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Calculation of corrections to Fresnel optics from density response
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&e develop a computational scheme for the Feibelman d parameters, which characterize the sur-

face corrections to Fresnel formulas at a smooth jellium surface. The d parameters are determined

from the nonretarded electronic density response to a long-wavelength field. %e find this density

response via the time-dependent Hartree approximation, which in turn requires the solution of a

one-dimensional integral equation. The integral equation is analyzed in Fourier space, which allows

us to isolate explicitly the nonanalytic structure in the kernel and to avoid the difficulties of long-

ranged Friedel oscillations in the real-space kernel. The detailed formulas and procedures necessary

to produce an efficient yet accurate computer code are described. As an initial illustration of the

method, we calculate the linear dispersion coefficient of surface plasmons in a single, finite-step bar-

rier model for the electrons. The results are compared to earlier calculations and to infinite barrier

values. The evolution of the dispersion coefficient with barrier height shows interesting structure

below the threshold for photoemission.

I. INTRODUCTION

In recent years there has been considerable theoretical
work on the linear response of metal surfaces to electro-
dynamic fields. The analysis of a variety of experimental

probes has led to an appreciation of what basic response
functions contain the essential physics. This understand-

ing is most clear for the response of jellium to externally

incident, long-wavelength fields. Let us focus on this case
and specifically examine the corrections to the Fresnel
formulas for the reflection amplitude of such fields.

Consider a wave of frequency co, incident at an angle 8;
on a smooth jellium surface. Define the following wave
vectors: Q (~/c)sin8i, for variations parallel to the sur-
face, and p„=(r0/c )cos8; and

p —[(~ /c }e(co) Qz]'~i

both for variations normal to the surface. One uses p„
outside and p inside the metal. In these equations c is
the speed of light and e(co) the (local) dielectric function
of the bulk metal. For jellium

6(co )= 1 —coa /co

with the bulk-plasma frequency cori determined by

4&Plg8
QPg =

where n~ is the bulk electronic density and e g0 and m
the charge and mass of an electron. If the polarization of
the wave lies in the plane of incidence (p wave), the
Fresnel reflection amplitude is

(3)

The result (3) follows from the well-known require-
ments of continuity of normal D field and parallel E

field. However, this same theory also implies discontinui-
ties in the parallel D and normal E fields, which cannot
be true at the microscopic level. Indeed, the aim of recent
theoretical work has been to develop a prescription for the
calculation of the continuous variation of all field com-
ponents through the surface region. Since several reviews
of these derivations have already appeared, ' we jump
directly to their implications for the p-wave reflectivity.
One finds in the limit of long (transverse) wavelengths
that Eq. (3) must be replaced by

&—p /p, —i(e—1)[(Q'/p„)d, —p dpi]

e+p /p„+i(e 1)[(Q—'/p„)d, +p~d~(]
(4)

where the two (complex-valued) d parameters appear.
Their unit is length, and d times wave vector gives the rel-
ative magnitude of the small corrections to both the
numerator and denominator of the Fresnel formula.

It is useful to think of the d's as surface analogues of e,
in the sense that in the long-wavelength limit they all de-

pend only on ~ and serve to parametrize rz. Like e, the
d's do not depend either on the angle of incidence or in

any essential way on the speed of light. For instance at
fixed co one can allow the incident wave to be decaying,
i.e., to have Q & co/c as physically occurs in an attenuated
total reflection experiment or as may formally be imposed
in the nonretarded description (choo } of fields due to
charged probes. Still the same expression (4) holds for r~
with the same values of c and d's.

This wide range of relevance means that the d's are im-

portant quantities in a host of surface phenomena. '

Hence there is a strong theoretical motivation for their
systematic calculation and several approaches have al-

ready been proposed. One may divide these into two basic
schemes. The first, initiated by Feibelman, works with
the full set of Maxwell equations and determines the vari-
ations of all Geld components through the surface region.
The key step in this approach is the solution of an integral
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equation whose kernel is the current-current correlation
function. In effect, one simultaneously derives (4) and
a prescription for the d's. For a p-wave field the results
appear as

(1—e)d~~ ——f dx all II

II

(1—1/e)di ——f dx (6)
Dg

where the integration is along the surface normal. The
field components with no superscripts are the exact ones,
while those with the zero superscript are the asymptotic
form of their transverse parts far (tens of angstroms) from
the surface. The latter are extrapolated into the surface
region like (transverse) Fresnel fields and are discontinu-
ous at the matching plane x=0. Hence, the integrands
are significant only in the surface region, and the d's are
readily calculated once the fields are known.

The second approach to the d's, stressed by Apell and
coworkers, ' is based on a further formal reduction of (5)
and (6). For a fiat surface with the edge of the constant,
positive background charge density at x =xz, one has

II

and if further o~ & co&,

d, =f dxx5p f dx5p,

where 5p is the charge density induced by a long-
wavelength field at frequency oi. Since the d's do not de-

pend on c, one can formally let ciao, and calculate 5p
as a nonretarded response. Although this possibility is
well known, it has generally not been exploited except for
qualitative insight or formal constraints. ' " Only in the
static limit' ' (or at imaginary frequencies' }have micro-
scopic evaluations been done based on (6').

In this paper we present a procedure for calculating di
from nonretarded density response at arbitrary (real) fre-
quencies. Our theory is an outgrowth of that by
Gerhardts and Kempa, but has been reformulated to em-

phasize density, rather than current, response. The basic
formulas are derived in Sec. II and the Appendixes in Ref.
15. Then in Sec. III we present the results of model calcu-
lations of di —

d~~ at the Q=O, nonretarded surface
plasmon frequency coa/v 2. These limited results allow a
direct comparison with earlier estimates'6 of the surface-
plasmon dispersion at low Q. More extensive calculations
are in progress.

II. DERIVATION

Here we develop the equations used to calculate the in-
duced density. Our present theory determines the density
response within the time-dependent Hartree approxima-
tion ror random-phase approximation (RPA}] for other-
wise free electrons near a smooth jellium surface. Since
we want to elucidate the dependence of the response on
the surface electronic structure, we need to vary the effec-
tive single-particle potential-energy barrier that confines
the ground-state electrons to the metal. One may vt.ew

these variations as due to an imposed, static, external po-
tential, ' although we shall only exhibit explicitly the total
potential energy V each electron feels in the ground state,
since that determines the basis orbitals, %e assume that
V depends only on the coordinate normal to the surface,
V= V(x), and that it quickly saturates away from the sur-
face.

These basic approximations certainly have a quantita-
tive significance, but will hopefully still allow qualitative
insights. One knows how to remove most of them, at
least piecewise. For instance, a reasonable allowance for
the effects of exchange and correlation can be incorporat-
ed by using time-dependent local-density functional
theory's'9 instead of RPA. Such a theory has been ap-
plied at metal surfaces for the static response, 'i'i ~o 2' for
the response at imaginary frequencies, ' and for the
response at real frequencies in systems of finite extent in
at least one direction —spheres or slabs. '~ Further, we
shall note below, see Eq. (12},how this refinement can be
included in our formalism. However, we feel that at
present the extra calculational effort to include these ef-
fects is not warranted, given the other approximations we
make. The model we examine has been simplified on pur-
pose in order both to ease its evaluation and to aid its in-
terpretation. Once its implications have been efficiently
calculated and understood, then one can attempt to build
more physics into it.

The perturbing potential is presumed to be of long wave-

length. We locate the metal in x ~ 0 and use

V, (x;Q,oi) = I",e

with I, a constant, and eventually take the limit
&=

I Q I

The induced density at Q and co is formally deter-
mined by

5p(x;Q, ro) = f dx'X(x, x';Q, oi) V, (x';Q, co),

where X is the full susceptibility. In the RPA, one
reexpresses (8) as

5p(xiQ~co)= f dx &o(x~x ~Q~~)VT(x;Q, co),

with

VT(x;Q, co) = V, (x;Q,oi)

+ f dX V, (x,x;Q)5p(X;Q, ro) . (10)

Here Xo is the independent-particle susceptibility, and Vz-

A. Basic integral equation

We need the electron density 5p(x, t) induced at first or-
der by an external potential energy

V, (x, t )= V, (x;Q, co)e' —-
All quantities will be at frequency co and surface
wave vector Q, so we omit henceforth the common factor
e"9'x ""and often write amplitudes without explicitly
acknowledging their Q and co dependence; e.g. ,

V, (x;Q, oi)~V, (x) .
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is the total perturbing potential. The difference between

Vz and V, is due to the mean field of the induced density
and in a dynamic Hartree theory that in turn is attributed
to the direct Coulomb interaction

2 2

V (x x'Q)= e

f dq u(q )5p(q )

+f dq X()(q,q)u(q)5p(q) .

q(s(q) ()=(so(q)+ f, dq f dq'Xo(qq)V(q, q')5V(q')

=5pp(q) 1—

(21)

d [ns„,(n)]
V„,(x,x', Q,pi) =5(x —x')

2dn2 a =no(x)
(12}

where s„,(n) is the exchange-correlation energy per elec-
tron in a uniform electron gas of density n and np(x) is
the equilibrium density of electrons at location x.

Our method of solving (9) and (10) is based on Fourier
cosine transforms defined as, e.g.,

V, (q;Q, o)= J dxcos(qx)V, (x;(i,ss) (13)

If one wished to include in the mean-field exchange and
correlation effects within the local-density approximation,
then V, would be augmented by

Next define

&(Q,pi) = f dq u(q)5p(q),
Pe

and write

5p(q) =y, (1—A, )[v(q) —1] . (23)
Equation (21) then becomes

v(q) =1+f dq'Xp(q, q')u(q')v(q') . (24)

We describe the genera& evaluation of Xp in the next
subsection, but here use one feature to reduce (24) some
more. The cosine transform of the free-electron suscepti-
bility Xp for a semi-infinite model has a diagonal piece
whose strength is identical to the Fourier transform of Xp
for a bulk system:

00

&o(q,q';Q, oo)= —f dx cos(qx)

x cos qx

XXp(x»';Q, ~) (14)

Xp(q, q') =5(q q')Xp, e(q—)+Xp(q, q')

Since the bulk dielectric function in RPA is

ee(q; Q, co) = 1 —u(q)Xp e(q),

(24) becomes

ss(q)o(q)=1+ J dq'Xo(q, q')o(q')o(q'),

(25)

(26)

(27)

Here the origin for x is located outside the metal surface,
so np(x =0) is negligible. The choice of cosine
transforms make the next several equations similar to
those of Beck er (21.,

2 ' although we stress that we need
not assume that an infinite barrier exists at x =0. With
the choice (7), one has

v(q-+0; Q~O, pi)=1/e(co),

with e(co) defined in (1) while

(28)

which is the basic integral equation we need to solve. In
the limit of small or large q the relative contribution of
the integral term becomes negligible so

V, (q) =y, u(q),

where

(15)
v(q~ 00 )=1 . (29)

I,Q

4me
(16)

4m(q)= (17)
q2+Q2

the three-dimensional Fourier transform of the Coulomb
potential energy. The same factor appears in the half-
space transform of V, :

If one ignores the integral term for all q, the theory is
called the semiclassical infinite barrier model (SCIB). Al-
though SCIB has been often used in surface response
problems, 2' ' it suppresses precisely the dependences
that we wish to study in that it allows no variation of the
surface profile. Our theory is hence directed towards the
efficient inclusion of the integral term in (27).

We complete this subsection by deriving the physical
significance of the auxiliary functions introduced in Eqs.
(22) and (23). First calculate the induced field outside the
metal:

V, (q, q') =u(q)5(q —q') —yu(q)u(q'),

@faith

(18)
V(x;Q, co)= f dx'e ~~" " '5p(x';Q, qu} . (30}

4~e 2

If we define 5pp by

5pp(x) =f dx'Xp(x, x') V, (x*),

then Eqs. (9}and (10}can be combined into

For x &0, one finds
(19)

V;(x;Q, qu) =I,d(.(Q,co)e~ . (31}

Thus d)(, acts as an effective reflection amplitude of the
externally applied potential (7}. Indeed, —d(. is the non-
retarded analogue of the rz discussed in the Introduction.
As Q ~0, it becomes
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—A,(Q =0, co) =
g+1

which follows from using (23) and (28) in (22} and agrees
with (3}. We do not go further to derive the analogue of
(4), since this has already been done. "

Instead, we examine v which determines 5p and in turn

the d's and rz. For x & 0, one can ignore the —1 in (23)
when calculating 5p(x ):

8. Independent-particle susceptibility

At zero surface wave vector the response kernel Xo in
our model has the form

X,(x,x') =—g g g
Ck+ACO —Ck +lO+

Xfk(x)fk (x)$k,(x )Qk(x ),
00

5p(x&0)=y, (1—X)—I dye(q)cos(qx) . (33) (41)

eDi(0}=QI', =QI, (1—A, ) .' 1+@

Thus

(34)

Further, in the long-wavelength limit the prefactors in
(33) may be reexpressed in terms of Dj (0), the normal
component of the net displacement field near the surface
due to (7). Using Fresnel theory,

Here gk(x) is an eigenstate of electronic motion normal to
the surface with eigenvalue ak =iri k /(2ni). The motion
parallel to the surface has already been separated off as a
plane wave. When Q=O, the only reminders of this are
the sum on parallel wave vector K scaled by one over the
area A of the surface and the dependence of the zero tem-
perature Fermi occupation factors on both k (or k') and

CO

4ne 5p(x &0)=Di(0)—f dq v(q)cos(qx) .
AE

fk 8 sF ek
2@i

(42)

Again, in the long-wavelength limit, Poisson s equation is
approximately

4me5p(x) = aE, (x)
(36)

which may be integrated using (35) to

Ei(x) Ei(xs) = —D, (0)—f dq
2 " v(q}

q

X [sin(qx) —sinq(xs )],

(37)

where xs (&x &0) is far into the metal. Formally allow-
1ng xg~ ao y1elds

q sin qadi ~v q~O =I e, 38
2 ~ v(q)

q

but if we imagine that xs is only far compared to the
range of longitudinal fields (and 5p) but short compared
to the wavelength of transverse fields (xa «1/Q), then
we can replace Ei(xq) =Di(xq)/e=Di(0)/e so

Ei(x)=D~(0) f dq sin(qx—)
2 " v(q) .

q

Ei (x }=—f dq Dj (q )v(q)sin(qx },2

where Di(q) is the Fourier sine transform of the (nearly)
constant normal displacement field. The interpretation of
(40) is that v(q) gives the ratio of Fourier sine transforms
of E and D Hence, what w. e call v(q) is the same in the
long-wavelength limit as the function 1/ei(q) of
Gerhardts and Kempa. The integral equation that they
use to find their 1/el(q) is equivalent to our (27) with a
particular choice of go [see below Eq. (62)], but their
derivation of this equation starts from a theory with full
retardation and focuses on current response functions.

X [6(x,x', ek+iria~)

+6'(x, x', ek —i}iau)], (43)

where

ek'(x }|ik'(x
6(x,x';a) =g

F- —ck +iO+

and 6' is the complex conjugate of G. Since 6 is a one-
dimensional, outgoing wave Green's function, we may al-
ternatively write (44) as

G(x,x', s)=f+(x & )1t (x & )/W(e), (45)

where g+(x) and g (x) are outgoing and incoming wave
solutions, respectively, for inotion normal to the surface
at energy e and x& (x & ) is the greater (lesser) of x and
x'. The factor IV(c, ) is the Wronskian of these solutions
and has the x independent value

W.}= '~")@-(-}-y+(x}"~ '"'
2' dx dx

A qualitative sketch of V(x) is drawn in Fig. 1. We as-
sume that beyond x =a & 0, V(x) =0, and that for x out-
side the metal, V(x)~Vii. In the regions where V(x) is
constant, the P+-(x) can be represented as either one or
two partial waves. Their appearance is also sketched in
Fig. 1. For x & a the P+-(x) may be explicitly written as

y+(x & a ) eik(x —a)

where 8 is the unit step function and eF is the Fermi en-

ergy. The overall factor of 2 in (41) is for spin.
One of the normal wave-vector sums can be used to

reexpress 70 as

Xo(x,x') =—g ~k1(k(x)gk(x')
A



CALCULATION OF CORRECTIONS TO FRESNEL OPTICS. . . 551

K(q, q') =K"="(q,q')+ [K"= "(q,q')]', (52)

00(x 3
2

]
K'"(q,q')= f dk(l —k )I'"(q,q', k)/(q')

The I'" are defined by

I'"(q,q', k) =f dx cos(qx)P»(x)

X COSQX k X

XG(x, x', e»+lro),

(53)

(54)

where itt» is normalized as in (48) and

s»+leo=(ki) (55}

FIG. l. Qualitative sketch of the surface potential-energy
barrier and equilibrium density profile versus the coordinate
normal to the surface The. asymptotic form of the one-electron
states, f , is also-indicated. The directions of the horizontal ar-
rows indicate the propagation directions of the plane-wave com-
ponents along the surface normal, in regions where V is con-
stant. For 0 &x & a, tb-+ are not so simply characterized.

with ki either positive real or positive imaginary.
Compared to an analysis of the RPA integral equation

in real space which must contend with long-ranged
Friedel oscillations in Xo(x,x') and Sp(x), our analysis in
Fourier space offers the advantage of a short-ranged ker-
nel K(q, q'). The information about Friedel oscillations
now resides in nonanalytic behavior of K, or more specifi-
cally I'i', along a discrete set of loci in the (q,q') plane.
The nonanalytic behavior usually arises from the large x
and/or x' contributions to the integrals in (54) and can be
extracted in closed form if necessary. To this end we

separate (54} into bulk and surface parts

(56)

SO

(x &a)=sin[k(x —a)+P],

W(z) = — e2'

(48)

(49)

where

Ib"(q,q', k) =f dx cos(qx)g»(x)

xcosgx k x

XG(x, x', e»+Iso) . (57)

and

G(x &a, x'&a; e)= —(2m/i)I k)e
ik(x -a)+i/

Xsin[k(x &
—a)+{(t] . (50)

In the above, k, which is v'2m s/A', is chceen to be either
positive real (s&0} or positive imaginary (a&0). The
value of the phase shift {('i depends on the shape of the po-
tential barrier and on e, but not on x or x'. For s & Vs or
e &0, P is complex valued. The same phase shift also ap-
pears in the occupied states since for 0& a» ——a&st- one
may set g»(x) ~ P (x).

Before writing out Xo again, we imagine changing to di-
mensionless quantities based on ratios to Fermi-level pa-
rameters; i.e., we divide wave vectors by kF, multiply
lengths by kF, factor off k~/eF from G, and divide fre-
quencies by eF/iii. For simplicity we keep the same sym-
bols for the dimensionless quantities. Then, using in-
tegrals instead of sums over wave vectors in (43},we can
rewrite the integral equation (24) for g =0 as

v(q)=1+ f dq'K(q, q')v(q'), (51)

with

3

Kb ——g Kb». (58)

The first contribution to (58) alone is nonzero if V is an
infinite barrier at x=a=0. It contains the diagonal
singularity responsible for (25)

Kb i(q, q') =5(q q')Ks(q) +Kb i(q, q—'),

where, reverting momentarily to dimensioned quantities

4me
Ka(q) =Xo s(q) (60)

The restricted integration range for Ib" allows one to use
(50) for G, and the resulting integrals can be done. How-
ever, their explicit derivation is complicated so we relegate
them to Appendix A in Ref. 15 and present here only
their final form.

Corresponding to (56) one can separate the K of (52) [or
(53)] into Kb+K, . We further write Kb as the sum of
three pieces
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2 J„,„ fi f-~

(2m) E,k +%co —Ep ~ +E 0
(61)

Here k'=k+q and the integral runs over the whole of
three-dimensional k space. This (bulk) I.indhard function
is readily calculated. The remaining function in (59) re-
quires no integration over electronic states. It appears as

rr(q
'
} (i~, 7T

z Kb i(q, q') =— 1
t (1—k )cos[2((}}—ka )]e(1—k ) ]k

~
(q+,q ))2

~

.
3ci7s 16 z +i ico+rqq +l0

(62)

In an unshifted infinite barrier model, one chooses V= Do for x ~ a =0. Then / =0 and the cosine function in (62) is un-

ity; so our Kb, (q, q') becomes identical to the function —K(Q, Q') of Ref. 8. Hence, for such a model our integral equa-
tion for v reduces to theirs.

The second contribution requires nontrivial integrals on k, which must be done numerically. These may be written as

«'"tq q')= —' J dk() —k') g ~ «(k r —s ()

x P
1 1 1

P —P
lro+«qq' k —b, " k rH'—

+ [ irrr5(k —rH' '—)]
Ice+crrqq'+i 0+

(63)

Here the P's denote principal-value integrals and the sums on a, r, and s all run over +1. The new functions in (63) are
defined by

q, s=l
qq', s= —1,

(64)

(65)

leo —(q')

2q

N(k;a, s, l ) =ikisin(P+aq'a ) —(k+aq')cos(P+crq'a ) .

(66)

(67)

The argument of the sine function in (63}shows that in an infinite barrier model (/=0), Ks i will be nonzero only if a is
nonzero.

The third contribution to (58) also rcxluires numerical integrals on k. It appears as

lf)
~(q ) «(,)(,) I!~~( k~) ~ 4 ))((k;rr, s, () «(k;r, sl)—, , ~(k ~l, .

)
3coa

' 0 „ki i+ qq' q' —q
' k H'—

772+, (k'+~)e "q+q "5(k H-' ')5(l —
qq
)-—

q+q 2

The only new function in (68) is (}})i the phase shift at the energy ek+lco. Since in an infinite barrier model Pi =0 for any
a, Kb i is nonzero only for finite barriers.

In a similar fashion as for Kb, the results for E, are conveniently split into a pair of contributions. Both require in-
tegrations on k and are simpler to write out than the Kb i since fewer real-space integrals are done explicitly. From Ap-
pendix A in Ref. 15

E,=j:,)+E,2,

2 K,",'(q, q') = —,
' J dk(1 k) g I —(k;s, l )N(k;r, —s, l ) &, +i mr5(k rH' ')—(70)

I 2 1
ip]

2 K,"2(q,q')= —f dk(1 —k }g I +(k;s,!) .3'fy , kl
(71)
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(74)

where g(k) is the nonsingular part of the integrand and

ko is either vH ' ' or h~~. For the models we consider
g(k) is continuous, but its derivative can have isolated
square-root singularities; e.g., the function ki in (55) for
1=—1 has such a divergent slope at k =r0. To avoid dif-
ficulties due to these singularities we have found it suffi-
cient to use their locations as endpoints in our Gaussian
integration routines.

C. Solution of integral equation

Now turn to the numerical solution of (24}, or its di-
mensionless form (51). The kernel K has various singular-
ities which we separate out as follows:

K(q, q') =Ka (q)5(q q') +KH—(q)5(qq' co)—
I'+, Ks(q, q')+K(q, q') . (75)

The necessary real-space integrals are

I (k;s, l)= I dxcos(q'x}Q(x)P (x), (72)

+(k;s, l)= J dx cos(q'x}1((x)g (x}

X f dx'cos(q 'x')g(x')P+(x'} . (73)

Since these run over a bounded range, they have no 5
function or principal value singularities like the Is"s.

To numerically determine K we need to integrate (63),
(68), (70), and (71}over k. Where 5 functions appear, the
result is immediate; while the principal value integrals are
generally done with the replacement

d = +g 0 Ing(k) i g(k) —g(ko} 1 —ko

troublesome nonanalytic points as the boundaries of
separate q' integrals in (51) allows sufficient accuracy.
The loci of nonanalyticity are described more in Appendix
8 in Ref. 15 and their appearance for a particular choice
of co and Vs are sketched in Fig. 5 in Ref. 15.

We solve (51) for co & cos by matrix inversion as in Ref.
8. The nontrivia1 integrations over q' are separated into
the intervals (O, ~co}and (@co,ao }. For the latter q' is re-
placed with q '=co/q' so the integral over q' also runs
through the interval (O, %co). A discrete set of Gaussian
integration points is then chosen to span the subintervals
of smooth variation between (O, Mco). Thus the numerical
integration method makes q' discrete, and we impose the
same mesh on q. To render the principal value integral
numerically tractable, the same basic subtraction pro-
cedure as used in (74) is employed. Some refinements are
needed since the singular point is included in the integra-
tion mesh —see Appendix 8 in Ref. 15. We have found it
necessary when co=co&/v 2 to use a few hundred mesh
points for the q' integrals, which in turn sets the size of
the matrix inversion problem.

As a check on our numerical procedures, we have made
various comparisons with the results of Ref. 8, whose
code we started from. These calculations all represent the
surface potential by an infinite barrier, but shift the loca-
tion of the barrier away either from the origin, where the
cosine tranforms start, or from a, where the potential
reaches its constant bulk value of zero. These shifts have
no physical consequence, but do require different
mathematics in their solution because the shifting process
can change various parts of the kernel K, in particular
Ks 2 and K„ from zero to nonzero values.

We show in Fig. 2 a comparison of the real part of the

Here Ka is the bulk Lindhard contribution defined in
(60). Its inclusion converts (24) to (27). We refer to both
of the next two terms as hyperbolic singularities since
they are related to the hyperbola qq'=c0. A physical ar-
gument for the appearance of these is given in Ref. 8.
The 5 function weight is shown in Appendix 8 in Ref. 15
to reduce to

I 2 2i($ —k a )
KH(q}=i e + + [(1—k )8(1—k )

x —(1—k', )8(1—k )1

(76)

where q'=colq and

0.4—

oz-

0.0 —=
k+. ——

(
q+q'~ /2 (77)

t

0 20

with P+ ——P(k+). The strength of the principal-value
singularity E~, as vrell as the remainder term E, require
much more complicated formulas, which we leave in Ap-
pendix 8 in Ref. 15. The important point for the present
discussion is that both contain no further singular values,
although they do have discontinuous slopes across various
curves in the (q, q') plane. However, just as in the calcula-
tion of K, we have found that using the locations of the

kFx

FIG. 2. Real part of the induced charge density in two
mathematically distinct treatments of an infinite barrier model.

In both eases kFdx 5p(x)=1, r, =2.07, and m=co~ j 2.
The solid curve starts the cosine transforms at x =0, while the
infinite barrier is at kFx =8. The dashed curve in effect starts
both the cosine transforms and the infinite barrier at k~x =8
(Refs. S and 32};its 5p is identically zero for k~x ~ S.
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induced density of an infinite barrier model of Al evaluat-

ed in two such ways. Although there is more noticeable
noise in the result for the shifted case, we consider the
agreement satisfactory. The shifted calculation is done
with kza =8 and used 224 mesh points. Further increases
in a alone make the errors larger because both the q and
q' dependence of K are modulated by sinusoids of period
of 2m/a. Hence, an increase in a requires a proportional
decrease in the integration mesh in order to keep the same

accuracy.

III. INITIAL RESULTS

In this section we present some preliminary results for
the case where the surface barrier is a single step of height

Vii. The d's are evaluated once at the frequency
sos ——coiilv 2 since that is sufficient to determine the
dispersion relation of the long-wavelength surface
plas111on via

O.O

OQ

Q.Q =
C

I

-4

co(Q) =sos[1——,
' (di —

d(~ )Q+ j . (78) k~(x-x )

Of the two d's, d~~ is simpler to find since for our
models it is a ground-state property and requires only the
value of xz, Eq. (5'). The latter can be determined from
the Sugiyama sum rule, ' ' ' which implies that if occupied
states of normal motion vary for x deep within the metal
as

P~sin[k(x —x~ )+i)(k)],
then

kF~/4=, f dKKq[(k,' K')'"] .—
kg

Comparing (79) with (48) yields

(79)

sin[/(k) ]=irik /(2m Vii )
' (83)

and the integral in (82) can be done analytically.
To find d, it is better not to use (6'), but instead to

combine (6) and (39) into

(84)

g(k) =P(k)+k(x~ —a ), (81)

so we find after changing integration variables

kFd~~ kFx~ = ———i f dk k[(I)(k)—ka] . (82)
8 kF O

For the occupied states behind a single-step barrier at
x=a

FIG. 3. Comparison of the induced charge density in finite
(solid curves) and infinite (dashed curves) barrier models of Al.
In both cases kfdx 5p(x)=1, r, =2.07, and cu=coz/ 2.
For the finite barrier, the work function is 4=4.16 eV. The lo-
cation of the jellium edge, x~, is different for the two barriers.
The infinite barrier starts at kF(x —x~)= —3m/S while the
finite-step barrier begins at kp(x —xp )= —0.23.

value so the oscillation period of structure in K(q, q') is
minimized. It is necessary to reexamine this question for
different systems since the optimal resolution depends on
both barrier shape and bulk density.

Even though we do not use 5p(x) directly to compute
dz, it is interesting to display it. Figure 3 shows both the
real and imaginary parts of 5p at cos for a model that cor-
responds to Al. For the finite-step barrier results, we use
280 mesh points and set kFa =8; the infinite barrier curve
is the same as the dashed curve in Fig. 2. Comparison
with the shifted infinite barrier results of Fig. 2 shows
that although the noise level is about the same, there are
qualitative modifications in the distribution of the in-
duced charge, which now extends further into vacuum.
The imaginary part of 5p is especially changed, which in
turn leads to a large enhancement of —Im(kzdi ).

In Table I we list our results for the linear dispersion
coefficient

This avoids the difficult numerical problem of accurately
determining 5p for x far into the metal, where it is a slow-

ly decaying sinusoid. The information on these Friedel
oscillations is implicit in the nonanalytic structure of v(q)
at nonzero values of q, but is not very important for di.
A more troublesome problem arises from the conflicting
constraints that the origin be located far enough from the
metal so all occupied states are negligible at x=O, yet
close enough to a where the potential saturates at its bulk

W= —,'k, (d, —
d~, ) (85)

for several nearly free electron metals and compare them
to earlier calculations. There is some ambiguity in
parameter choices, since the free-electron values do not
exactly match the experimental ones and because the sur-
face barrier depends on which crystal face is exposed. We
use free-electron quantities determined simply by the den-
sity parameter r, and calculate V~ as v~+4, where 4 is
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the work function listed by Lang and Kohn from data
on polycrystals. By varying the number of mesh points,
we believe that our numbers in the table are accurate to
better than +5%%uo. This convergence in A is possible with
about half the number of mesh points used in Fig. 3.

The results attributed to Inglesfield and Wikborg have
been extracted from a figure in their paper and are con-
sequently only quoted to one significant digit. On this
leveI, their answer is not inconsistent with ours, although
the 5p they present in another paper appears to have
several qualitative differences with ours, most noticeably
in its imaginary part. Since their number of mesh points
is an order of magnitude less than that we use, perhaps
their result for 5p is not fully converged. However, we
cannot directly test this conjecture because their method
of calculation is quite different from that used here. It
works solely in real space and treats the integral equation
(9) and (10) with V, =0 as an eigenvalue equation.

A similar point of view is followed by Beck and Celli.
They differ from Inglesfield and Wikborg by introducing
a variational method to analyze the eigenvalue equation.
Their quoted result for the real part of A is quite different
from ours, remaining always negative. It is interesting to
note that their preferred variational form is (in our nota-
tion)

tions in x, but instead by both their amplitudes decreasing
to zero. For further decreases of Vii, —Im(A) rises
sharply and reverses its qua1itative dependence on r, . The
change in Im( A) from its infinite barrier value is, hence, a
sensitive function of the relative size of Rmq and 4.

Figure 4 confirms the well-known sensitivity of the
surface-plasmon dispersion relation to surface-electronic

(a)

0.4

0.2
K

0.1

0.0

e
—P~x n~— (86) -01

with a chosen to be real. Using (86) in Eq. (6) implies
di =a. The a s that minimize the variational expression
are always positive and larger than xz. Indeed, Beck has
informed us that in the limit of zero surface wave vector
that —,k~(a —xz) is 0.16, 0.12, and 0.16, for Al, Mg, and
Na, respectively. These values are considerably closer to
our results in Table I, at least for the real part of A.
However, the presumption of (86) with a real implies that
di is also real and, hence, that the imaginary part of A
vanishes. It appears that we cannot simply reconcile the
results of Beck and Celli with ours.

Finally, we compare the finite barrier results with those
for an infinite barrier. They differ in some cases by more
than an order of magnitude, and the changes do not
develop smoothly in Vz. This is illustrated in Fig. 4 for
several values of r, As one lowe. rs Vz from infinity, both
the real and imaginary parts of A decrease slowly in mag-
nitude until Vii-eF+Rcos, which is the threshold for
photoemission. Further lowering of Vii leads to drastic
changes. The real part of A, Re(A), goes through a
minimum value which, depending on r„may be negative.
However, for barrier heights matched to the calculations
of Ref. 35, the single-step model predicts that Re(A)
remains positive, but much sma1Ier than its infinite bar-
rier value. The imaginary part of A, Im(A), nearly van-
ishes close to the photoemission threshold. %'e cannot be
more precise since values of —Im(A) below 10 can only
be roughly estimated by our finite barrier code which has
absolute errors of this magnitude. The qualitative
change in the imaginary part of 5p shown in Fig. 3 occurs
as Vii passes through eF+Acos. The two profiles shown
there then merge into each other not primarily by transla-

V8/EF

0.6
(b)

0.5

04

0.5

I

0.2 —0.010

0.1 O.O05

0.0'

QB/ EF

FIG. 4. (a) Real part of the surface plasmon, linear disper-
sion coefficient A versus single-step barrier height V~. The cal-
culations are denoted by circles for r, =2, diamonds for r, =4,
and triangles for r, =6. The lines connecting the points have
only been drawn to guide the eye. The vertical bars at the top
denote VB values based on calculations in Ref. 35, while those at
the bottom mark the threshold for photoemission: Vz
=eF+ficoq. The horizontal bars on the right locate the infinite
barrier results. (b) Imaginary part of the surface-plasmon linear
dispersion coefficient A versus single-step barrier height Vz.
The same labeling scheme is used as in (a}. Note the change in
vertical scale at V8/c+ ——2.6.
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TABLE I. Linear dispersion coefficient of the surface plasmon in a single-step barrier model.

Material

Al (r, =2.07)

Mg (r, =2.65)

Na {r,=3.99)

Refs. '

KS
KS
IW
8C
BC
KS
KS
BC
BC
KS
KS
BC

1.36
1.36
1.36
1.36

1.51
1.51
1.51

1.86
1.87

s/

0.96
0.96
0.97
0.86
0.86
1.08
1.08
1.08
1.0&

1.33
1.33
1.30

A =
2 kF(dg —d~t)

0.49—i 0.0097
0.14—i 0.17
0.2—i0.2

—0.12—i 0.36
—0.24—i 0.35
0.40—i 0.0066
0.08S—i 0.14
—0.23—i 0.24
—0.22—i 0.22
0.28—i 0.0026
0.026—i 0.078
—0.33—i 0.24

'References: DvV is Ref. 33, BC is Ref. 34, and KS is the present work.

structure. It also implies that the unoccupied states play a
significant role in this dependence. The rapid changes
shown in Fig. 4 are puzzling if one attempts to correlate
them only with the evolution of the equilibrium density
profile, which gradually extends further out of the metal
as Va is lowered. The acknowledgment of an escape
threshold for the unoccupied states seems to be a key
point in the interpretation of the curves in Fig. 4. We are
presently doing further calculations at different to and for
different barrier shapes in order to better understand the
dependences of the d parameters. Since our numerical
procedures can provide reasonably efficient and accurate
evaluations of the d's, a systematic study is possible and
we expect to report more results soon.

Note that the Appendixes and Fig. 5 have been deposit-
ed with the Physics Auxiliary Publication Service. '
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