and higher steps in the hierarchy. Thus, the dis-

TABLE 1. Excitation energies E (v) in the absence of impurities given by Eq. (3) and the critical disorder parameter A.(v) in the
presence of the random impurities given by Eq. (9). For point-charged e impurities, the disorder parameter is 27/3n;, with n; being
the impurity concentration of the sample. E (%)20. le?/ely, and A.( %)~4>< 1073, The upper bound of E(v) is given in Eq. (13),

which is about 1.8 times the values in the table for vs~5-.
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order parameter of the quasiparticle system (or the effec-
tive disorder parameter of the electron system),
Alv)= WZ/ZSqeq, rescales, and it is related to the original
disorder parameter A, by

AV)=20Q7 10, /Pn - @

As a hierarchy develops, Q2 _,0Q, increases rapidly. The
same sample seems to be dirtier in a daughter state than
in its parent state. When A(v) becomes sufficiently large,
the quantum Hall state is destroyed, and the hierarchy is
terminated.

By assuming that the impurity-quasiparticle interaction
is Coulombic, and that the quasiparticle can be approxi-
mated by a point-charged particle, the excitation energy
reduction at a filling v can be written in the following
form in analogy with that for the elementary Laughlin
state we gave earlier:

AE(v)=(el/€l,)gp[A(v),p,] . (5)

Note that in Eq. (5) charge and magnetic length are those
of quasiparticles, since we are dealing with the quasiparti-
cle system. gg(A,p,) is the value of the excitation energy
reduction in units of e;/elq for a Bose system at filling
1/p, with a disorder parameter A. A is given in Eq. (4).
The electron-hole symmetry enables us to relate the func-
tion gp for bosons to the function gr for fermions. Con-
sider state [1; m —1] in a given magnetic field and with a
disorder parameter A. The excitation energy reduction
due to disorder is, according to Eq. (5),

172

m=ll o Em—1, ®

m

2
AE(v=1—1/m)=—
€l

with A=Am /(m —1). The state [1; m —1] on the other
hand, is a conjugate state of the v=1/m state. The exci-
tation energy reductions due to impurities are exactly the
same for these two states at the fixed magnetic field and
fixed disorder parameter within the lowest Landau-level
assumption, namely,

2
AE(v=1—1/m)="—gp(A,m) . %)
610
Using Egs. (6) and (7), we obtain, for arbitrary A,
172

grlAp/(p+1),p +1]. (8)

gs(A,p)=

p+1
p

One finally finds that the excitation energy reduction at
high-order state is related to that at 1/m state,

172
2 pn+1
AE(v)=4%——— Av),p,+1], 9)
o 02 | o, grl P ]
where
AV)=KeQ2_10,/(pn+1) . (10)

CONDITIONS FOR FQHE

A quantum Hall state at zero temperature is destroyed
by impurities if the excitation energy vanishes. Combin-

ing Egs. (3), (9), and (10), the critical condition for FQHE
at a rational v is

fF(pn'*-l)_gF[)\'(V)apn""l]:O9 (11)

where A(v) is given by Eq. (10).

For each rational v, there is a value of A, satisfying Eq.
(11). This is the critical disorder parameter A.(v). The
quantum Hall state at v may survive in the presence of
impurities if Aqg<A.(v). The critical disorder parameter
of the high-order Laughlin state is related to that of the
1/ m state by

P,+1
07_,0,

Equation (12) is a necessary condition for the presence of
FQHE. Only those Hall states, whose A (v) are larger
than A, in the experimental situation, are quantized. All
the others are destroyed by impurities. By the hierarchy
theory, the high-order states of the destroyed quantum
Hall states cannot be constructed. We conclude that the
hierarchy of FQHE must be terminated in the presence of
impurities. Equation (12) explains why the FQHE is ob-
served only at simple rational fillings. Values of A.(v) for
various fillings are listed in Table I in terms of A.(+).
The fillings with larger A, are most easily observed.
From Eq. (12), at a similar magnetic field, the sample
purity (i.e., mobility from the experimental view point) re-
quired for FQHE at filling + is about one order higher
than that at +. This is qualitatively consistent with the
experimental fact: The first observation of FQHE was at
+ and % only (for sample mobility y=280000— 100000
cm?/v sec, Ref. 2), and the higher-order steps require
cleaner samples (mobility of at least 5X10° cm?/vsec,
Refs. 14 and 15, for example).

For the purpose of illustration, we have carried out nu-
merical calculations for the three-electron system with
point random impurities (charge e). In this case,
Ao=2ml%n;. The impurity concentration »; is inversely
proportional to the mobility of the sample. The ver
small system calculation suggests the value of A, at v=+
to be order of 4x 107> This corresponds to the critical
impurity concentration n; ~10° cm~2at B=10T.

1

}\'c(v)z pn+1

. (12)

c

DISCUSSION

In the above analysis, we have treated the quasiparticles
as if they were point-charged objects. The finite structure
of the quasiparticles will certainly weaken the short-range
component of the Coulomb interaction, and reduce the ex-
citation energy of the incompressible states. However, we
note that when we apply electron-hole symmetry to relate
the excitation energy of a Bose system to that of a Fermi
system, the bosons are quasiparticles with finite size.
Therefore, what we did, in deriving Eqgs. (3) and (9), is to
approximate the structure of the quasiparticles of the
parent state of v by that of the parent state of [1; p,]. Al-
though the finite-size effects are different at different fil-
lings, this replacement enables us to avoid dealing with a
complicated structure problem directly. The reliability of
the approximation may be discussed as follows.
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The upper bound of the excitation energy may be es-
timated from Eq. (2) since the finite structure and non-
pairwise interaction presumably tends to reduce the
Coulomb interaction

172
I8 ®a) (13)

e 1

EWV<———
610 Qn—l

Pn
Qn

where the superscript index on fp indicates the physical
point-charged boson system. The ratio of this upper
bound and the value given by Eq. (3) is

(Pn /P D128 P/ fEPa+1) .

This number is about 1.8 for p,=2 if we adopt the nu-
merical result'® of the five-particle boson system,
f2(2)~0.22.

Furthermore, the size of the quasiparticle may be ap-
proximately characterized by the magnetic length of its
parent state /,.. The finite-size effect depends on a dimen-
sionless parameter B=27rlqz'nq, with n, the density of the
quasiparticles. One finds B(v)<pB([1;p,]). Therefore,
Eq. (3) could perhaps be regarded as lower bounds.

It should be noted that at the moment there does not
exist accurate results for the quasiparticle-quasihole ener-
gy of the high-level state one can critically compare with.
In Ref. 7, the hierarchy scheme within the fractional
statistics was applied to estimate the energy. The point-
charged Coulomb interaction of the excitations was as-
sumed as it is assumed in the present work. Although the
quasihole proper energy was obtalned usmg an approxi-
mate formula fitted from the v=1, +, and 1 electron sys-
tem calculation, the linear approximation for the proper
energy of the quasiparticle proportional to that of
quasihole with a constant coefficient independent of the
hierarchical level and the filling is ad hoc, and it was
made only for the purpose of the illustration in the article.
Our result of Eq. (3) for hole-type daughter state v=+ is
close to the estimate in Ref. 7, while they are very dif-
ferent for the particle-type daughter state v= 3. The esti-
mate in Ref. 7 is about 2.5 times of the value given by Eq.
(3) here, and is around the estimated upper bound given
by Eq. (13) in the present paper. This discrepancy could
be either due to the uncertainty between the proper ener-
gies of quasihole and quasiparticle made in Ref. 7, or due
to approximation in the replacement of the excitation
structure in deriving Eq. (3). It is likely due to both. We
also note that the structure of quasiparticle is quite dif-
ferent from that of quasihole as shown in the work of
Haldane and Rezayi.!* Therefore the excitation energy
given by Eq. (3) for particle-type daughter state may be
less accurate since a quasihole-type structure of state
[1; p] is applied.

The excitation energies for v=+ and % were also cal-
culated by MacDonald and Murray'” using trial wave
functions constructed for several electrons. They found
that the excitation energy for the v=> state is much
smaller than that for the v=+ state. Their result at v=%
is comparable with our result of Eq. (3), while the value at

< is larger than that of the present work.

The finite-size effect on the excitation energy reduction
due to impurities may be discussed in a similar manner.
But the effect should be much smaller, because the quasi-
particle size is at least one order smaller than the average
impurity separation in the FQHE situation.

Expenmentally, FQHE has been observed at ﬁllmgs
v=-~ 3, 5 R 7 , and their particle-hole conjugates clearly
There are some indications'* ' in p,, at fillings v=+ and
4. The results of Eq. (9) listed in the table are roughly
consistent with the experimental observatlons thh the ex-
ception of state v=+. Note that the = and - states are
the daughter states of v=+. The FQHE has not been
shown clearly at the + state. This explains why FQHE
does not show at v= % and TZ,- The discrepancy between
the theory and the experiments at v= < is still open. The
excitation energy at v=% is about 10% of that at v= 7 in
all three different approaches: Ref. 7, Ref. 17, and the
present approach. It should be at least in the similar
value of v== and would have been observed for sam-
ples!® with moblhty one order higher in magnitude than
the sample? showing v—% effect only. A possible ex-
planation is that it might be due to localization effects
similar to the situation at v= % proposed by Chang
et al.’®

In conclusion, the independent impurity model we have
considered in this paper should be a good approximation
for the dilute impurity system. Modulation-doped
GaAs-Ga;_,Al As samples are highly pure samples.
Our model may be appropriate for the real systems. Us-
ing this model, we have found the scaling behavior of the
impurity effect in FQHE. The experimental findings of
the termination of the hierarchy of fractional quantum
Hall states may be explained as a result of the increasing
rescaling of the disorder. A simple algebra of the hierar-
chy scheme enables us to approximately relate the excita-
tion energy and the critical condition for the presence of
FQHE at a high-order Laughlin state to those of the 1/m
state. Although the finite structure of the quasiparticles
will give the correction to the approximation, the present
study provides a semiquantitative understanding of how
the hierarchy of fractional quantum Hall states can be
destroyed by disorder.

The real samples have finite-layer thickness in the
direction perpendicular to the magnetic fields. This will
produce another length scale, and may be incorporated in
the analysis we describe in the paper. We wish to point
out that finite-layer corrections'® are less important for
higher-level states than those at 5, because the magnetic
length for the quasiparticle system is rescaled by a factor
of (Q,/p,)""?. The localization problem is not considered
in the present approach. The assumption of the existence
of the extended quasiexcitation states has been implied in
the derivation of the critical conditions for FQHE.
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