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We perform a dynamical simulation of photogenerated excitations in trans-polyacetylene by using
the Su-Schrieffer-Heeger extended Hubbard model. We find that two possible excited states may be
photogenerated depending on the energy gained by the system. If the system energy is higher than a
critical value, soliton-antisoliton pairs are photogenerated and are free to separate, leaving behind a
central breather mode. If the system energy is lower than the critical value, the soliton-antisoliton
pairs will bind and form a different central oscillation: an exciton-breather. The critical energy is
slightly above the soliton pair-creation energy. We discuss our results and compare with experi-

ment.

INTRODUCTION

It is well known' ~* that the Coulomb interaction plays
an important role in the formation of the soliton in
trans-polyacetylene [trans-(CH),]. Many authors’~® have
discussed the static effect of electron-electron Coulomb
interaction in the framework of the Su-Schrieffer-Heeger
(SSH) Hamiltonian,’ but dynamical effects have as yet not
been considered. Recently, Rice and Howard!®!! indicat-
ed through a semiphenomenological calculation that pho-
togenerated solitons will bind and form a solitonic exci-
ton. Grabowski, Hone and Schrieffer® found analytically
through a first-order perturbation treatment that there ex-
ists an excitonic bound state which has lower potential en-
ergy than a well-separated soliton-antisoliton pair, and
they concluded that oppositely charged soliton-antisoliton
pairs do form excitonlike bound states.

Recently experimental findings'?>~!° support these con-
clusions. The strong temperature dependence of the pho-
toconductivity and the absorption peak observed at 1.35
eV suggest that the photoexcited electron-hole pairs decay
into different excited states at different temperatures. The
infrared absorption peaks at about 500 cm™! in trans-
(CH), and at 400 cm~! in trans-(CD),, which were as-
signed to the pinned translation mode of the soliton by
comparison with infrared spectra of chemically doped
samples, may be interpreted as vibrational modes around
the excitonlike bound state.

Many numerical dynamical simulations'®~!° have been
performed using the pure SSH model to explore the
dynamical features of soliton formation. Perhaps the
most interesting one is the work done by Bishop et al.'®
They found that the soliton has a maximum velocity on
the order of the sound velocity, and thus the kinetic ener-
gy has an upper limit, and the excess energy of the system
forms a breather, leaving behind well-separated photogen-
erated solitons. They claim this breather to be responsible
for the 1.35 eV absorption peak. However, since there is
no essential difference between photogeneration and dop-
ing in the pure SSH model calculation, and the 1.35 eV
absorption peak is absent in the case of doping, it is neces-
sary to include the effect of electron-electron interactions
in order to adequately test this claim.

In this paper we present our dynamical simulation re-
sults for photogeneration in the presence of electron-
electron interaction in trans-polyacetylene. We find that a
photo-induced electron-hole pair may decay into an
exciton-breather state if the system energy is less than the
creation energy of a well-separated soliton pair and
greater than that of the excitonic bound state. (The sys-
tem energy is measured with respect to that of the perfect-
ly dimerized ground state in this paper.) It is necessary
here to draw a clear distinction between this ‘“‘exciton-
breather state” and the central breather found by Biship
et al.' The exciton breather is a symmetric oscillation of
the bound soliton pair along the chain about the exciton
center. Such a mode is also found in photoexcited states
of nondegenerate linear chains.?® If the system energy is
above the soliton pair-creation energy, the soliton pairs
are generated and the central breather mode of the
separated soliton-antisoliton pair is created. The soliton
pairs are not free to separate, however, unless the system
energy is large enough. In the following sections we
present the model Hamiltonian, the numerical technique,
and the main results, respectively. A discussion is present-
ed in the final section.

MODEL HAMILTONIAN

The model Hamiltonian employed for our calculation is
the standard SSH Hamiltonian with added extended Hub-
bard terms. These include two terms, an on-site electron-
electron term and a nearest-neighbor interaction term.
Only the first neighbor term is considered

H=HO+H1 ’ (la)
Hy=—3 t,,(c,:r+1‘ac,,,(,+H.c.)
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where c,:,, and c,, are the creation and annihilation
operators of electrons with spin o on site n, respectively;
to is the hopping integral for the undimerized case and a
is the electron-phonon coupling constant, with u,
representing the displacement from the undimerized posi-
tion of the nth (CH) group; K is the lattice spring con-
stant and M is the mass of the (CH) group. The coeffi-
cients U and V represent the strengths of the Coulomb in-
teraction.

Dimerization owing to Peierls instability opens a gap in
the 7 energy band structure at the Fermi surface. The
number of 7 electrons of the system is equal to that of the
sites, and all the 7 electrons are in the valence band below
the gap in the ground state. The ground state is degen-
erate, and this degeneracy is not destroyed by the
Coulomb interaction. Thus the condition for generation
of solitons remains. After an electron-hole pair is photo-
generated the single electron spectrum is changed by the
lattice distortion. The system potential energy is lowered
and a charged soliton-antisoliton pair is formed. The sin-
gle electron-energy spectrum in the presence of soliton
pairs has two localized levels located symmetrically with
respect to the gap center. These two levels are shifted
from the top of the valence band and the bottom of the
conduction band. Each of them is singley occupied with
opposite spins.

The photogeneration of neutral soliton pairs is forbid-
den in the direct process and is almost forbidden in the in-
direct process.?! ~2* Oppositely charged soliton-antisoliton
pairs can be generated and can be described using the fol-
lowing spin-singlet state,?>®

V.=V, _+V¥_,)/V2, (2a)
with

Wog=clich | V) (2b)
and

| V)= ["c[c,ffc,jl 10), (2¢)

where cia (cig) is the creation operator of an electron

with spin o in a bonding (antibonding) localized state with
the energy, lower (higher) than the gap center, and the
operator ckg creates an electron with spin ¢ in the molec-
ular orbital k inside the valence band, which is fully occu-
pied by N —2 spin-paired electrons, where N is the num-
ber of  electrons of the system and is even.

Following Ref. 8, we first transform the site electron
operators into molecular-orbital operators,

0= > AroChig - (3)
<

Here the summation of k'’ is over the entire electron spec-
trum. Since the electron distributions for each spin are
the same in this case, the spin degeneracy of the single
electron energy is maintained. We will drop the spin sub-
script o below. Then the electron part of the system ener-
gy of the excited state W, can be obtained directly,

=(V, |H?|¥,)=¢ep+¢, , (4a)
with the Hartree-Fock part,
go=7((Wo_ [HY W, )+(V__ [H|W_,)), (4b)
and the correlation part
ge=T((W,_ |H®|W_ )+ (¥_, |H® W, )). (40

To write the explicit results in a short form, we define
charge-density parameters and bond parameters at each
site as

Dy=73 |as|?,
k
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where k is summed over the valence band. The electron
energy can be expressed as,
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NUMERICAL TECHNIQUE

In order to calculate the single electron-energy spec-
trum, we make use of the mean-field approximation to get
the effective Hamiltonian of the electrons.

Pr+P; |
Heff_z ‘—tn—V_nz—” C,,+1Y0Cn’a+H.C.
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Dn+ n- + —
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To eliminate end effects the perlodxcal boundary condi-
tions are used, Dy, ,=Di, Di =Djy. The matrix form
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of HS is Hermitian and tridiagonal. It can be diagonal-
ized by a unitary matrix 4, whose elements a,’,‘ are the
ones defined in Eq. (3). Since the elements of the matrix

By n={0| cuoHibre) |0)

contain a,f the matrix equation can be iterated to obtain
self-consistency. On practice, we find that a self-
consistent result can be obtained if we assume the matrix
is real and symmetric. This means P, are real and the
transformation matrix A is real orthogonal, which is con-
sistent with the original assumption. We also find that
charge-conjugation symmetry is not broken in this partic-
ular case when the Coulomb terms are included. This
symmetry can be seen from Eq. (7). If we assume
D;f=D; =+ in the H;, all the diagonal elements of
h"’? become equal. Recalling that the matrix form of
H is real symmetric tridiagonal, if {a,{‘} (n=1,...,N)
is an eigenvector of the matrix, then {(—1)"a})
(n=1,...,N) should be another eigenvector of the ma-
trix. This immediately implies that a;f =(—1)"a, =a?,
D} =D; =+, and +(P;} +P; )=P!, and self-consistency
is obtained. The constant charge density is a result of Eq.
(2), where the soliton (antisoliton) has equal probability to
be positively (negatively) charged or negatively (positively)
charged. The above analysis allows us to simplify our
computation procedure. The equal constant elements of
h,n have no effect on the calculation except to shift the
energy scale, so we set all the 4, , =0 below.

The equation of motion is integrated within the adia-
batic (Born-Oppenheimer) approximation. This approxi-
mation is justified by Monte Carlo simulation and the
quantum fluctuation studies in the polyacetylene case if
the Coulomb interaction strength U is less than 214.2%%5
This is reasonable since the ion mass is much greater than
the electron mass and the Peierls gap is less than the
optical-phonon energy.2

For convenience we define 7),, the staggered displace-
ment order parameter, which is related to the real dis-
placement u, by

Np=(=1""lu, . ®)
The equation of motion reads

Mijy =K (20 + 0 11+ )+Fr (%)
with

Fi—_ a?’n (W, |[H | W,) . (9b)

The major numerical problem is the calculation of the
electron force term F¢. We use the matrix form to illus-
trate our method. Suppose H is a real symmetric matrix,
whose elements are functions of 71, and a}, which are the
elements of 4. If A is the transformation matrix, which
is real orthogonal, and A is the diagonalized matrix,
whose elements are A, we have

A=A'HA,
with
4'4=44'=1,

(10a)

(10b)

where A’ is the transpose matrix of 4. Differentiating
both sides of Eq. (10a) with respect to 7,, we have

(11a)

where the elements of G have the following form,
k

da;
8kp=2, an al(hp,—Ag) .

(11b)

Using the expression (6b) and the relation (10b) and notic-
ing that the off-diagonal terms of 0A /97, and the diago-
nal terms of G are all equal to zero, we derive the follow-
ing expression for aP, /d7,,

opP, at oP}
=2.Kn1 |— - , (12a)
anm ; ml aflm 817,,,
with
Kn,1=2(afa,‘.’+1+ai‘a£+1>
k.p
X . (alkaf+\+azkaf+1), (12b)
A —2,

where the k sum is over all the occupied states and the p
sum is over all the unoccupied states. From (12b) it is
clear that K, ; are symmetric about »n and / and only de-
pend on the eigenvalues and the eigenvectors obtained
from Eq. (7), so we only need to calculate them once for
each time step prior to calculating the derivative. Then
the derivatives of P, with respect to different 7,, can be
obtained through a simple iteration method or by solving
a system of linear equations. We should point out that
the formulations of (12) are similar to the formulae from
the first-order perturbation theory, except the expressions
here for P, /97, are exact. da, /dm,, can be calculated
similarly. The use of Eq. (12) greatly reduces the CPU
(central-processing unit) times and makes the present
simulation possible.

As pointed by Kivelson and Heim,® the Hamiltonian in
Eq. (1) is unstable with respect to a shrinking of the chain
length in the presence of soliton pairs. We add an extra
term in addition to the usual linear term!'® to avoid length
shrinking:

H'=A4|3 (up—ty ) +S(uy—uo)?+Suy+uo) |,
n

(13)

where the parameter 4 is determined by minimization of
the energy with respect to the lattice constant in the per-
fectly dimerized ground state, and the parameter S is
chosen to be 0.1 here. The effect of this extra S term is
equivalent to that of adjointing a spring to each end of the
chain. These terms do not affect the lattice distortion pat-
terns in the calculation.

NUMERICAL RESULTS

We first study the potential energy in the presence of a
soliton pair. In the continuum model®’ there is a solution
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FIG. 1. Potential energy (in units of Ay) versus the separation
of the soliton-antisoliton pairs, 2x, (in units of the lattice con-
stant a). The small potential well makes the vibration of an ex-
citon possible.

for the lattice displacement patterns corresponding to a
soliton-antisoliton pair which can be used approximately
here,?®

u(x)=ug(1+ko&o{ tanh[ko(x —xp)]
—tanh[ky(x +x0)]1}) , (14a)
with

2[00
; tanh(2koxg)=koép ,
0

0= (14b)
where & is the coherence length, a is the lattice constant,
Ay is the gap parameter for the perfectly dimerized chain,
uo is the magnitude of the uniform dimerization, 2x, is
the soliton-antisoliton separation, and k is related to x,
through Eq. (14b).

In Fig. 1, we plot the potential energy versus the
separation of the soliton-antisoliton pair, 2x,. The curve
can be described approximately by a function

c d

V(XQ)=—““+_‘2‘ .
X0 Xp

With analogy to classical mechanics, lattice relaxation
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FIG. 2. Time evolution of the potential energy. The total en-
ergy of the curve (a): E,=1.963A, (initialized from the dimer-
ized state); the curve (b): E,=1.7693A,. For each curve the
ranges of the ordinate is from 1.3A, to 2.0A,.

after photoexcitation depends on the total energy gain. If
the total energy is below the height of the potential well
the excitation will be locally trapped. We perform our
simulation for different total system energies.

The basic excitation for each simulation was the mov-
ing of an electron from the top of the valence band to the
bottom of the conduction band, with an energy difference
of 2Ay. (Owing to the Coulomb interaction, the total en-
ergy gain is smaller than 2A,. For example, E, =1.963A,,
when U =4.0 eV and V' =1.5 eV.) Two methods can be
used to consider lowering total system energies. We can
set all the velocities to zero after several time steps, or, in-
stead of starting from a perfectly dimerized case, we can
start from some other lattice configuration by means of
Eq. (14). The first method may be interpreted as resulting
from the emission of phonons during the relaxation pro-
cess, and the latter can be related to the instanton ap-
proach,? wherein the lattice fluctuates owing to quantum
effects before it absorbs a photon whose energy is less
than 2A,. The two methods are equivalent in the numeri-
cal calculation.

The simulations have been performed for different sets
of U and V in a chain of 40 atoms. We focus on a typical
set, U=4.0 eV and V'=1.5 eV. The other parameters
used here are 1(=2.5 eV, a=4.82 eV/A, uy=0.1 A, and
K =18.17 eV/A%. The calculated gap parameter
Ap=2.52 eV, which is enlarged by the V term. The
creation energy of the well-separated soliton-antisoliton
pair is about 1.42A,, and the creation energy of the exci-
tonic bound state is about 1.37A,. For these parameters
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FIG. 3. As in Fig. 2. The curve (c): E,=1.5311A; (d):
E,=1.4526A¢; (e): E,=1.4458A, (): E,=1.4389A, (g):
E,=1.4325A,; (h): E,=1.4265A,; (i): E,=1.42104Aq (j):
E,=1.4157A¢; and (k): E,=1.4110A,. The range of the ordi-
nate in each curve is from 1.35A, to 1.45A,, except for the top
one, which ranges from 1.35A¢ to 1.55A,.
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the dynamical simulations were performed under the fol-
lowing sets of system energies: (a) E,=1.963A, (initial-
ized from the dimerized state), (b) E,=1.76934,, (c)
E,=1.5311A,, (d) E,=1.4526A,, (e) E,=1.4458A,, (f)
E,=1.4389A,, (g) E,=1.4325A,, (h) E,=1.42654,, (i)
E, =1.42104, () E,=1.4157A, and (k) E,=1.41104,.

Because the dynamics are very sensitive to the system
energy, we must ensure that the energy is conserved pre-
cisely during the calculation. We use a multistep
method*® to integrate the equation of motion so the calcu-
lated system energy fluctuates within 10™%A, (i.e. the rela-
tive error of the energy is less than 10~°). The time evo-
lution of the system potential energy has different features
for the different cases. We plot their behaviors in Figs. 2
and 3. Figure 2 has two curves representing case (a) and
case (b). The ordinate of the figure represents the poten-
tial energy and ranges from 1.3A, to 2.0A, for each inter-
val. Figure 3 has nine curves corresponding to cases
(c)—(k) from the top to the bottom, respectively. The sys-
tem energy is stepped down from the top to the bottom.
Each interval of the ordinate is scaled from 1.354; to
1.45A, except the top large one, which is scaled from
1.35A0 to 1.55A0.

We first consider the lower-energy curves, (i), (j), and
(k). The system energies of these three cases are near or
lower than the soliton pair energy. They clearly exhibit a
periodic breather behavior. To see this in detail, we
display the time evolution of the optical components of
the staggered disPIacement order parameters,'® which are
defined as y,=+(21,+1,41+7,_1), in a typical cycle
for case (j) in Figs. 4 and 5. In Fig. 4, we see that the ex-
citon breather expands from the time T =116, via
T =125 and T =137 to T =144 (in units of 1.25x 10"
sec), while the system potential energy goes from a local
maximum through a local minimum and another local
maximum, then to a shallow local minimum. In Fig. 5,
we see that the breather shrinks from T =144 to 170,
while the system potential energy goes through a similar

| 38
SITE

FIG. 4. Typical exciton-breather expansion cycle, for case (j)
in Fig. 3 (E,=1.4157A,). The abscissa is the site index »n, and
the ordinate is the optical components of the staggered displace-
ment order parameters, y,. The solid line, T =116 (in units of
1.25% 10~ 1%); the dotted line, T =125; the dashed line, T =137;
and the dot-dash line, T =144. The dotted line represents a lat-
tice configuration which has a local minimum of the potential
energy.
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1 38
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FIG. 5. (Follows Fig. 4). The exciton breather in contraction.
The solid line, T =144; the dashed line, T =150; the dotted
line, T =161 (a local minimum potential-energy configuration);
and the dot-dash line, T =170.

sequence. The periodicity for case (k) is about 53, is about
54 for case (j), and is about 55 for case (i), corresponding
to #iw~500 cm™!, in agreement with the observed 500
cm~! mode in the infrared.!> (When U =4.0 eV and
V =3.0 eV, the average periodicity is about 49.) It is also
interesting to note from the Figs. 4 and 5 that there exists
a small central breather feature around the local
minimum energy configuration (7T = 144).

Next we turn to cases (c) and (d). We see from Fig. 2
that the time evolution of the potential energy of these
two curves has different features from that of curves (i),
(), and (k). We find no exciton-breather feature in this
energy region, but rather a separated soliton-antisoliton
pair is formed, and the central breather between the
soliton-antisoliton pair appears. Diagrams of the process
at different times for each case are plotted in Figs. 6 and
7. Figure 6 corresponds to case (d). The three curves
represent the lattice configurations at 7'=209. T =216,
and T =223, respectively, with the potential energy reach-
ing a local minimum at 7'=216. We find the soliton-
antisoliton is quite static, in a period of nearly 200 time
steps the pair remains in the same positions, and only the

1 38
SITE

FIG. 6. A central-type breather is located between a quite
static soliton-antisoliton pair. This is case (d) in Fig. 3
(E;=1.4526A,). The solid line, 7 =209; the dotted line,
T =216 (a local minimum potential-energy configuration); and
the dashed line, T =223.
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FIG. 7. A central-type breather is located between a well-
separated soliton-antisoliton pair, which vibrates along the chain
with a long periodicity. [ E,=1.5311A,, corresponding to case
(c) in Fig. 3.] The solid line, T =203; the dotted line, T =210 (a
local minimum potential-energy distribution); and the dashed
line, T =217.

central breather between them oscillates. Figure 7 corre-
sponds to case (c), which has a higher system energy than
that of case (d). We can see from the figure that the
soliton-antisoliton pair now has large separation, but is
still confined and has a large-scale vibration along the
chain with a much longer periodicity than that of the cen-
tral breather. The reason for the confinement is partially
owing to the Coulomb attraction and is partially owing to
the fact that the central breather consumes the excess en-
ergy, which would other wise appear as kinetic energy of
the solitons.

The salient difference between the low-energy (Figs. 4
and 5) and high-energy (Figs. 6 and 7) cases is that the
former depicts an exciton oscillating about the center of
the chain while the latter depicts a fully formed soliton
pair with an oscillating breather state superimposed upon
them. It is clear that in the low-energy cases the oscilla-
tion is in the width of the distortion while in the high-
energy cases the separation of the solitons may either
remain fairly constant (Fig. 5) or may increase (Fig. 6),
but the oscillating feature is that of the central atoms of
the chain only.

In Figs. 8 and 9, we compare the time evolutions of the
single electron spectra of cases (j) and (d). We plot only
the top three levels below the gap center. In Fig. 9, the
top state of case (d) becomes a midgap state owing to the
appearance of the soliton-antisoliton pairs. The next state
in the valence band is shifted into the gap and oscillates
with the same frequency as the central breather. In Fig.
8, the top state for case (j) oscillates near the gap center
with the same frequency as the exciton breather. We can
conclude from the above descriptions that the two types
of breathers have different origins. It is also interesting to
note that the next state in the valence band for case (j) os-
cillates near the gap edge, but has a higher frequency than
that of the exciton breather.

We consider higher system energies in cases (a) and (b).
In these two cases (see Fig. 2), the soliton-antisoliton pairs
are no longer confined, but are free to separate, leaving
behind a central-breather oscillation. In comparing these
two cases we find that the breather amplitude and the sol-

FIG. 8. Time dependence of the single electron-energy spec-
trum for case (j) (E,=1.4157A,). Only the top three levels
below the gap center are plotted. The top level oscillates with
the same frequency as that of the exciton breather. The second
top level oscillates with a higher frequency than that of the top
one.

iton velocity in case (a) are larger than those in case (b).
In Fig. 2, we can see that the energy oscillations become
weak at times near 7 =160 in curve (a) and at times near
T =220 in case (b) because of the collisions of the soliton
pairs. This also implies that the soliton velocity is higher
in case (a) than in case (b).

Cases (e)—(h) are in a transition region with a mixture
of the properties of cases (d) and (j). The vibration of the
exciton breather slows and a central breather begins to ap-
pear as the system energy becomes large. We do not
describe these cases here in detail.

We may summarize this section as follows: There are
three major regions of different dynamical behavior de-
pending on the total system energy. An exciton breather
appears if the system energy is between the soliton pair-
creation energy and the low-energy exciton state. As the
system energy increases it is energetically favorable for
the exciton breather to dissociate into a soliton-antisoliton
pair. In this energy region the soliton-antisoliton pair
forms, but is confined and oscillates along the chain with
a large periodicity, and a central breather mode appears
between the pair. At higher system energies, the soliton-
antisoliton pair starts to separate, and the central breather
still exists. This latter feature is also found in pure SSH

0.0

ENERGY

N . N\ A N\ ~ r
-~ 7/ NNy . o S
TS RN WA RO AN N NS

1 1 1
(o] 60 120 180 240
TIME (units of 1.25x 10™'®sec)

FIG. 9. (As in Fig. 8) time dependence of the single electron-
energy spectrum for case (c) (E,=1.53114). The top level be-
comes a midgap state owing to the soliton-antisoliton pair, and
the second top one oscillates near the gap edge with the central
breather frequency.
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model simulation,'® so the main effect of including the
Coulomb interaction is to introduce the possibility of
photogeneration of an exciton-breather state.

DISCUSSION

It is worthwhile to point out that a similar result of
finding it energetically possible to split the breather into a
soliton-antisoliton pair has also been obtained in the
driven sine-Gordon system by Lomdahl et al.>! In their
paper they concluded that large driving forces cause the
breather to split into a kink-antikink pair while for small
driving forces the breather enters stationary modes. This
similarity gives us reason to believe that the exciton-
breather state is an essential excitation in the SSH extend-
ed Hubbard model, and one would be able to obtain the
explicit expression of the thresholds for the three regions
described above if an analytical solution for the exciton
breather is available.

The agreement of the exciton-breather vibration fre-
quency with the observed infrared activity “pinning”
mode at 500 cm ™! is a main result of this paper. Howev-
er, the weak dependence of the exciton-breather frequency
on the system energy suggests that the interpretation will
survive the quantization of the exciton-breather energy.
The dissociation temperature of the exciton into the oppo-
sitely charged soliton-antisoliton pairs was estimated to be
120 K by the calculation of the exciton binding energy.?
We are unable to estimate this temperature from our
dynamical simulations but we believe that the dissociation
temperature can be obtained through quantization of the
breather energy. The temperature dependency of the 500
cm™! “pinning” mode and the photoconductivity are fur-
ther evidence of the existence of the exciton breather. The
overall neutral exciton breather is not able to give photo-
conductivity, but is the cause of the “pinning” mode.
This is the reason that the 500 cm~! mode and photocon-

ductivity cannot “coexist” at the same temperature (see
Fig. 2 of Ref. 13).

The strong temperature-dependent absorption peak
(high-energy peak) at ~1.35 eV in the photoexcitation®>*?
has been a puzzle for a long time. Because the exciton
breather will dissociate at high temperature, and also be-
cause both the second top level in the valence band and
the second bottom level in the conduction band shift into
the gap and oscillate (see Fig. 8), a natural interpretation
should be to attribute this peak to the electronic transition
between these two states. This peak has been interpreted
as the electronic transition between the corresponding
states in the presence of the central breather!® (see Fig. 9).
A possible solution is some sort of combination of the two
interpretations. Noticing that the average energy differ-
ence between two gap edge states in the exciton-breather
case is about 1.82A, which is smaller than that in the cen-
tral breather case (about 1.88A,), that the decay time of
the exciton breather is expected to be short, and that the
exciton breather is strongly temperature dependent, and in
comparison with the experiment results,’>*® we believe
that the exciton breather plays a major role for the high-
energy peak at low temperature and at short times while
the central breather is responsible for the bleaching peak
at high temperature and at long times.
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