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The specific (Jahn-Teller-type) electron-phonon interaction of electronically degenerate states
leads to strong phonon scattering resonances in systems containing such defects, which are at some
meV for acceptors in cubic semiconductors. Using a high-order Green-function calculation we show
that these resonances are due to a dynamical splitting of the electronic degeneracy induced by
thermal phonons. Application of an equation-of-motion technique gives a resonancelike formula for
the scattering rate. We investigate the special case of an electronic I s state at acceptor defects in cu-
bic semiconductors where these resonances were found in several experiments of various types in the
last years. %'e discuss the physical properties of the resonance structures and the dependence on
system parameters and compare with experimental results.

I. INTRODUCTION

In the last decade a series of new experimental tech-
niques were developed which allow one to study very pre-
cisely phonon scattering and phonon transport properties
of solids. ' It was found that various kinds of lattice de-
fects change these properties considerably, and there-
fore the experimental interest focused on the behavior of
such defect systems. Due to the high resolution of pho-
non experiments compared with optical studies, a new
kind of resonance structure was found at electronically de-
generate defect states, which could not be explained by
direct transitions (direct resonances) between electronic
levels. ' The main features of these resonances are the
extreme broad linewidth and the strong temperature
dependence of the related phonon scattering rate, which is
reflected in a considerable infiuence on thermal conduc-
tivity. The first theoretical approach to explain the
behavior of such systems was given several years ago by
Rueff et al. These authors used a model Hamiltonian of
Jahn-Teller E-e-type which describes the coupling of a de-
generate electronic two-level system with two degenerate
vibrational modes of the lattice surroundings. Experimen-
tal evidence for these special phonon resonance structures
came first from the study of weakly p-type doped cubic
semiconductors like Si(In) or GaAs(Mn), ' where a
fourfold-degenerate electronic ground state (I 8 type) of
the defect ions interact with nonsymmetric doubly degen-
erate (e) and triply degenerate (t) phonons of the lattice.
This type of interaction is known as the I s-(e +t) Jahn-
Teller (JT) case. This was the first evidence for the im-
portance of the dynamic Jahn- Teller effect on the
behavior of these semiconductor systems, which earlier
had been considered as negligible due to the small cou-
pling constants. '

The phonon scattering process at these electronically
degenerate (JT) centers can be described as follows. Due
to the coupling to nonsymmetric phonon modes the sym-

metry of the defect surrounding is lowered, leading to a
dynamic splitting of the electronic multiplet. However,
the coupled phonons play a twofold role. First they pro-
duce splittings in the electronic levels by means of
thermally activated phonons. Owing to the absence of
correlations and to the homogeneity of the heat bath these
splittings are random and their temporal mean value van-
ishes.

Second, additional phonons can be scattered by the mo-
mentary electronic splittings. If these phonons are non-
thermal a frequency-selective scattering rate will be ob-
served. The effective resonance energy is related to the
statistical distribution of these dynamical splittings.

In order to give an appropriate description of the
dynamics of this phonon scattering process a high-order
calculation is required to include the phonon-bath influ-
ences. Indeed perturbation theory in second-order Born
approximation, which has so far been used for the calcula-
tion of the scattering process in these systems, cannot ac-
count for these special phonon scattering resonances in-
duced by the dynamic Jahn-Teller effect.

The theoretical approach of the present work is based
on a Green-function method of high order, which allows
an accurate description of the dynamic behavior of the
electron-phonon interaction.

A complete theory of the frequency-dependent scatter-
ing rates, which are discussed in detail, is given. We used
the results of this theory already in a previous paper for
the calculation of thermal conductivities. A Green-
function treatment given earlier' led to a qualitative ex-
planation of the resonance energies, but failed in the cal-
culation of thermal conductivity line shapes.

In this paper we discuss the calculation of the relaxa-
tion rates within a Green-function approach via a T
matrix method. For the presentation here we present the
formulas for the acceptor I 8 case. The approach is
nevertheless common to all linear electron-phonon Hamil-
tonians. In a recent paper" we showed that donor defects
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can be described with a simplified version of the theory
presented here.

II. SCATTERING THEORY

For the formulation of a scattering problem one usually
starts with an eigenstate of an unperturbed Hamiltonian

Ho, in which the whole Hamiltonian may be written as

If we take to as a starting time the temporal evolution of
an arbitrary state in interaction representation can formal-
ly be written as

A(t)= U(t to%'t(to) (2)

l l
Ht(t) =exp — Hot Hsexp + Hot

Assuming that the perturbation is switched on adiabati-
cally at to = —oo and switched off adiabatically at
t=+ oo the initial (P, ) and final (f, ) states are eigen-
states to Ho. The final state after the scattering is given
by

= U( oo, —oo )P =SiI) (4)

Then for the time-dependent transition rate from an ini-
tial state ((i, to the final states pb one has

~b-. (t)= I &kb I
[«t o)—1]14"&+ &((}b I((}"& I

'

where the second term contributes only for it =b to the
sum. With the definition of the T matrix'

the transition probability can be written as

Pb~ ~b-a ( t ) =2~
I T~ I

'@&b &.)—
dt

+2&pb I
(('i, )lmTb, .

For the transition from a state a to all other states b one
has therefore'

I', = —2ImT„.
In the special case of a perturbed crystal I', describes the
transition from one phonon state to others onto the influ-
ence of the perturbation (e.g., electron-phonon coupling).
The phonon states are characterized by a wave vector q
and branch index A, . Then Eq. (8) reads for the relaxation
rate of a phonon,

—1

~qg ——Pqg ———2 ImTqg qg .

With the definition of the Green functions Go and 6 of

where the U matrix is defined by the integration pro-
cedure

f

U(t, to) =T,exp i J—, Ht(t')dt'
0

T, is the Dyson time-ordering operator and the index "I"
denotes the interaction picture

the unperturbed (Ho) and perturbed (H) system as

G(co)=Go(to) G—o(co)TGo(co) .

Therefore the determination of the relaxation rate [Eq.
(9)] is reduced to the calculation of the Green functions of
the crystal. As discussed before, in order to be able to
describe the dynamic scattering mechanism at the JT de-
fects in the calculations, we have to go far beyond the
usual second-order Born approximation. Therefore we
have to perform a high-order calculation of the phonon-
phonon Green functions of the perturbed system. In our
paper this will be done by the equation-of-motion method
by which a natural hierarchy in orders of the perturbation
parameter appears. '

III. DEFECT HAMILTONIAN

The Hamiltonian we will deal with in this paper con-
tains linear electron-phonon interaction terms of localized
electronic states with lattice coordinates. It can be written
in the general form as

H =g toqkbqkbqk+ g A"Qqk (12)
q, A.

where Q'j" are the phonon coordinates defined by the
phonon creation and annihilation operators for wave vec-
tor q and branch index A, ,

Qqk=&s) +bqk (13)

and A~ are bilinear in the electronic operators of the de-
fect state, the special form of which depends on the elec-
tronic symmetry structure.

For further use in this work we will specialize Eq. (12)
for acceptor defects in cubic semiconductors, which can
be described by the effective-mass approximation (EMA).
Examples for such systems are Si(In), Si(B), GaAs(Mn),
etc. The symmetry of the acceptor ground state which is
determined by the I point of the valence band is I s, it is
fourfold degenerate. From group-theoretical arguments
the electrons may interact with e- and t-type phonons
only [I's—(ex+ t2 ) JT case].

The four degenerate electronic levels can be described
by operators which can be classified according to the 15
generators of the SU(4) Lie algebra. These 15 generators
may be represented with the help of two independent spin
algebras [pj I and Ioj I with commutation relations'

[pi~pj]=2ieijkpk~ [~i~~j]=2i&ijk~k

[~;,Pk]=o
(14)

Their definition within the electronic operators is given in
Appendix A. As we will see later, these simple spin com-
mutation relations are very convenient for the Green-
function's expansion.

Taking only the fourfold degenerate acceptor ground

Go(oi) = 1
G(co) = 1

~—&o+ co —H+i e

the T matrix can be calculated via a Dyson equation of
the form'i



JOHANNES MAIER AND ERNST SIGMUND

state and its interaction with the lattice vibrations into ac-
count, the total Hamiltonian of the considered semicon-
ductor systems then reads

0=co, g br, Jbr, +co, g br, „br,

nf, ~, s =sf, 2, ~,
A A A A

k1, 2 p1, 2~ 03,4, 5 p3a1, 2, 3 ~

one gets the abbreviations

(2Oa)

. t+K, Q p, (br„+br, )
j=1

+Kepi g crk(br, „+br,„)
k=1

Here j and k are indices each of which describes the wave
vector q and branch A, . I"i is symbol for the group-
theoretical representation of the twofold degenerate (e)
and I 5 of the threefold degenerate (t) phonon modes. t(&,

and ei„are the phonon frequencies, K, and K, are the two
independent coupling constants, which depend in general
on q and A, . Expressing the symmetry coordinates of the
I 3 and I

& vibrations of the defect as projections from the
lattice phonons we end up with the interaction Hamilto-
nian of the form

2 3

&.-&h=g D. g p rf +D.pi g aksf' (b«+b, i),
q, A. j=1 k=1

together with the diagonal part of the phonons the general
structure of Eq. (12). In the following we will use this
general form for our Green-function calculations.

IV. GREEN FUNCTIONS AND THE ONE-MODE
RELAXATION RATE

For the calculation the method of thermodynamical
Green functions is used. ' The retarded Green function
for two arbitrary operators A and B is defined by

G'(t, t')=((A(t);B(t')) )"„

i e(t—t') ( [—A (t),B(t')]„)T (22)

g=1 denotes the commutator and g= —1 the anticom-
mutator. In our case we have g = 1.

8(t) is the Heaviside function and ( . . ) T the thermal
expectation value,

(A)r ——Tr(e ~ A)/tr(e ~
) . (23)

where the projectors re and st are defined as

rf =a(q)f(q) ~ (2q ni —q ni —qyniy), (17a)
The equation of motion in Fourier space is given in the
form

rf'=a(q)f(q)
V3

sf'=«q)f(q) (q.ni. +q ni »S i(

s) =a(q)f(q) (q, ni +q„ni, ),v'3

~)'=a(q)f(q) - (V.ni, +~,ni. »x y

with the abbreviations (i =x,y,z): q; =q;/
~ q ~

and

RCuq&
a(q) =

2Mc~

(17b)

(17c)

(17d)

(17e)

~((A;B)&.= ([A,B],+(([A,H];B&).
Zm

([A,B])T —((A;[B,H] ))„ (24)

«B;A &)=«A;B&) .,

A8 m= —m AB

(25)

by which a Green function is expressed by another
"higher" one and therefore a hierarchy is built up.

In nontrivial cases this hierarchy cannot be closed ex-
actly and therefore approximations have to be made.
However, there are some exact relations for these Green
functions, ' which allow one to check the approximations

M is the mass of the crystal, ((&« the phonon frequency,
and ci (A=i, t) the so, und velocity of the longitudinal (i)
and transverse (t) modes. ni; are polarization vectors.
f(q) describes the extension of the defect which leads to a
cutoff for small phonon wavelengths. The most simple
treatment of this cutoff function is within the effective-
mass approximation, ' where the acceptor wave functions
are determined by a hydrogenlike model. Considering
only the s-1ike parts of the acceptor ground state, f (q)
reads

f(q)=[1+—,(a') q ]

where a' is the so-called Bohr radius of the defect, i.e., a
measure of the extension of the defect wave function. De-
fining

(27)

In the following we will use this method to calculate the
phonon scattering mechanism in defect systems with elec-
tronically degenerate levels, where we concentrate on the
previously mentioned semiconductor examples. As al-
ready stated, for the physical nature of the phonon
scattering resonances at these electronically degenerate
systems, the following simplified picture can be construct-
ed.

According to the JT theorem the interaction with the
degenerate crystal phonons lo~ers the electronic symme-
try and creates dynamical splittings of the degenerate elec-
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—1t2

«&b«+b«, bq'+bq. » (28)

For the unperturbed crystal (H =HO) the Green-function
hierarchy is closed in second order and we get

tronic levels. However, due to all the different thermal
crystal phonons the thermal average over the ion displace-
ments Q vanishes and therefore no static sphttings can be
seen. Nevertheless there are fluctuating splittings and an
additional phonon can be scattered at such a momentary
split electronic level. From this simplified picture one can
draw some important conclusions, namely, the coupling
of the whole phonon bath splitting is expected to be
strongly temperature dependent and the fluctuations of
the splittings of the resonances will be very broad. Both
of these features are observed in experiments.

As pointed out already for theoretical considerations
the nature of these resonances implies a high-order theory
to describe the phenomena. According to Eqs. (9) and
(11) for the calculation of the relaxation rate we start with
the lattice (phonon-phonon) Grqx:n function which is de-
fined by17, is

Comparison with Eq. (11) yields for the relaxation rate

r;,' =4~„Vlm((Aq', Aq')), (31)

7 qg COqg
—N

(r (~)) = '
q, i,

(32)

Inserting Eq. (32) into Eq. (31) using a Debye model for
the phonons and performing the sum over q into an in-
tegral leads us to

Acof i„(co)c
(ri '(co))=n, g A; Im((g, ;g, )),

2pc g

where

(33)

where n is the defect concentration and V is the crystal
volume. Aq is the pure electronic part of the interaction
Hamiltonian and therefore instead of a phonon-phonon
Green function we are left the calculation of spin-spin
Green functions. For the mean relaxation time of branch
I, and frequency co the following relation holds:

~qq bu
&o, ,, ( )=

gk, , tf k
(29) c'= X 3

1

Cg

«b„+b„;b,, +b„»= ~qzbqq'bi. i.'

7r( co —
ccpq g )

2 2

4qaq'X'+ 2 2 2 2

~ (( Aqi. .Aq'X' ))

In the case of the perturbed system (H =Ho+H, ) one
gets after a simple application of (24) the exact relation

(u 4 )2~2
fi, (~)= 1+

4cg

The AJ" result from the angle-dependent integration and
are given in Appendix B. According to the interaction
Hamiltonian for the calculation of the relaxation rate only
five independent "diagonal" Green functions ((gi, gj )) are
necessary.

V. GREEN-FUNCTION HIERARCHY

For the evaluation of the Green functions we start with the following hierarchy of equations:

~«ki;ki»=g«QN»A] ki»
q, A,

where Qq is simplified to Q, the same applies to A. The following higher Green functions read:

«QM Alt »= &Q[M A] kl& +, «~fr»A] k »+y «QQ'[[k A] A'];4 »
I

7

and

«~[4 *A] 4 »= &~f[(,A] 0 l& +2&«[k A] k &&+, &&Q[k A]0 &&+g &&~Q'[[k»]»') k &&.
1

2m gt

This hierarchy of one-phonon operators can be closed exactly and yields

(34)

(35)

(
'—,' )«Q[C»A];k »= &Q[[k A] k l& + '

&~[M Al k ]& + y &&QQ'[[4 A] A'] k &&

+~qA. y &&~Q'[[41,A],A'l;ki&&+2~qi&«[ki, A];El && . (37)

Three new Green functions appear on the right-hand side. For the first one a random-phase-approximation (RPA) fac-
torization yields
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« QQ'[[4'i Al A']'4i » = & QQ'&TP([[4'i Al A']~4i)&&4i 4'i && (38)

where P(e~g;) denotes the projection on the electronic operator g;. With Eq. (38) the first Green function on the
right-hand side of Eq. (37) is closed to the original Green function in (34). The phonon part in the second function of
Eq. (37) does not commute with the unperturbed Hamiltonian (Ho). The next equation of motion therefore yields terms
of the same order,

~«PQ'[[k Al A'] ki»=
2

&PQ'([[ki Al A'] ki) &T+~qi&&QQ'[[Ci A] A'] ki&&
1

+,, ((PP [[g,,A], A ];g, ))+ g ((Pg Q"([[g,,A), A'], A");g, ))

+2((g'A[[g„A],A'];g, )), (39)

where the functions with PP' and QQ' can be closed
along Eq. (38). The higher electronic Green function of
Eq. (37) is expanded to yield

&(A[g, ,A];g, )) = ([A[g„A],g, ]),1

+ y ((Q"[A[(,,A],A"];g, )) . (40)
qll gtt

The remaining Green function all have odd numbers of
phonon operators. Therefore no RPA procedure in pho-
non space can be applied.

According to Eq. (8) the result for the relaxation rate
has to be of positive definiteness. A shortcoming of the
expansion method here is the fact that approximations
which are not accurate enough usually distort this physi-
cal property. In order to get reasonable results we
demand positive definiteness together with the validity of
Eqs. (25)—(27).

Before starting with an approximation scheme of the
higher functions we write down the various expectation
values appearing in the Green-function's expansion and
which are given already in Ref. 6. They are exact up to
O(E ) (iii=1)

( gg'), =S„.a„„.coth

5
gA, pi.

Q)qA, COqA, l 1

(42)

the exact reconstruction of the original function reads as

CO

lj Vj 9i Vl
~ (~1) Q) —Q)

(43)

The remaining parts are dealt together with the following
function.

(ii) ((Q'[A[pi, A],A']g'i)) and with the abbreviation E
for an arbitrary electronic operator one has

gj&, j=12, . 5
2

&Qg, &,=
0, jp5

(Pgj&, =O,

( PP ' )T —— 5~—5i„i„coth(coque /2k' T )

(kii ——Boltzmann factor).
For the remaining Green functions we get the follow-

ing.
(i) ((Q'A[[(i,A],A'];f i )) which contains one exact clos-

1ng part

«O'A[[41 Al A']'Ci»= —4 y VJVJrjI«Q'ci» .
j (+1)

Together with

(
'—,' )«Q'E;g » =~ '&Q'[E, g ] & + y «Q'Q"[E, A"];g &)

'

II /St

+~qi (P'[E,gi] ) 7 + y «P'Q"[E, A"];g'})) +2((A'E;gi )) (44)

Only the last term closes the hierarchy. Together with (43) one obtains

2co y (((g'[A[/, ,A],A'];g, ))+((Q'A[[(„A],A'];g, )))
q, A,

= —32 g qq, ~q'+i6 g q q q' q', ' ', &(g,;g)&.
g (+1) N —

COq P'
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(iii) « PQ'Q "[[[gl,A],A'], A" ]g'~ && expansion gives

« ~Q'Q"[f[k Al A'] A" l I » =16 1

i (&1)
i)k 9k 5qq'5%A, '

k (+1)

1 I I+ rgb g )I Il l!9I5qq "5k'"
I (~1)

1

qX

~~qk ~~q'k'
coth

2
coth

2

T

X ~inlnie+~I~I g ~,~,
l (~1) j (~1)

(46)

Now the closure is completed.
The next step is to calculate the remaining q summa-

tions in the Green-function expressions. This can be done

by converting the summations into integrations,

X'9~ lj ' ' ' =5ij~j 1'k
o

d~qk~qZk(~qk) ' 'gA, If'. . 1, 3

q

[~ —&(~)]p(co)—a(co)r(co)
[~'—&(~)]'+r(co)'

(50)

(47) Here we used the following abbreviations. With the defi
nitions

1
rk —

3 5(2m)' 2pck

The resonance terms within the integral are converted into
Cauchy-type integrals with the common relation

and

lQj, i+1, j%1
i(+1) l,j

T3kk = X ~j~j T~k~. k = g ~k~k~kA,
' A' A"

j (+1) k (~1)

X X =l7T' 0 +P X
1 1 f(x)

S'(~ n)=P f, d~qkf j.(~qk)

P~qk
coqgcoth

2

CO —Nqg
2 2

For the resulting integrals the following abbreviations are
chosen:

Ukk —= —(Tk Tk+2T3u. »
&u. =—2T~~1 —T3u.

~u. =T3~~ +T~ ~1

Ygg': 3T3gg'+ Tg Tg'

together with

5k=(4n Pck~fi ks)

6P
n

D 2 Nqk.
d~qkfk(~, k)

0 N —67 g

~'(n) =—f, d~, kfk(~qk)~,"k,

(49a)

(49b)

The functions appearing in (50) read as

4')
a(co) = g 5kS'(co, 2)[Tk+165kfiT2kR (1)],

P(cu)=2' co +5kfk(co)[Tk+165kAT2kR (1)],

(51)

(n): dCOqk fk(COqk)~qk
0

The analytical calculation is given in Appendix C.

VI. PHONON RELAXATION RATE

b(~)= —g &;(~),

5

r(~) = —g r, (~),

(53)

(54)

As a final result we get a Lorentzianlike expression for
the phonon relaxation rate (32)

b, )(co)=4(fm) +5kTkS (co,3), (53a)
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b.p( ) =16' g 5i„5iS"(,2)R (2)T3u, , (53b)

63(co)= g 5i5}„S (co,4)[R (2)Uu +S (ci),4)Xu ],

As we have expected Eq. (50) shows a resonancelike
structure. ' b, and I", however, are frequency depen-
dent. A resonance frequency may be defined if we
demand

(53c)
2co„,—b (co„,) =0 . (55)

~4(~)=4~'&'~' g 5}5if},(~)fi. (~)Xu
A, A'

bq(co)= —16iii g 5i5i S (co,3)R (3)Wu,
A, A'

56(co)= —
2 Q 5i5i 5i-S (co,3)R (2)R (2)

(53d)

(53e)

This frequency is for all considered systems very close to
co,„, the frequency of maximum scattering rate. This
can be seen in Fig. 1 where the relaxation rate and the real
and imaginary parts are plotted against the frequency.

Our final results for the Green function fulfills the sum
rules (26) and (27) as well as the symmetry relation (25)
contrary to former calculations done for these systems. '

X(Ti.~i ~i +T4u. }. » (53f) VII. COMPARISON WITH PERTURBATION THEORY

I i(co) =irirt u cath g 5}fi.(~)Ti.

I s(co)= — co coth
327r 2 Pco

2

X g 45i5}„fx(~)R'(2)

L

I 2(co) = —lyrico g 5i5},fi(ro)S" (r0,4)Xu,

I 3(co)=8fico n'g 5}„5ifg(co)R (2)Fu
A, , A,

'

I 4(co)= —Ski co coth n g 5i5},R (3)8'u,ca P~

. 2. ~~

(54a)

(54b)

(54c)

(54d)

Comparing our theory with perturbational approaches,
the results are the same in the limit of small coupling pa-
rameters (D„D,~O) as shown in an earlier paper con-
cerning the thermal conductivity. A resonance structure
as we found, however, cannot be predicted by the pertur-
bational treatment.

In the limit of small frequencies co~0 a different
behavior from the perturbational one is predicted. In this
limiting case expression (50) reduces to a co law,

3

in contrast to the perturbational result which gives a ~
dependence

2

100m p2&2g~~

gl /ItX(Tiki 3 i +T~ii i ) . (54e) X,f~(cu)+ —,f, (co) Wi,1 2 3 1

CI 2
(57)

To be in accordance with the denominator, the thermal
expectation values were expanded to higher orders.

~~
C

4a
Q

GnAs (Mn)

~
'

g I C

g r

/r

FKJ. 1. Relaxation rate in the case of GaAs(Mn): curve a is
the total relaxation rate due to Eq. (50};curve b the first part of
Eq. (50};curve c the second part of Eq. (50).

with

8 ) ——4+48D +8D

g 2=16+37D2+7D',

W'3 =20+35D'+ 5D' .

The reason for this different frequency behavior lies in the
dynamically induced splitting terms arising from the
RPA. In the perturbation theory an analogous static
splitting is absent due to the degeneracy of the electronic
ground state. Further on in this case (co~0) the validity
of the perturbation theory is questionable due to the co

dependence of the dimensionless coupling constant. This
difference between both methods in the low-frequency
limit, however, exists for the case of an electronically de-
generate ground state only. The introduction of static
splittings immediately changes the perturbational result to
a co dependence, too.

The main difference between the outlined theory and
the usual perturbational approaches, however, lies in the
fact that for the considered systems (i) a resonance struc-
ture for the scattering rate cannot be predicted by the per-
turbational treatment, and (ii) the temperature dependence
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of the results of both methods are totally different as will

be discussed later.
TABLE II. Defect properties for several acceptor types.

GaAs(Mn) Si(In) Si{8) Si(Al) Si{Ga)

VIII. DEPENDENCE ON PHYSICAL PARAMETERS

We used Eq. (50) to determine the resonance behavior
of different acceptor systems, e.g. , Si(B), Si(In), and
GaAs(Mn). The physical parameters needed in the theory
are given in Table I. They are all well defined and there is

no adjustable parameter. The Bohr radii, however, are not
very well known from experiment. Nevertheless all pa-
rameters are determined by independent experiments. The
used values of the deformation potential constants are cal-
culated from the measured ones by taking the reduction
due to the Jahn-Teller interaction into account. ' In Table
II the calculated unreduced values are given.

Before comparing the calculated resonance energies
with experimental values we will focus on measurements
done several years ago by Schad. For the discussed ac-
ceptor systems he claimed for the resonance frequency the
experimentally found relation

(58)

whereby the dependence on the static dielectricity con-
stant e by considering only two different physical systems
(GaAs and Si} is not convincing.

To determine the resonance frequency we have to dis-
cuss expression (50). This frequency is given when expres-
sion (50) reaches it maximum value. The numerical cal-
culations show that for all acceptor systems b,(co) &&co,

except at a very narrow range around the resonance fre-
quency. This fact enables us to look for a more simplified
expression for the resonance frequency than that given by
(50), namely, it may be determined by the sign change of
h(co). This change is caused by the frequency-dependent
integrals S and S . In all considered systems the term
hz dominates and therefore the following relation holds
fol co~~.'

S (co„,„2)=0.

Due to the cutoff the assumption coD~ao is physically
reasonable and therefore in this case expression (59}can be
evaluated to give [di ——(a "/2ci ) j

D, (eV)

D, {eV)
a (A)

0.53
0.69
6

1.47
2.32
7.3

2.13
3.20

13.6

2.15

3.33
10.9 10.6

5 5 di.co 3

16 (1+deco') 8 (1+deco')'+ 2+

Igloo G gQ)
+ 2~+2 (I+dico ) (1+dico )

TABLE III. Values of the resonances energies of the con-
sidered acceptor systems. The parameters used for the calcula-
tion are given in Tables I and II.

The only variable which appears is (di )' co=(a'/2ci )co,

and (I+dico ) can be approximated by 1 and therefore
for the solution of (60) one gets

res
1

(61)
0

This means we get the same Bohr radius dependence as
Schad deduced from the experiments.

In the cases of acceptors the solutions of (60) and the
resonance frequency calculated directly from expression
(50) are nearly identical. The results compared with ex-
perimental values are given in Table III. The theory,
which contains no fit parameter, reproduce the experi-
mental values quite well. For the hypothetical case of
vanishing Bohr radius the frequency integrations can only
be evaluated up to the Debye frequency coD. In this case
from (60) we get

COr~=0. 83ND .

One sees that even in this limiting case the resonance
character of the scattering rate is preserved in contrast to
the perturbational result (57).

Figure 2 shows the relaxation rate for Si(In) together
with the perturbational result and the weak coupling limit
approximation. The second (small) maximum at approxi-
mately 2co„, appearing in the result of our theory is due to
the high-order calculations and gives two-phonon contri-
butions which, however, are strongly suppressed by the
cutoff function. Figure 3 shows the relaxtion rate for
GaAs(Mn} where no such additional peak appears.

As mentioned before the most striking difference be-

TABLE I. System parameters of the semiconductor crystals
considered in the paper.

GaAs Experimental
values {meV)

GaAs(Mn)

3.1+0.3

Si(In)

4.2+0.2

Atomic weight
m~ (MeV)

p (kg/m )

c, (m/sec)
c, (m/sec)

72.3
29.76

5.3~ 10'
5.21~10'
3.0~ 10'

28.1

56.77
2.33 ~10'
9.1y 10'
4.55 y 10'

References

Calculated form
the change of
sign of S (~,2)

21,2

2.3



JOHANNES MAIER AND ERNST SIGMUND 34

.—- Si ({n)

2„)012

10

%e {meV)

FIG. 2. Relaxation rate in the case of Si(In): curve a is the
total relaxation rate due to Eq. (50); curve b the perturbation
theory (Ref. 9); curve c the approximation of Eq. (50) for small

D„D,.

0 10 20 30

T{Kj
FIG. 4. Temperature dependence of the maximum scattering

rate.

tween the perturbational result (57) and our theory (50)
lies in the temperature dependence which is completely
absent in perturbation theory whereas in the Green-
function approach the maximum scattering rate as well as
the linewidth are strongly temperature dependent. This is
physically reasonable from the coupling of all phonons of
the crystal which act as a heat bath. In the case of
GaAs(Mn) this temperature dependence is shown in Fig.
4. The influence of temperature on linewidth and reso-
nance frequency is plotted in Fig. 5. There is no obvious
trend for the resonance frequency but the linewidth shows

a maximum at some 20 K where the resonances in

thermal conductivity are observed.
In Fig. 6 resonance energy and half-width of the reso-

nance curve are drawn against the Bohr radius with the
other parameters of Si(In) fixed. The resonance energy
shows the behavior of Eq. (61) whereas the half-width

C
~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ eggs ~ Her ~ ~ ~ ~ ~

~ ~ ~

Vl:
~balf

C

Xl
has0

3

'hu) {meV)

C ~~ maw ~

I

20
l

T (K)

FIG. 3. Relaxation rate in the case of GaAs(Mn): curve a is
the total relaxation rate due to Eq. (50); curve b the approxima-
tion of Eq. (50) for small ~'s; curve c the approximation of Eq.
(50) for small D„D,.

FIG. 5. Temperature dependence of the resonance frequency
and linewidth: curve a is the resonance frequency; curve b the
linewidth; curve c the energy values, where the scattering rate is
half of the maximum value.
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b
I

b
Q.

I

b
I

2-
b

I

b
Q Q.

I I

b

FIG. 6. Bohr radius dependence of the frequency and
linewidth: curve a is the resonance frequency; curve b the
linewidth; curve c the energy values, where the scattering rate is
half of the maximum value.

c4
b

Q Q

changes at about 10 meV. This is due to the change in the
line shape also visible in the comparison of Figs. 2 and 3.

IX. CONCLUSIONS

In this paper we investigated a specific resonance mech-
anism which is due to the dynamic interaction between
electronic states and phonons and therefore of nonadiabat-
ic origin. We concentrated our calculations on acceptor
defects in cubic semiconductors where these resonance
structures were detected for the first time in thermal con-
ductivity measurements. ' Nevertheless, the require-
ments for this type of resonances, i.e., a defect with a
weak JT interaction should also be present in other sys-
tems.

As we have shown the described phonon scattering
mechanism cannot be treated by usual perturbation
theory, it requires a higher-order calculation to include
the influence of all the coupled phonon modes. It is just
this influence which leads to a very broad and strongly
temperature-dependent scattering rate. This behavior of
the scattering rate on the other hand is responsible for the
strong influence on thermal conductivity which even can
lead to a minimum in the conductivity curves. ' In a
forthcoming paper we plan to study the influence of elas-
tic and magnetic fields on the behavior of the systems and
show how these special dynamics can be destroyed by ap-
plying static fields to the defects.
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APPENDIX A: SU(4) OPERATORS

The commutation relations between the SU(4) operators
as well as the definitions of the operators
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(i=1,2, ... , 15) are given in Table IV. The SU(4) opera-
tors can be expressed in Fermi creation and annihilation
operators c;, c; (i=1,2,3,4) of the electronic I ]] state

P] =(C]C3+C3C])+ (C2C4+C4C2)

P2 l C3C1 —C]C3)+l(C4C2 —C2C4) T

P3= ~i~ ~ +~2~2 —C3~3 —C4~4?

CT] =(C ]C2+C2C] )+(C3C4+C4C3),
~ t f ~

O2 i (C2——C] —C ]C2)+i(C4C3 C3C4),

O3 ——t-" ~C ~
—CPC2+C3C3 —C4C4,

P ]CT ] = (C i C4 +C 4C 1 ) + ( C 2C 3 +C 3C 2 ),
~ f ~ ~

P]CT2 = l (C 4C] —C ]C4) + l (C 2C3 —C 3C2 ),
P](T3—(C ]C3 +C3C] ) (C2C4 +C4C2 )

P21T] =l (C4C] —C ]C4) + l (C 3C2 —
C2C3 ),

P2CT2 = —(C ]C4+C4C] )+(C2C3 +C 3C2)

P2lT3 = l (C 3C ] —C ]C3 ) + l (C 2C4 —C 4C2 )

P3lT] —(C ]C2 +C2C] ) (C 3C4+C4C3 )

TABLE V. Angle-dependent integrations. j denotes the pho-
non type, j is the branch index.

J =2

j—4

j=5

—mD
16
45

—mD
l6
45

—vD 2
45

45 mD,2

—mD
16
45

—mD 2
15

—mD

—mD
16
45 T

—n.D16

—wD45

—mD,
9
—m.D,2 2

9
—mD,
2 2

9

—m.D,
9

p3]T2 ——l ( C 2C ]
—C ]C2 ) + l ( C 3C 4

—C 4C 3 )

P30 3 —C )C ] C 2C P C 3C3 +C4C4

APPENDIX 8: DEFINITION OF THE FUNCTIONS
AJ" AS RESULT OF THE ANGLE INTEGRATION

All angle-dependent integrations appearing by convert-
ing sums into integrals can be solved analytically. The re-

sults are given in Table V.

APPENDIX C: CALCULATION OF THE INTEGRALS FOR THE RELAXATION RATE EQUATIONS (49a)—(491)

Restricting ourselves to the simple Lorentzian form of the cutoff function, i.e. [d2 =(a'/2C2 ) ],

f2.(~,2. ) =(1+d2.~,'2. )
'

the temperature-independent integrals result in rational functions. So they may be easily solved.
The following equation is needed for the solutions

1

(x —a )(1+dx )

d 1 1 1 1 1

2 41+da (1+dx ) (1+da ) (1+dx ) (1+da ) (1+dx )

1 1 1 1

(1+da ) (1+dx ) (1+da ) x —a

The calculation of the various integrals is done with the following recurrence relations:

n —1
Cd a

COD ?I —2

+a dco or n &2,
p CO —Q

f 1 1
l

co+a
—a 2a

[
cd —a

d~, , = —,'ln ~' —a'
co —a

1 1
did = arctan (ply d ),

(1+d]d )

6)D ~t?g

C

0 (1+d 2)n fPl —1 B
dN

d (2n —m —1)

??I —2

(1+de )"

m —1

( 1+d~2)n —1
for n~2m —1 .

1 ~D m 2
1 ~D m -z

dQP for n =2m —1,
p (1+d 2)n —1 d p (1+d 2)n
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The calculation of the temperature-dependent integrals
cannot be done analytically. A numerical integration is
impossible due to CPU time considerations. We therefore
developed the coth part

2k

coth x= —+g, x
x „,(2k)!

where B„are Bernoulli's numbers.
This series converges for

~

x
~ & ~. Even for k & 5 good

results are received in accordance with numerical calcula-
tions. Together with this series no new type of integrals is
needed, therefore this method was chosen despite other
methods with better convergence conditions. All the in-
tegrals are of Cauchy principal-value type.
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