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Diffusion and relaxation of energy in disordered systems: Departure from mean-field theories
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We present exact analytical and Monte Carlo results for zero-temperature diffusion and energy
relaxation of excitations describable by Master-equation dynamics. We demonstrate the freezing-in
of relaxation at very low temperatures caused by ‘“isolated” sites and clusters and observed experi-
mentally in glassy benzophenone. Similar effects observed in semiconductor quantum-well struc-
tures and probably related to exciton trapping in disordered states caused by well-width fluctuations
can be explained along the same lines. Asymptotic laws are derived and compared to Monte Carlo
results. We also demonstrate that the departure from mean-field theories, serious for energy relaxa-
tion, is not so important for the diffusivity of excitations.

INTRODUCTION

In a previous series of papers which we shall hereafter
refer to as I, II and III and given, respectively, by Refs. 1,
2 and 3, we considered the problem of nonequilibrium dif-
fusion and energy relaxation of excitations in disordered
systems using direct Monte Carlo simulations and analyt-
ic approximations which we have called the “effective-
medium approximation” (EMA). There is a wide range of
problems for which the knowledge of the time and
energy-dependent diffusivity D(g,t) is essential,> these
include charge and exciton transport, luminescence and
photoconductivity,“"8 and experimental observations of
energy relaxation in organic and inorganic semiconduc-
tors.”~!! To this we can now also add the interesting phe-
nomena of energy transport and time-resolved lumines-
cence in semiconductor quantum-well structures (QW)
and superlattices.">~'* In I we compared Monte Carlo
simulations to analytic theory for time dependence and
dependence on the initial energy of the excitation. This
provides a rather rigorous test for the approximation tech-
niques employed. We found excellent agreement for all
quantities of physical interest [energy relaxation function
E(g,t) and diffusivity D(g,#)] down to temperatures of
the order of 50 K. Below 50 K, discrepancies begin to ap-
pear between exact simulations and EMA techniques. We
have discussed the source of these discrepancies in I and
have demonstrated the inadequacy of the EMA at low
temperatures and in the long-time limit. The effective-
medium approach always tends to overestimate the num-
ber of relaxation paths in the long-time limit and this
leads to a considerably more rapid decay of energy for
long times since it does not allow for “dead ends” (isolat-
ed sites and clusters) in the network of the random walk.
Such dead ends, i.e., sites from which it is difficult to es-
cape at low temperature can lead to very slow energy re-
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laxation in the long-time regime as 7—0. In oder to ac-
count for the “freezing-in” of excitations at very low tem-
peratures in disordered systems, it is essential to take
proper account of the site correlations involved in the
sequential jump process.

In the present paper we develop a theory of relaxation
and diffusion in disordered systems which is exact at
T=0 and will provide a good approximation at low tem-
peratures. In this way we are now in a position to tackle
the problem from the other extremity. Our results will
demonstrate the drastic change that occurs in the relaxa-
tion of energy in the long-time limit. Though energy re-
laxation and diffusivity are simply related to each other,
the change in the long-time limit introduced by the
freezing-in of excitations at low temperature is much
more evident in E(g,z). Only energy relaxation experi-
ments will in practice be able to distinguish between exact
and mean-field predictions in the present problem. The
recent measurements of energy relaxation in benzo-
phenone glasses'! at low temperatures agree with the
Monte Carlo calculations and indeed exhibit serious
discrepancies with the EMA predictions. We shall now
remedy this discrepancy between analytic approach and
experiment (real and Monte Carlo) taking of course Monte
Carlo as the true guide of accuracy.

BASIC FORMALISM

Recall from paper I or from Refs. 1, 2, or 3 the master
equation for the dynamics of incoherent excitation trans-
port

dn"
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where n;(¢) is the occupational density of site i character-
ized by position R;, energy €; at time t. The transfer

rates Wj;, can for our purposes, be abbreviated as
voF (| R;; | Jexp[ —(e; —€;)/kpT], €;>¢;
0= ‘VOF( IRy [), & <& @
with
F(|R;|)=exp(—2a|R;;|) 3)

for charge transport and triplet (exchange) exciton trans-
port or

s R,

R, {
) <
IRy |

applicable to multipolar exciton transfer, S=6 corre-
sponds to the Forster dipole-dipole transfer rates, v, is a
prefactor measured in s !, @~! and R, are localization
lengths and can, in principle, be energy dependent.

The probability G;;(t) of finding the excitation at site j
at time ¢ given that it started at time t=0 at site i is the
formal solution of the master equation which in the space
of the Laplace variable p can be written in the form

Gip= [” Gyle"ar, (5)
8y 1
G;(p)= : + W,Giip) . (6)
IS w, p+2Wm21: A
u u

The quantity of interest, however, is the restricted config-
urationally averaged quantity G;;(p) defined by

,,p)—f I1 dRrR,de £)

——Gii(p), )
(2 )) P(Q)N 2 P

where ) is the volume and p(¢) is the normalized distri-
bution function of site energies assumed to be independent
from each other.

In the general case (finite T'), (6) can only be solved us-
ing approximation techniques. Once Eij(p) is known we
have all the information needed to calculate the quantities
of physical interest

E,, 2 Gu 8] ’ (8)

L(g;e5,t)=

X Jary

ds,p s,)f
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D(Si,t)=_a‘ [%Z_G—ij(’m;' ’ ©
at 7

which refer to time and initial energy-dependent energy
relaxation and diffusivity of a particle following a pulse at
time ¢=0, respectively.

In the field of energy relaxation in semiconductors and
quantum wells, one often works with the concept of effec-
tive temperature 7,(g,?), which, naturally, also depends
on the initial energy of the excited particle and time ¢; the
effective temperature can be defined by the relation

© ¢ /kpT,
fo e Blep(e')e' de’

E(e,t)=""~ "
fo ple')e aTe ger

(10)

For a free particle type density of states p(e)~e!/? we

have

E(e,t)=CkT,(g,t) , (11)

where C is a proportionality constant.
In the limit ¢ — oo, E(g,t) and, thus, T,(e,?) become in-
dependent of € and finally

T,e0)|,_=T. (12)

However, this is only for 7> 0 and strictly at ¢ =« be-
cause of freezing-in effects which can prevent particles
from reaching true thermodynamic equilibrium in the
long-time limit. Thus at T=0 the excitation can be
blocked forever in a local minimum if the transfer rates
have finite range. On the other hand, for infinite range
hopping it is always permissible to relax and equilibrium
will eventually be reached. It is the functional form of
this approach to equilibrium which is the subject matter
of this paper.

Finally, let us consider another quantity of interest
which is the luminescence intensity L;;(¢) obtained at time
t and in the energy interval (gj,e;18;) from excitations
excited in the region (g;,g;+6;). This quantity can be
written in terms of the probability function G (t) and
luminescence probability /; as

ds,p(s,)é(e;,s,, i DIES) . (13)

By invoking the real-space Fourier transform G(s,-,e j>1,k) we can replace this expression by

2 g +9;

L(e,-,ej,t)z-%—f de,p s,)f

THE T=0 LIMIT

The T=0 limit gives us a unique opportunity to present
what is essentially an “exact” solution to the probability
function and desired quantities on a disordered network.
At T=0 there are no back jumps and no loop processes in
the random walk of excitations, thus each jump rate be-

ds,p(e,)G(e,,ej,tk 0)(gj) . (14)

[

tween a pair of sites Wy can be considered an indepen-
dent variable which is distributed according to a probabil-
ity function Q (W ). The excitation moves effectively on
a Cayley tree with diminishing coordination number. The
Cayley tree itself has been discussed in detail in Ref. 15,
where it has been shown how the configurational averages
can be carried out exactly. At T=O0 the absence of back
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jumps makes the problem rather easy; furthermore, the
distinction between bond averaging and site averaging is
of no consequence.

Returning to Eq. (6) we can now take the configuration-
al average on both sides keeping (i,j) fixed and write in
the space of the Fourier variable k

ple;)G(g;,€;3k,p)
=Gble,—e;))+ [ de;S(k,e)0(e —ep)
Xp(s,)p(e]) (e1,€55k,p) , (15)

where
1 Wi
S(k,g;)= < >
Ste) =y Iew s 5wl
1))
*RigR, (16)
and
_ 1
G,','( )———<—_‘_> ) (17)
p p+2Wuli
]
with
= [ plenae’. (18)

The angular brackets denote configurational average and
index i outside denotes that the corresponding site is to be
kept fixed.

The averages (7) can be evaluated exactly by going over
to time space

5,-,-(t)=<exp [—2W,1(t)]> H (19)
1 i

for the models (2) we can rewrite this as'®!’

n [ de [ dRepleg)le

where n =N/} is the site density. At T=0 we can re-
place this with

G;(t)=exp

Wi _y) } o)

_V"F'R”‘it——l)] 1)

and the spatial integral can be carried out analytically for
Forster-like rates [Eq. (4)]. For exponential rates [Eq. (3)]
we can split (20) roughly into two region (1) 7t <1 and (2)
vt> 1 with

Ga(t)=exp [nn(s)dek(e

_ exp[ —n (et ], vt <1 (22a)
G;i(1)~
ple)ay )’ vi>1 {22b)
b
where
'\7=v0n fF , ij lde] ’ (23)
ple))=<n(gw/vy, 24)
(D=[In(vet)}¢ 1, (25)
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and t,=wt, where d is the dimensionality of the lattice
and can be extended to fractal values.'® Since ay(t) is a
weak function of ¢t we can in some applications replace it
with a constant evaluated at ¢ =7 which is some critical
hop time.

Note also that

nS(k,&;) | xmo=——[1—pGy(p)] . (26)

1
n(g;)
Transforming (15) into a differential equation allows an
explicit solution for (_?(ei,ej;k,p). However, we shall not
derive this here but concentrate on the quantities E (g,¢)
and D (g,t).

Using (15) we can write the energy relaxation function
E (g,p) in Laplace space as

g( €;,p)

E(g;,p)=¢;G;(p)+ f_ “hiey PEnE(epde ,  @7)

where

g(E,‘,p)=<

Converting (27) into a differential equation and solving,
we find

(28)

EWW >

Y . S
P+ Wy
u

E(e,p)=¢G (g,p)+ f_em e'G(¢',plp(e’)g,(g')

Xe[L(E')—L(E)]dEI , (29)
where
g (e)=8EP) (30)
n(e)
and
G(e,p)=Gi(p)| ¢ = » (31)

[L(e)—Lie]= [ de” |ple")g (e”)

+ Lol en]|. G2

drl

The exact E(g,t) for a given p(e) can now be evaluated
using a numerical Laplace inversion routine for all times
and energies. In this paper we shall discuss the analytical
structure of the result as much as possible and in particu-
lar the long-time behavior.

Using the definition of g,(¢) we can convert (32) into
the form

4 [1—pG(e”,p)]

[L(g)—L(e)]= f: de” | =%

—pG(p,e )]

(33)

from which we obtain the extremely useful simplification
which states that as p—0 (f— o) the right-hand side
(rhs) vanishes. Alternatively, we can expand
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[L(e)—L(g)]
I

as t— oo only the first term remains in (34), thus we can
achieve a systematic expansion (in the long-time limit) of
E (&,t) by using (34).

Keeping only the first term in (34), we now find

exp[L(¢')—L(e)]~1+ + -0 . (34)

o e(g') _
Eten)~(=) [7 [lde2 G —ne)
XMdT as t— o , (35)
ar

where G (t,€) is given by (21). To proceed to the next step
and keep the result as general as possible we first note that

G(e,)=[S()]~"® . (36)

This follows directly from (21) and is valid for any model
of the type (2) with infinite-range hopping.

The relation (36) now allows us to convert the time in-
tegral

N t . 0G (1,€')
Flhe)=(=) [ Gt —r,e) =0 dr (37)
into the form
N . 9G[n(e),]
F(t,e')=—n(g") 3an(e)
+n )P [, drG (NG —7)
S'(t—1) S(r)
Stt—n) | S —7) G38)

To first order in n(&') we keep only the first term in (38)
and substitution into (35) then yields

E(e,)~ [ de'ple)e'G(e,0In[S()]+0(n?)
ast— o0 . (39)
To a good approximation this integral can be written as

E(e,t)~7 ~'({In[S()]} " N+c’ ast— o , (40)

a1

where the function # ~'(x) is the inverse function to the
integrated density of states, i.e.,

n(y)=x=y=m"4x) (41)

and ¢’ a constant which is =0 when n(e= — o0 )=0.

Note that in the long-time limit there is no longer any
dependence on the initial energy of the excitation. Note
also that when S(¢) is an exponential in time S(z)~e’
then (39) is exact because the second term vanishes identi-
cally. In fact in this case we can present an explicit solu-
tion to E(g,t) valid for all energies and all times. This is
the subject of the following section.

THE EFFECTIVE-MEDIUM APPROXIMATION

Before looking at the exact results, it is instructive to
rederive the EMA results of I using the present approach
in the limit T=0. In the framework of the EMA we ap-
proximate the configurational average over the probability

function by an average over the “self-energy,” thus the
particle does not jump into the true medium but only into
the averaged medium; in other words

= 1 1

G[,‘( p)""

~ = , (42)
p+<2 W,»#> P+p(gvg
o

where p(g;) is given by (24). The Laplace inverse of
G(g,p) is now a simple exponential, furthermore the
second term on the rhs of Eq. (38) vanishes identically for
all p. Thus we now have (t; =vt)

Ee,n=ce "My f_E e'p(e’)e—pw"‘de'. (43)

Consider the following two examples.
Firstly, the exponential tail

ple)=e ¢/ 0z (44)

Here
—_ Y _ —1,—s

E(g,t)=—go[In(®1)+y]—¢, vk € ds  (45)
with k(e)=e~¢!//¢0 and y=0.57721... is Euler’s con-
stant.

It follows easily that
E(g,t)~ —¢goIn(vt) ast— o0 . (46)

This result is in complete agreement with the self-
consistent numerical evaluation of E (g,t) at low T for an
exponential tail given in Refs. 2 and 3. The In¢ depen-
dence is clearly visible in Fig. 4 of Ref. 2.

Secondly,

p(s)=—:i/—, [—W,0] @7)

E(et)=—W |1— € e—T't(l—[El/W)
’ |4

+ L (1 —e—m=1e1/m)

vt
—e|e-tI=lel/mwm 48)
and therefore
E(s,t)~—W+_v—n: ast—oo . (49)

Note that (46) and (49) are in complete agreement with
the general relation (40) since S(¢)=exp(¥?) and thus
A ~'{[InS()]~'} behaves as —egln(¥t) and 1/v1, respec-
tively. Indeed from the preceding section it follows that
the basic quantity is G (g,t), given this function in what-
ever form approximate or exact then determines the corre-
sponding long-time behavior of E (g,t).

THE EXACT BEHAVIOR OF E (g,t)

We have seen from (39) how G (g,t) determines the
behavior of E(g,t) in the long-time domain. For the
model given by (22b) and using (34) we can Laplace invert
(29) exactly to obtain (azv/vo=ay)
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I'(l—af(e))

£ e o pleh) 1
E(gt)~——— d
(&0 (2,)® + f—w ©lE n(e') T(1—ale))

where I'(x) is the I" function and
ale)=agn(e) . (51)

This result is valid as long as (22b) is true for any p(e).
When a(e) << 1, we can expand the I" function and thus
to first order in a(e) all I'’s can be replaced by 1 in Eq.
(50). If p(e) is exponential it follows then from (50) that

E(g,t)~ —goln(Int;®) as t— oo (52a)

a considerable slowing down of relaxation in comparison
to be effective medium result (45). Again this result is in
complete agreement with (40) since using (36), S(1)=1"
and n~!(x)=gglnx. The more general derivation (39)
suggests further that it is permissible to replace a, with
the fully time-dependent form [a,(t/W/vy] as given by
(22b) but interesting enough this form does not change the
functional dependence on ¢, since az~(Inz;)? ~!, but the
prefactor ¢ is rescaled so that

E(e,t)~ —gpd[In(Inz;)] as t— oo . (52b)

The exponential tail model is appropriate for amorphous
semiconductors and probably also for the description of
the localized interface state in two-dimensional quantum-
well structures (see Ref. 13). For disordered organic sys-
tems, however, we know that p(e) is well described by a
Gaussian of the form

1 —(e/o)?
p(E):(—Uwe (e/a} . (53)

Unfortunately n(g) is now the complementary error func-
tion and n ~'(x) is not easily obtained. However, we can
approximate n (g) with

g

n(s)=-|—8—l~\7—;p(e) , (54)

which is exact as e— — « and a reasonable approxima-
tion when ¢ is in the tail of the Gaussian. Using (40) and
incorporating the weak prefactor to p(€) in (54) into an ef-
fective ay we have

(1)
E(e,t)~ —o[In(Inz ;)] as t— oo | (55)

where ag(?) can again be time dependent and obtainable
from (22b). When the prefactor to (54) is set ~I1,
ao(t)=[v/6vglay(t) in (55).

When q, is taken to be ¢ independent we can always ob-
tain a more accurate estimate of E (g,¢) in the intermedi-
ate time domain by using (50) instead of (40). The effect
of using the fully time dependent form for a(¢) is to re-

place 0—V'd o in the asymptotic form (55).

T I(1—2a(e))

exp[ —al(e')Int, ]

2a(e)
’+0 —t—] as t— oo ,

1

(50)

THE SHORT-TIME DOMAIN

In the short-time domain (v < 1) we can always use the
EMA, this also directly follows from (22a) which tells us
that G (g,?) is exponential in time. For a given model p(¢)
we can then use (43) which is rather easy to analyze.

THE FORSTER-TYPE TRANSFER RATES

For singlet excitons one often has transfer rates of the
type (4) the corresponding G (g,?) is given in Ref. 19 and
can be written as

/2
~——ﬂi——l‘(1—d/s)

Glen=exp | = 1 372)

X R&n (e)(tvp)d/S (56)

From (40) we find (d is the dimensionality and can be
fractal)

E(g,0)~ —goln(y197°) as t— oo (57

when p(e) is exponential. Note that this gives the same
functional form as a single exponential except for the re-
normalization of €y—go(d /S) in the t— o limit.

THE DIFFUSIVITY IN THE LIMIT T=0

Let us now consider the diffusion of excitation in the
limit that T =0.2 First recall the definition of D (g,?) in
Laplace space

D(e,-,p):-;-p2<zk,§.c,-,(p)> : (58)
J

i

Substituting (15) into (58) and using the sum rule we have

3 Gyp=—, (59)
j p
D(Eirp) DO(EHP) &i g(Eiip) D(Elyp)
PR [ ) Ple—, den
(60)
where
S RiWy
Do(g;,p)=1p( - 61
ol&;,p 6p<p+EWi1>i ( )
1

Thus (60) differs from (6) only by the replacement D, for
[eG (g,p)]. We can therefore solve the problem using the
same technique with the appropriate replacement.

The quantity Dy(e,p) can be evaluated in time space in
the same way this
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R,% — Wyt — Wyt
2'—6—"W,-Ie ! H e !

! k (s£0)

-1

DO(E,P) ]_(
—p =

) .

(62):

To a good approximation we can replace the rhs with
Dy(g,t)~ 7—2(e,t)i[G(s,z‘)] , (63)
6 dt

where 7 %(g,t) is a weak function of ¢ which we shall re-
place with the constant
2

s J F(IR|)R2dR

[ F(IR|)dR

Note that (63) with (64) is exact in the EMA. Using (63)
we now find
Dy(g,p)

p
Substituting into (61) then yields, in the long-time limit,

(64)

72
=——6—[1—pG(8,p)] . (65)

€ 72 '
D(e,p)=Dy(p,e)+ f_wde’%%p[l—pG(s’,p)]z
% 1_*_L(zz)—L(e)_’_.__

1!
(66)
Using (63) we can now rewrite the result in real time as

F2 8'(1) 1

[D (&, )iong times= 6 S0 WmS0]

X (1—g~lnsnte)) (67)

plus lower-order terms.

We can exactly rewrite this as
5
ot

2 -1
Dlen~1o InG ~ (g,?)
n(e)

6 In

ast—oo , (68)

a rather useful result which allows us to determine D (g,?)
given G (g,t) directly, in the long-time limit.
In the framework of the EMA, D (g,t) can be written as

D(e,)="LF2yp(e)e 7"

+1722 [T pUere ™M1 ge (69)
and for an exponential p (¢)

D(e,t):%?z%(l-e_p‘s)") . (70)

Note that (70) is in complete agreement with (45) with
G(g,t) given by the EMA. For p(e) exponential and
G (g,t) given by (42) we now find (aq is a constant)

1

a
lnt1°

72

a
D(g,t)~— ]

t

(71)

which is a slightly stronger decay than in EMA. The in-
teresting feature here is the considerably weaker influence
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of the “freezing-in” on D(g,?) than on E(g,t). The Int;
term in the denominator would, in practice, be almost im-
possible to detect by direct measurement, whereas this is
not the case for E(g,t): the distinction between In¢; and
In(Inz,) is considerable. Nevertheless (71) does give the
interesting result that the exact long-time decay of D(e,?)
can be stronger than 1/¢ as shown above for an exponen-
tial density of states. Given G (g,t) for a model p(e) we
can immediately deduce the corresponding D(g,t) for
long times. Equation (67) should as a matter of fact
represent a reasonable approximation also for intermedi-
ate times.

SUMMARY FOR AN EXPONENTIAL p(¢)

Considerp(s):so‘le_lel/e“ and t— oo:
G (g,1) E (g,t) D(g,1)
exp[ —p ()] —eglnt, 121
i S I
— —goln(Int,° —Fi—
T a6 0y
exp[ —n(e)yati’S]  —goln(yt§”5) %FZ%S—‘;;
(72)

DISCUSSION AND THE EFFECT OF FINITE T

Figure 1 illustrates the “freezing-in” of energy relaxa-
tion for a Gaussian p(e) at low T as calculated by the
Monte Carlo technique (for a description of the Monte
Carlo technique used see Ref. 20). The analytical asymp-
totic law (55) is plotted for comparison. The trend is re-
markably well reproduced by (55); Fig. 2 is again a com-
parison of Monte Carlo with asymptotic form (55) when

0 0
H
-005f
= -2 &
-010F
”
-015 .
0 15

togty

FIG. 1. A comparison of Monte Carlo simulations (dashed
line) (0 =31 meV; 2an ~'3=10; t, =wot) with effective-medium
theory (solid line) 75 =(¥)~! as given by (23).
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=
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s N
04 06 08 10 12

l0gyotlogy t}

FIG. 2. The Monte Carlo evaluation of squared of the energy
function (8) plotted against logjglogot; for two different tem-
peratures T=20 K (dashed line) and T=40 K (solid line)
(0=31 meV; 2an~'*=10; ¢=0). The T=O0 curve represents
the asymptotic law (55) for the Gaussian model, with a, from
(22b), t; =t and energy in units of 0. The absolute position of
the theory curve is arbitrary.

p(e) is a Gaussian at different temperatures. Again the
agreement is very satisfactory. We should remember that
the theory curve (dashed dotted) is evaluated for T=0
and therefore slower in decay than the Monte Carlo
values. It is also very interesting to observe that the
finite- T decays are well represented by the T=0 asymp-
totic law provided the effective slope is made T dependent
see Figs. 1 and 2. Thus we conclude that at low T we can
use the asymptotic forms and to first approximation re-
normalize the slopes, i.e., gy—€o(T) (exponential) and
o—0o(T) Gaussian. For Forster rates this immediately
follows from Eq. (B4) of Ref. 19, where G (g,t) is evaluat-
ed at finite 7. Thus we can conclude that the asymptotic
forms are reasonable representations also for intermediate
times and low T. Figure 3 illustrates the difference be-
tween the power law decay of G (g,?) and the exponential
decay on E(g,t) for a=0.1 and for the exponential band
tail model (44) in the intermediate time domain. Though
for the present value of the parameters the curves are not
yet truly in the asymptotic domain, we see that the influ-
ence of the power law on the slowing down of E (g,?) is
considerable. Figure 4 corresponds to the same situation
except that we have now considered the long-time region
and have compared with the asymptotic law (52). Com-
pare with the measurements of energy relaxation on
GaAs-Al,GaAs; _, multiple quantum well by Matsumoto
et al. (Ref. 13) and, in particular, with the data of Ryan
et al. [Ref. 14(b), Figs. 1 and 4].

The experimental curve in Ref. 13 exhibits an almost
perfect linear time dependence over the region ¢> 100 ps.
The theoretical single pulse curve shown in Figs. 3 and 4
do exhibit what could be interpreted as an almost linear
regime in the relevant time domain. However we must
remember that the measured values refer to an average
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FIG. 3. A comparison of effective medium [curve (2)] from
(45) in the text and “‘exact” energy relaxation as calculated by
Eq. (50) curve (1) in the intermediate time domain for an ex-
ponential density of states (44). Note the difference in the ener-
gy lost per unit time (2p=0.1). (Time is t; =wt; gp=1; €=0.)

and not to a single 8 pulse. The experimental curve is re-
lated to E (g,t) by the equation

— f_:p(s’)E(s’,t)f(s’)ds'
[E( t)]expt = @ B E ,
[ penfiede

where f(¢') is the probability function for the exciton dis-

tribution after having thermalized into the localized states
caused by the interface disorder (well-width fluctuations).

(73)
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FIG. 4. Same as in Fig. 3 except for the longer-time scale.
The asymptotic —eggln{lnt;} law is plotted for comparison.
Solid line: EMA Eq. (45); upper triangular “exact” as defined
by Eq. (50); lower triangles represent —eoln(Int,), which is the
asymptotic law (52) up to a constant energy shift. Note that the
“linearity” of the decay with time in the two upper curves is
somewhat misleading and has to do with the energy scale, i.e., if
plotted on the same scale as the experimental diagram in Ref. 13
it would look more like Fig. 3. Compare d <e&(t)> /dt in the
lower and upper curves.
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The initial distribution can be found experimentally as
shown in Ref. 13. Direct comparison of E(g,t) with ex-
periment can be expected in the long-time domain since
E (g,t) becomes independent of start energy at long times
and therefore can be taken outside the integral in (73).
This is then consistent with the linear domains exhibited
by Figs. 3 and 4 in the “long-time” regions. Note, howev-
er, that EMA has the same feature and that the true dis-
tinction between “exact” and “EMA” are in the energy
relaxed/per unit time which are considerably different in
the two cases as shown by Figs. 3 and 4 [see also, Fig. 4,
Ref. 14(b)].

We shall not pursue this analysis further in this paper
but only note that (1) the exact structure of the system
which lead to isolated sites and clusters does indeed con-
siderably slow down the relaxation rate in the relevant
time domain as observed experimentally and (2) the im-
proved theory does indeed appear to exhibit an almost
linear region even for a sharp initial pulse. We should
remember also that a rigorous calculation would have to
use the power G (g,?) given by (21). This function starts
off as being exponential when vz < 1 [effective-medium re-
gion curve (2) of Fig. 3] and then gradually becomes a
power law [curve (1) of Fig. 3] v >> 1.

Let us now consider the interesting work due to
Kastner,?! Monroe, 2 and more recently due to Wilson
et al.?® Kastner derived Eq. (52b) with gg—god = 3¢, for
an exponential tail using a hop optimization technique. It
is interesting to observe that the optimization method cor-
responds here to be strictly asymptotic domain of our
solution. One can presumably apply the optimization
method for other forms of p(e) as well. Kastner’s result
has recently been used by Wilson and co-workers to ex-
plain the photoluminescence shift as a function of time
and temperature in a-Si:H.

One must remember that all the above considerations
apply in a real experiment only to the time domain prior
to the onset of recombination. The recombination rates A;
can themselves be random variables as discussed in Ref. 1.
The approximation of replacing the {A;} with (A;)=2A
then implies that all the above results for E(e,t) and
D (g,t) must be multiplied by a factor exp[ —At].

Let us now consider the effect of finite temperatures.
The influence of temperature works in two different direc-
tions. On the one hand, temperature will increase the
number of possible jump sites allowing now both upward
and downward jumps in energy. In Eq. (27) the integral
over energy will now run over all energies with the rules
given by (2). The second modification is that (a) back-
ward jumps are now allowed and (b) walks over closed
loops are now also permitted. The latter immediately im-
plies that the averaging procedure of treating each bond
effectively as an independent variable is no longer exact.
Point (a) means that the self-energy entering the denomi-
nator of the probability functions is now finite as dis-

cussed in detail in I, II, and III. Point (b) formally
represents a formidable problem. In reality, however, we
can take care of loop correlations by an effective renor-
malization of site densities as shown in detail in Ref. 15.
Essentially what one does is to replace the true correla-
tions by effective pair correlations only with a renormal-
ized density (or mean-site separation), this then takes care
of percolation effects. The procedure is only allowed in
infinite range hopping problems where there is no true
percolation threshold. The influence of correlations here
is only to renormalize the density of the effective network.
At very low temperatures we therefore suggest that the
neglect of backward jumps, i.e., the retainment of W;; of
(20) represents a reasonable approximation. Thus the lo-
cal correlation function G (&,t) must now be evaluated at
finite T using (20). The function G (g,?) as given by (20)
at finite T has been evaluated (in several references partic-
ular.'®') The asymptotic laws derived here retain their
validity at low T provided the ‘“slopes” are allowed to
vary with 7. For the more general solution we note that
the integral equation (6) is now unfortunately not simply
soluble, low- T expansions are possible but will not be dis-
cussed in the present paper. Approximations should be
checked using Monte Carlo techniques. Finally let us re-
call that in the short-time regime we can always use the
EMA but the extension to finite 7 is not much more
straightforward since the integral equation in energy
remains.

We have presented an exact zero-temperature relaxation
and diffusion theory for excitations whose dynamics obey
a master equation and where the bonds W of the network
are independently distributed according to a distribution
Q(W). We have presented exact asymptotic decay laws
for E (g,t) and D(g,t). We have also demonstrated the ef-
fect of the “freezing-in” of excitations on “isolated” clus-
ters and have compared our results with the Monte Carlo
simulations. Experimentally, the effect has been observed
in the energy relaxation of Benzophenone glasses and in
semiconductor QW structures.

In this paper we have focused our attention on a com-
parison theory versus “exact” Monte Carlo simulation,
and a qualitative analysis of experiments on QW struc-
tures in the long-time regime. A quantitative comparison
with the QW data requires, in addition to the above
theory, knowledge of the distribution function f(g) for
the thermalized excitations in Eq. (73). This will be con-
sidered in a future paper.
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