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Recent experiments using ballistic phonon imaging have provided very accurate pictures of
acoustic-phonon dispersion for GaAs in the frequency range 0.1—1 THz. This work has been previ-

ously analyzed using microscopic lattice-dynamics models. An alternative description of this

phenomenon which is natural, compact, and simple is provided by continuum elasticity theory with

dispersive corrections included, as developed in the present paper. Previous models and experiments

are successfully analyzed by the present theory. It is shown that the reason for the failure of many

earlier models to match experiment is that they impart insufficient dispersion to the transverse

acoustic branches. A single additional parameter contained in the dispel'sive elastic model appears
to control the important features of the dispersion of these branches; six other parameters permitted

by symmetry do not appear crucial. %e show that the present dispersive elastic model can be de-

rived as a rigorous limit of microscopic lattice-dynamical theory. The elastic model illuminates sim-

ple relationships between the phonon-imaging experiments and other physical phenomena, e.g.,
specific heat and ultrasound.

I. INTRODUCTION

The nature of phonon propagation in perfect crystals is
a very old topic (Ref. 1, p. 68) but continues to stimulate
fresh investigation. The interaction of phonons with de-
fect centers and with elcx:trons, and the perturbation of
the thermal distribution of phonons in nonequilibrium
transport problems, continue to play a role in several out-
standing unsolved problems in solid-state physics. Thus,
continuing attempts to construct new and simple ways to
describe phonon energies and phonon propagation in crys-
tals is worthwhile.

The present paper represents such an attempt. Here we
perform a systematic study of the extension of continuum
elasticity theory to relatively high-energy acoustic pho-
nons. This is already the model of choice for long-
wavelength, low-energy acoustic phonons; it has certain
advantages of simplicity and economy of description com-
pared with microscopic lattice-dynamical models of crys-
tals.

Our study has been stimulated by the recent develop-
ment of a new class of experiments, nonequilibrium pho-
non imaging, which is exceptionally sensitive to
features of acoustic phonons in about the central half of
the Brillouin zone. A recent report has used phonon im-
aging to study onset of dispersive effects (departure from
linearity in the co-vs-k relation) in the acoustic phonons of
crystalline GaAs. In that paper, the phonon-imaging pat-
tern for phonons with co=150 GHz did not represent a
significant departure from ordinary sound waves. Howev-
er, an image taken in the range of co =650—750 GHz (cor-
responding to phonon wavelengths on the order of 10—30
lattice constants) begins to show significant effects due to
dispersion. The authors analyze their images in terms of
various existing microscopic lattice-dynamical models.
Their analysis illustrates the bewildering variety of con-

cepts that are used to construct microscopic lattice-
vibrational pictures (rigid ions, deformable ions, s polariz-
able bond charges, rigid valence shells' '"), the formid-
able number of free parameters required in these
models' ' (6—15), and, in the end, their remarkable lack
of mutual agreement in the frequency range of interest (to
be expected since neutron-scattering dhta, to which the
lattice-dynamical models are fitted, show large relative er-
ror bars in this frequency regime). In this paper we will

develop an alternative analytical procedure; it is expressed
in a simple language, is economical of free parameters,
and is appropriate for describing phonons with wave-

lengths in this mesoscopic (neither macroscopic nor mi-
croscopic) regime.

A short review of the mechanism of phonon imaging is
in order. It will permit us to introduce the concepts of
standard sound theory, and to show the direction that we
will extend it in the present work. In phonon imaging, a
pulse of heat is generated at one point on the surface of a
perfect crystal (see Fig. 1). Phonons radiate out in all
directions; they are detected when they collide with the
other surface of the crystal. The time of detection relative
to excitation may be arranged such that only those pho-
nons which propagate ballistically, i.e., those which suffer
no scattering inside the crystal, are detected. Even finer
time windowing can be arranged so that longitudinal- and
transverse-phonon propagation can be distinguished. In
short, the experiment is a laboratory-scale seismological
experiment.

The conditions of the experiment reported in Ref. 7 are
such that the heat pulse, generated by a laser, creates a lo-
cal distribution of phonons with a Planck distribution cor-
responding to T =50 K (the ambient temperature is
around 1 K), uniformly distributed in all propagation
directions k. However this does not mean that sound
waves are launched with uniform intensity in all direc-
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(3)

FIG. 1. An illustration of the ballistic-phonon transport pro-
cess. A laser beam strikes the surface of a crystal at point A,
creating a pulse of phonons. These phonons propagate along
the group velocity directions V, which point normal to the

phonon slowness (constant frequency) surface; the geometrical
construction required to obtain the group velocities from the
constant frequency surface is illustrated. Near points of inflec-

tion I on the slowness surface, the vectors V all point in the
same direction. Thus, a large concentration of acoustic energy

propagates along the ray shown; a large phonon intensity arrives

at C, creating an observable "caustic. "

Oay =Ca&5e+

(repeated indices are summed over the three Cartesian
directions). Equation (1) defines the elastic constants
c i'rs. If this relation is assumed to hold locally in every
small volume of the solid, then the equations of motion of
sound waves with propagation vector k may be derived:

5,pcs'(k)v =c ~'kpksv, . (2)

Here, v denotes the displacement eigenvector. That is,
the three eigenvalues of the matrix c ~~ k~k~ specify the
three sound frequencies pcoj i 3 Q is the inass density of
the solid), and its eigenvectors specify the polarization
vectors of the sound waves. In a solid with cubic symme-
try, the character of the matrix c ~ kpks is such that,
typically, sound waves with propagation vectors k of the
same length but different directions have different fre-
quencies. This means that the group velocity vector for
mode o, V„=Boo /Bk„, which points in the direction

tions into the solid, because the GaAs of the experiment,
unlike the mantle of the earth, is a crystal and is hence
elastically anisotropic.

To understand how the cubic anisotropy of GaAs af-
fects the energy density of emitted sound, we review the
elastic description of homogeneous solids. Speaking
loosely at this point, the basic hypothesis' is that there
exists a linear relationship between stress a ~ (an applied
external force) and strain e ~ (a deformation):

is not generally parallel to the propagation vector k.
It is this difference between V and k that allows pho-

non imaging to work, concentrating acoustic energy in
particular directions in space. Consider Fig. 1. It shows a
representative constant energy surface for sound (the locus
of points k for which there are sound waves with frequen-
cy co). The group velocity vector V is easily constructed
as the vector normal to the constant energy surface; this
vector specifies the direction in real space in which energy
propagates for acoustic waves with wave vector k. As ad-
vertised, this direction is not usually parallel to k, as indi-
cated in Fig. 1.

In fact, where there is a point of inflection in the con-
stant energy surface, the flux of acoustic energy is singu-
lar in the direction corresponding to the point of infiec-
tion, creating what is known as a caustic on the surface of
the crystal. For a three-dimensional (3D) sample, these
caustics form lines of intense phonon flux which are easi-
ly detected and constitute the most important qualitative
feature of the phonon-imaging experiment.

In the low-frequency, nondispersive limit, where there
is a linear relationship between c0 and k, co =v, (k)

~

k ~, all
constant energy surfaces have the same shape. In this re-

gime, the relationships between the directions of k and V
remain constant, and the caustic pattern is independent of
frequency.

At frequencies for which sound becomes dispersive, the
constant energy surfaces change shape, and the caustic
lines move. This is what the authors of Ref. 7 observe in
GaAs, and what they attempt to explain using lattice-
dynamical theory. However, the caustic lines do not
move a great deal with frequency in the experiment; there-
fore, it makes sense to introduce dispersion perturbatively
within the elastic model rather than to use an entirely new
language for the phenomenon. As we will show, the
correct way to introduce dispersion is to permit the elastic
tensor c ~~ to take on a small momentum dependence, as
represented by the power series

c ~r (k)=c ~ s(k=o)+d r% +f ir+ k k +p o

(4)

We find that the first three terms in this series are suffi-
cient to describe the observed phenomenon. It is clear
that Eq. (4), when substituted into Eq. (3), will have the
desired effect: it will slowly change the relative directions
of V and k as

~
kJ increases.

The remainder of this paper will be devoted to explor-
ing the consequences of extending the elastic model in the
way suggested by Eq. (4). Our hope is to demonstrate that
because of its simplicity and suitability, this model will be
one of the standard tools for understanding the properties
of acoustic phonons.

The remainder of this paper is organized as follows.
Section II is devoted to setting up the extension of elastic
theory for cubic crystals: The basic Lagrangian of the
solid extended into the dispersive regime is developed in
Sec IIA. In S.ec. II 8 we derive the equations of motion
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and the dynamical matrix, confirming the hypothesis of
Eq. (4). In Sec. IIC we discuss the symmetry properties
of the new elastic coefficients defined by Eq. (4). Section
II l3 will be of central interest to practitioners of phonon
iinaging; it presents numerical comparisons of the present
model with previous lattice-dynamical calculations and
with experiment. It is sho~n that our extended elastic
model is compatible both with previous theory and with
phonon imaging. Section III takes a different approach to
the dispersive elastic model, showing how it can be de-
rived as a limit of microscopic lattice dynamics. The dis-
cussion and conclusions of Sec. IV include a consideration
of various approximation schemes for the dispersive elas-
tic model (e.g., the isotropic approximation), suggestions
for cheap and dirty ways of fitting experimental results to
the phenomenological model, and a consideration of the

application of this model to other physical properties (e.g.,
specific heat).

II. PHENOMENOI. OGICAI. THEORY

A. The elastic I.agrangian

As discussed above, the strategy of the present work is
to describe dispersive effects in crystals using the same
language as we normally use to describe the ordinary elas-
tic response of solids. Many excellent discussions of the
continuum theory of elasticity may be found in
texts "' ' in this subsection we show how this theory
can be extended to describe the dispersive sound regime.
The form of the Lagrangian density for a solid (kinetic
minus potential energy) within the continuum descrip-
tion' '2o is

2 3
prs ~+~ ~+y p s ~+ ~ +y pre%

8+~ ~ +yI = 2PQaQa —
2 C Da pa y

Bxp Bxs Bxp Bxs Bx& Bxp Bxs Bx& Bx~

~ ~ 1 (5)

Here, the Greek indices denote the Cartesian directions
(x,y,z); repeated indices are summed. The first term is
the kinetic energy, where p is the mass density of the
solid. The remaining terms constitute the potential energy
of the solid. The potential energy depends only on the
derivatives of u, not upon u itself. This is shown by re-
quiring that the energy remain invariant under a uniform
translation of the solid: u(r)~ u(r)+uo. In addition, the
potential energy has no terms linear in Bu /Bx; this is usu-
ally explained by saying that the solid is in equilibrium
and under no external stress. %e wi11 see in Sec. III in our
discussion of the relationship of this Lagrangian to the
microscopic description of lattice vibrations that the ab-
sence of a term linear in Bu/Bx is appropriate and justifi-
able. At the same time, we will see that it is also ap-
propriate for terms linear in 8 u/Bx, Bsu/Bx, etc. to be
absent. In the literature, this has been termed "lack of hy-
perstresses. '

Finally, let us discuss the terms which do appear. The
second term dominates the potential energy, ' it describes
the long-wavelength elastic excitations of the sohd —the
lowest-order description of sound. The coefficients C ~"
are what are normally called the elastic constants of the
solid; the factor —,

' is conventional. ' To distinguish them
from the coefficients of the remaining terms in this poten-
tial energy, I will normally refer to them as the nondisper-
sive elastic constants.

This dominant term is quadratic in the u s (i.e., har-
monic), and it contains two spatial gradients. This term
can be generalized in at least two ways which satisfy the
above-inentioned requirement of locality in the potential

energy. The first, which is the main subject' of this paper,
increases the number of spatial derivatives without in-
creasing the number of u's. The third through fifth terms
in Eq. (5) are the most important which arise from this
generalization. There is just one distinct type of term of
third order in the spatial gradients, and there are two of
fourth order. The coefficients in front of these terms, D,
Fi, and F2, we term "dispersive elastic constants, " since
as we show below, they describe changes in the sound ve-

locities as the wavelength decreases.
There has been some previous discussion in the litera-

ture of the third-order term, ' '~2 principally because it
describes the phenomenon observed in some solids known
as "acoustic activity, "which, by analogy to optical activi-
ty, is the rotation of the plane of polarization of a trans-
verse sound wave upon passage through a material. The
fourth-order terms have been referred to in only the most
general way ' ' ' ' ' in the previous literature. For the
present study, both the third- and fourth-order terms are
essential for describing the observed dispersion in GaAs
(see Sec. II D). Therefore we will discuss both the D's and
F 's in detail.

It is very important to recognize that this type of gen-
eralization to the elastic potential energy stays within the
realm of the harmonic approximation, since the Lagrang-
ian remains quadratic in the displacement field u. Thus,
with these terms included, the eigenstates of the equation
of motion (see below) are still the ordinary plane waves
describing sound; the effect of these terms is only felt in
the eigenvalues, which deviate from the linear ro-vs-k rela-
tionship. It is for this reason that it is appropriate to call
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the D's and I' 's dispersive elastic constants.
Of course, it is possible to generalize the elastic poten-

tial energy beyond Hooke's law as well. The last term in

Eq. (5) illustrates the simplest possible extension along

these lines. This term contains three u's, and as a conse-

quence the coefficients in front of them, the A' s, may be

called the "anharmonic elastic constants. " They describe

such phenomena as the pressure dependence of the elastic

response and the decay rate of phonons; ' since these

phenomena are not important in the phonon-imaging ex-

periments to be described here, we will drop these and all

other higher-order terms.

B. The elastic equations of motion and the dynamical matrix

In this subsection we review the manipulations which
are required to obtain the equations of motion and the
dynamical matrix from the continuum Lagrangian equa-
tion (5). While this simply involves an application of the
standard prescriptions of classical mechanics, we will go
through them here since they are important for under-

standing some of the symmetry properties of the D and F
coefficients.

We wish the variations of the action to be stationary:

5A =5 f L dxdt =0,
I,

5A= Jdx f dtIP5u u —,'C—» [Bp{5u )8 u +B (5u )Bpu ]—D» P[Bp(5u, )Bs u„+cpu 8 (5u )]

F;»—s [ay5u. )a, u„+a~(5u„)apu. ] F",P—y~[a~(5u. )a,.u, +a (5u, )a~u. ]I .

a—: ~ ()ap= ~ a11d ')apy:
Bx Bx Bxp Xa dXpOXy

As usual, we now integrate by parts' to obtain the elastic
equations of motion:

Pu, =c Py'apsuy+d»'Paps uy+f Py~aps, u„.
Here we have introduced new "dynamic" elastic constants
c», d» p, and fapy~. These are related to the static
elastic constants by the appropriate symmetrizations or
antisymmetrizations of indices

c y =sym{a y]sym{ p g~c{a,y) 1

d P=aSy111(a y)Sy111(p S p)D

fapyspcr sym(a, y)sym(p, s,p, a){F) F2apy5prr apy5po

(9)

(10)

The symmetrization (antisymmetrization) with respect to
the a and y indices arises because of the different terms
generated by integration by parts. Equation (10) contains
an antisymmetrization because one term requires a single
integration by parts, and the other a double integration by
parts; these terms enter with different signs. The sym-
metrization with respect to the remaining indices is sim-

ply a reflection of the permutation symmetry of multiple
derivatives, e.g., Bps ——B~p.

Equations (9)—(11) imply that information is lost upon
going from the static potential energy to the dynatnic
equations of motion; in other words, that dynamic mea-
surements of the elastic response cannot extract as much
information as a static-stress experiment. This point has
been considered previously by Lax, ' ' who shows that
despite the symmetrization in Eq. (9} no information is
lost in the ordinary elastic constants, and that Eq. (5) can
be inverted for C»:

Pcs ea=(c» kpks+id Py Pkpksk

+f PysP kpk, k,k.)e, . (13)

To conclude this subsection, we show that in order for
Eq. (13) to represent a consistent lowest-order dispersive
elastic theory, both the third and fourth-order terms in
the dynamical matrix must be included; both terms con-
tribute to the eigenfrequencies to the same order. We first
imagine diagonalizing the dynamical matrix equation (13)
to order k . It is known' that this can be accomplished
by a real orthogonal transformation R,z, since the matrix
c py kpk~ is real and symmetric, and that 8;J. depends on
the direction but not the magnitude of k. If we apply this
orthogonal transformation to the full dynamical matrix in
Eq. (13},we obtain

pCg2ea ={pVak 5ay+Idg py+kpkSkp

+f„Py~kpk, k,k.}8.

C py5 py5+ pay5 py 5

However, his analysis does not apply to the dispersive
elastic constants, and Eqs. {10)and (11) are genuinely not
invertible. [This is obvious for Eq. (11),where F( and F2,
which are the coefficients of two distinct static deriva-
tives, are combined. ] Since we are concerned with
describing phonon propagation, which is a dynamic exper-
iment, we will only consider the elastic constants d py p

and f »~. It should be kept in mind, however, that a
static phenomenon which shows dispersive effects (correc-
tions to the elastic energy of a dislocation, or domain wall

shape ' ) will be described by the D's, F, 's, and F2's of
Eq. (5) rather than the d's and f's.

We now complete the derivation of the dynamical equa-
tions for sound in a perfect crystal. Since the system has
translational invariance, Eq. (8) is solved by plane waves:
u =eae™e'"'.The secular equation determining the
dispersion law to(k) and the polarization vectors e is then
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We have denoted the rotated eigenvectors as e„=&~Jr~,
the rotated third- and fourth-order terms as

'dg p&si'kpksk =i'g;dip»R, kpksk

fg PrsI kpksk, k. =g.,f'PJ~Z.,k pk, k,k. ,

and the eigenvalues of the ordinary elastic dynamical ma-

trix are denoted pv k, where v is the sound velocity of
the ath branch. %'e will now compute the corrections to
these elastic eigenvalues by perturbation theory. Consider

first the case where k points in a general direction, so that
the v 's are all different; in this case we can apply ordi-

nary nondegenerate perturbation theory. The diagonal

elements of the f P" ~kpksk&k~ matrix give a first-order

contribution, changing the eigenvalue to order k . The
matrix idq~~+k~k~kz has zero diagonal elements, since it
is a pure imaginary Hermitian matrix; it makes its contri-

bution in second-order perturbation theory. A typical
term is

) dg Pr@kpksk
(15)

p(v' —vp)k'

which also is of order k . The d and f contributions aie
therefore equally important. This perturbative result can
only be incorrect when v =vp, which will occur along
high syminetry axes (the [100] and [ill] axes in cubic
crystals). In this case Eq. (15) diverges, signaling that the
d contribution is lower order in k. This will be precisely
the case in which the solid exhibits acoustic activity (rota-
tion of the plane of polarization of transverse sound} and
linear dispersion of the TO phonons near k =0.' 3 How-
ever, in crystals such as GaAs with T~ symmetry, the
numerator of Eq. (15) also vanishes along the high-
symmetry axes, so that acoustic activity does not occur
and the contributions of the d tensor remains of order k .
Reference 21 gives a detailed discussion of the group-
theoretic origin of this result.

C. Symnetries of the continuum elastic theory

In the present elastic theory, the c, d, and f elastic con-
stants alone completely determine acoustic dispersion, ex-
cept near the Brillouin-zone boundaries. Therefore, a
great deal of good can be done by using symmetry to
reduce the number of independent components of the d
and f tensors to their fewest number. This will be accom-
plished in the present subsection.

Time-reversal invariance applies to any paramagnetic
material in the absence of an applied magnetic field. It
requires that the Hamiltonian of a system be real in the
space representation (Ref. 14, p. 276); this also implies
that the potential and the Lagrangian must be real in the
space representation. We conclude from Eq. (5) that all
the elastic constants C, D, F&, and I'2 are real, so that c,
d, and f of Eq. (13) are also real. This, along with the
symmetries of c, d, and f with respect to interchange of a
and y, guarantees that the eigenvalue problem equation
(13) is Hermitian and the eigenvalues co are real.

The only other general symmetry constraint which we
can impose is that the action [Eq. (6)] be invariant under

rotations of the coordinate s stem. This simply requires
tha« ~, d ~ ~, and f pr i transform under rotation
as tensors of ranks four, five, and six, respex:tively. In
more group-theoretic language, it says that they transform
like direct products of the vector representation of the ro-
tation group.

To make further progress we must invoke the specific
point-group symmetry of the solid under study. In the
present case we are interested in GaAs, which has a zinc-
blende crystal structure and therefore the point-group
symmetry Td (43m) W.e wish to know how many in-

dependent components the elastic tensors contain if they
are required to remain invariant under all the operations
of the group Tq. The reader may recall the answer for
the ordinary elastic constant tensor in solids with cubic
symmetry there are three independent elastic constants,
which may be taken as c"",c' ', and c" (Ref. 29). It
is worth reviewing how this statement is proved using
group theory. As mentioned above, c transforms accord-
ing to a representation involving the direct product of
four vector representations. When the tensor index per-
mutation symmetries are taken into account, the repre-
sentation to which c belongs is

I~.=[[V']'] (16)

+ ~&v(g')[&v(g)]'+ s P'v(g)]'. (17)

Table I shows the characters of R, for the group Td.
Using the standard formula for the decomposition of
reducible representations, we find that, as expected, R,
contains the identity representation exactly three times,
corresponding to the three nondispersive elastic constants
in cubic materials.

It is a simple matter to apply this formalism to d»
and f~~. d p"+ transforms according to the represen-
tation Rd ——

t V }[ V ] (curly brackets denote the antisym-
metric part}, and f p"~ transforms according to
Rf =[V ][V ]. Again followmg Lyubarsku, the char-
acters of these representations are

using a notation of Refs. 30 and 31 in which V stands for
the vector representation and the square brackets denote
the symmetric part. The innermost symmetrization in
Eq. (16) results from the fact that c prs is symmetric with
respect to the interchange of a and y or P and 5. The
outer symmetrization in Eq. (16) results from the symme-

try of c p"s with respect to the double interchange of a, y
with P,5. This property, which has not been mentioned
above, results from the fact that a strain applied to the
solid corresponding to a pure rotation costs no energy. '

This symmetry will not manifest itself in d &si' or
fapy5pcr

Returning to the main discussion, the question of how
many independent components the elastic tensor c ~ has
is equivalent to the group-theoretic question: How many
times does the reducible representation R, =[[V ] ] con-
tain the identity representation of rd? 2 The general for-
mula for the characters of this representation, which may
be found by the successive application of formulas derived

by Lyubarskii, is

Xx (g) = —,'Xv(g )+ —', [Xv(g')]'
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TABLE I. Character table of T~, the point group of GaAs (following Ref. 33). Also shown are the
reducible representations relevant to the symmetry analysis of elastic constants.

Td (43m}

A]
A2

Tl
V= T2

R.=[l V']']
Rd=[V ][V ]
Rf=[V2][V ]

21
30
90

1

1

—1

0
0

3C2

1

1

2
—1

—1

—1

0
—1

1

X]] (g)=[ —,'Xv(g) ——,'Xv(g )][—,'Xv(g')+ —,'Xv(g )Xv(g)+ —,'Xv(g)],

X]] (g)=[ zXv(g)+ z&v(g )][4&v(g )+T'&v(g )Xv(g)+ s&v(g )+ 4&v(g )Xv(g)+ 2'4Xv(g)] (19)

and they are given in Table I. When these representations
are reduced, we find that there is one distinct component
of the d ~r+ tensor and six distinct components of the

f ~r~ tensor.
In order to complete the construction of the dynamical

matrix, we must know explicitly the irreducible basis ten-
sors of c, d, and f. (This is analogous to the need to find
the irreducible spherical tensors in a spherically sym-
metric scattering problem. 34) There are irreducible tensors
corresponding to each of the ordinary elastic constants
c'"', c' ' and c "22 (Ref. 29); a typical element of the
tensor corresponding to c' ', for example, is x]x2x]%2.'

The other elements are obtained by suitable permutations
and relabelings of the tensor indices.

There is a single basis tensor for the first dispersive
elastic tensor d. We will call the elastic constant associat-
ed with the irreducible basis tensor d', which is indica-
tive of how the basis tensor is constructed: a representa-

2.=pcs 6'; =D,~6) (20)

then the dynamical matrix D;J is

tive element of the tensor is x]x2x2x2x3, with other ele-
ments obtained by the same permutations as before, with
the sign changes which are dictated by the antisymmetry
of d ~"+ in a, y. The complete basis tensor contains 36
terms.

For the other dispersive elastic tensor f, we call the six
elastic constants associated with the six irreducible basis

f 1 1 1 1 1 1 p]22122 g 112222 p]22133 p]12233 g g211222
~ J & J & J s J anm J

Again, the nomenclature is used to indicate a typical term
in the basis tensor.

Finally, we can state the main result of this subsection,
which is the equations of motion (13) rewritten with the
minimum number of free phenomenological constants as
determined by symmetry. If we rewrite Eq. (13) as

D c 11 k +c 1212(k +k 2
)+f11111]k4+f 122122(k 4+k 4

) +6f 122133k2k 2 6f211222(k 2k 2 k 2k 2
)

D.. —2c k.k. +3id (k k k k ) +4f 112222(k k 3+k 3k )+ 12f ] ]2233(k k k2)

(21a)

(21b)

Here the subscripts i, j, and k denote Cartesian directions,
and we require i&j, j&k, and k&i Equation (.21) gives
the dynamical matrix which we use to model dispersive
phonon propagation in GaAs.

D. Comparison arith lattice dynamics
and phonon imaging

We would like to get a little ahead of ourselves at this
point and quote the final results of the analysis we have
performed to extract the values of the dispersive elastic
constants from previous lattice-dynamical calculations for

GaAs. An explanation of how we extract these constants
will require a detailed digression on microscopic lattice-
dynamical theory, which we will defer until the next sec-
tion.

Table II gives the values of the third- and fourth-order
dispersive constants, as well as the ordinary elastic con-
stants, for three lattice-dynamics models' ' of GaAs.

(1) A shell model. ' '" The ions in the crystal are
thought of as surrounded by massless spherical shells, and
the ions and shells interact via short-range first- and
second-neighbor forces (i.e., they are connected by springs)
as well as via a Coulomb interaction. There are 14 free
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TABLE II. Nondispersive and dispersive elastic constants for the lattice-dynamical models for QaAs
as described in the text.

~ 1111 (dyn/cm2) ( ~ 1012)

&
1212

( ~ 1012)
d' (dyn/cm) (&10 )

I1 11 1 1 1 (dyn) ()( 1()
—4)

g
122122

( X 1() 4)

pl 12222 (y 10-4)
y122133

( )( 1()
—4)

y 1 12233
( X 1()

—4)
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Shell
model

1.20
0.57
0.60

—1.8
—0.26
—2.04
—0.16
—0.48
+ 0.19
—0.24

Dipole
model

1.19
0.57
0.60

—4.1

—0.40
—1.05
—0.03
—0.45
+ 0.08
—0.22

Rigid-ion
model

1.19
0.56
0.59

—F 8
—0.41
—0.90
—0.04
—0.33
+ 0.05
—0.25

Valence-shell
model

1.20
0.61
0.46

+ 1.4
—0.43
—0.79
—0.21
—0.07
+ 0.13
—0.25

Expt.

1.18
0.56
0.59

parameters in this model, which [like the constants in
models (2)—(4) below] are determined by fitting to the or-
dinary elastic constants and to neutron-scattering data.

(2) A deformation-dipole model. In this model a
dynamic dipole moment is taken to point along the in-
stantaneous direction of each near-neighbor bond. The
forces between these dipoles, along with ion-ion Coulomb
interactions and short-range mechanical forces, define the
model, which has 15 free parameters.

(3) A rigid-ion model. This is a specialization of the
deformation-dipole model above with the bond polariza-
bilities set equal to zero. Eleven free parameters remain.

(4) A valence-force-field model. 'O' " A reparametriza-
tion of the shell model introduced in (1) above.

Although the dynamical variables of these models con-
sist of microscopic atomic displacements, the various in-
teratomic interactions of these models are no more calcul-
able from first principles than the elastic constants of the
present model. This is reflected in the wide variation in
the values of the dispersive elastic constants which are ob-
tained from fitting to these models. (The ordinary elastic
constants are in good agreement simply because they have
been used to constrain the parameters of these models. )
Given the variability of the d's and f 's obtained, it is not
surprising that these models give very different predic-
tions for the ballistic-phonon —propagation patterns for
GaAs observed in the dispersive regime around co=1
THz. Reference 7 showed that the shell model gives a
better overall prediction than the other lattice-dynamical
calculations for the focusing pattern; therefore, the num-
bers in the first coluinn of Table II are probably closest to
the true elastic constants of GaAs. Refinement of these
estimates for the dispersive elastic constants by direct
comparison with experiment would be appropriate, but
has not been attempted in the present work.

There exists a very elementary dimensional argument
for why the values of the dispersive elastic constants fall
within the orders of magnitude which they show in Table
II; that is, why the values for d~™ll' fall in the range 10
dyn/cm, and those of f ~"+ in the range 10 " dyn.
d ~ has the dimensions of an ordinary elastic constant
times a length. The only characteristic length scale in the
solid is the interatomic spacing, on the order of 10 cm.
Since c~~" is on the order 10+' dyn/cm (which itself

can be made plausible by a dimensional argument relating
c to a cohesive energy per unit volume), we expect d's on
the order of (10' dyn/cm )(10 cm) = 10 dyn/cm,
which is about right. In exactly the same way we argue
that f ++ should typically be c times an interatomic
length squared: f=(10'2 dyn/cm2)(10 cm) =10
dyn.

As mentioned above, GaAs should not exhibit acoustic
activity; however, the presence of a nonzero d elastic coef-
ficient may be measurable by sonic probes. In the [110]
direction, one of the transverse modes is slightly mixed
with the longitudinal wave by the d elastic constant (and
vice versa), leading to modes with elliptical polarization.
The ratio of the minor to major axes of this ellipse for the
(quasi)longitudinal mode grows linearly with frequency,
and is given by

3~2d 12223

C
1111+C

1122
C

1212

Thus, if a purely transverse ultrasonic wave is launched
into the crystal in the [110] direction, both a
(quasi)transverse and a (quasi)longitudinal wave will be
propagated with an amplitude ratio given by this expres-
sion. At v=250 MHz, this amplitude ratio would be
10, which may be detectable by present-day ultrasonic
techniques.

To show that the inclusion of higher-order dispersive
elastic constants is indeed crucial for describing GaAs lat-
tice dynamics in the THz regime, as well as to illustrate
some of the general behavior of the elastic model defined
by Eqs. (13) and (20) and (21), we show in Fig. 2 phonon
dispersions along several high-symmetry and one general
direction in reciprocal space for GaAs as obtained by the
shell model, compared with co vs k obtained from the
dispersive theory equations (20) and (21), and with the
purely nondispersive sound theory (i.e., d ~r 1'

=f ~~~=0). As these figures show, the dispersive elas-
tic theory is capable of reproducing co vs k for this model
(and so presumably for experiment as well) up to frequen-
cies on the order of and 1arger than 1 THz. By contrast,
the nondispersive theory does not follow the dispersions
into this frequency regime nearly as well; the inclusion of
d ~r+ and f ~"~ is clearly not superfluous. Similar re-
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FIG. 3. Comparison of the shell-model lattice-dynamical cal-
culation (open circles) with the present dispersive elastic model
(curves) for elastic parameters as given in Table II for disper-
sions in a more general direction, [112]. Larger wave vectors
are shown; this illustrates how the elastic model eventually fails
at large energy. The failure for the shell model is more extreme
than for the others because of the larger elastic constants which
correspond to the shell model (see Table II).

0

( I IO)
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suits have been obtained for the other lattice-dynamical
models. The reason that the dispersive model works well
is that, as we will show in detail below, the dispersive elas-
tic theory represents a Taylor-series expansion of the real
microscopic lattice dynamics up to fourth order in wave
vector k. Of course, like any truncated Taylor series,
the approximation must eventually fail; evidence of the
beginning of this failure may be seen in Fig. 3 in the plot
going in the [112] direction, for which we have gone to
somewhat larger

~

k
~

than for the other directions. Since
most of the dispersive corrections to the dynamical matrix
equation (17) are negative (i.e., generally d,f&0, as they
must be to reproduce the general phenomenon that sound
velocities decrease with increasing k), the dispersions
eventually turn downward (unphysically). However, this
does not happen until k has reached a large fraction of
the Brillouin-zone dimensions.

III. THE DISPERSIVE ELASTIC MODEL

FIG. 2. Comparison of the shell-model lattice-dynamical cal-
culation (open circles) with the present dispersive elastic model
(solid curves) and with ordinary nondispersive sound theory
(dotted curves) for the phonon dispersions of GaAs along the
[100], [111],and [110] directions. The elastic parameters are
found in Table II. k is in units of 2m/a, where a =5.65 A is the
cubic lattice constant for GaAs. Phonon frequencies are in
THz. Agreement between the dispersive continuum and lattice
models is almost perfect through the experimentally important
regime up to 1 THz. (This is true for other phonon-propagation
directions and lattice models. ) The nondispersive model fails no-
ticeably for the transverse branches near v= 1 THz.

A. Relationship to microscopic lattice dynamics

We now return to the discussion which we deferred ear-
lier of how the connection is made between our dispersive
elastic model and a traditional microscopic lattice-
dynamics description of vibrations in solids.

My primary source material for this subject has been
the book of Lax, ' which contains informative discussions
of many of the subjects treated here. Aside from the
practical result of this subsection —providing a means of
extracting the dispersive elastic constants from a micro-
scopic model —it is of some fundamental significance to
show that the phenomenological model of Eq. (4) can be
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(22}

Here, the fundamental dynamical variable ui&', rather
than being a continuum displacement field, is the dis-
placement from equilibrium of atom a in unit cell i in
direction iLi. M is the mass of the ath atom, and Ez'„@is
the "matrix of force constants" connecting atom a (unit
cell i) with atom P (unit cell j). It is certainly not clear
a priori that these microscopic displacement vectors can
be averaged suitably to give the continuum displacement
field of Eq. (4). The identification can be made, however,
by comparing the equations of motion.

To obtain the equations of motion analogous to Eq. (13)
from Eq. (24), we find the variational minimum of the ac-
tion, then exploit the translational symmetry of the solid
to ~rite the eigenvector solutions as plane waves:

uiai QM ba(k)&ik x el &ip, a p, (23)

X ' is the equilibrium position of atom a in unit cell i
[This is nearly the same as Eq. (11.2.6) in Ref. 14, except
with a different mass factor. ] The resulting equations of
motion are

pai (k)b„(k)=g R „P(k)bP(k),
p, v

with

RaP(k) P ~ gaiPjeik (X@—Xa')

(24)

(25)

[cf. Eq. (11.2.8b), Ref. 14.] Superficially, Eqs. (24) and
(13) are identical; however, while Eq. (13) contains three
equations of motion, Eq. (24) contains 3N, N being the
number of atoms per unit cell. If E =1, then indeed the
elastic constants of Eq. (13) can be read off trivially from
a power-series expansion of Eq. (25). However, for N & 1,
(and, in particular, N =2, the case of present concern) the
identification is considerably more subtle.

We begin this identification by applying a unitary
transformation U to the dynamical matrix R which
block-diagonalizes it for k=O:

DQ

(k=O)=U R(k=O)U=
—3x3

—3X30
D0 (26)

The matrix U consists of the k=O eigenvectors, which
for a salid with a zinc-blende structure can be written
down exactly by symmetry. D' and D' are the acoustic
and optic contributions to the dynamical matrix. The
3 X 3 subblock D' in Eq. (26) is identified with the elastic
dynamical matrix of Eq. (9) at k=O. Of course, this
identification is rather trivial [D'(k=O)=Oixi}, but it
provides a footing upon which to consider k&0. For, in
the basis of Eq. (26), the coupling of the acoustic and op-

developed as a systematic approximation to the actual mi-
croscopic dynamics of the solid.

The microscopic action of the solid in the harmonic ap-
proximation is (Ref. 14, pp. 326 and 327)

f dr i Ma(i8 ) 5ap5ij —i g Ma Kp~y~ LU~

p, v

tic blocks remains small (of order k) at small k:

R ~(k) = U'R(k) U=
D'+O(k )I ixg

O(k)I 3~i

O(k)I ixi
D'+O(k)1 ixi

(27)

D'(k) Oi&(i
exp( i 5H )R—U(k)exp(i 5H ) =

—3X3
(28)

and permits us to identify the phenomenological elastic
dynamical matrix D'(k) at all k. Since 5H is small, we
will be able to write a systematic perturbation expansion
for it in k. (See, however, the Appendix. )

Before proceeding with this perturbation analysis, we
must discuss the constraints which symmetry imposes on
the transformation matrix 5H. These restrictions are
quite essential, because without them there are an infinite
number of distinct orthogonal transformations which
satisfy Eq. (28}.

First, we consider how the microscopic dynamical ma-
trix R U and the phenomenological elastic dynamical ma-
trix D transform under rotations. Suppose the coordinate
system is rotated by u =S pup (we use S for the rotation
matrix to avoid confusion with the dynamical matrix R).
We wish to know how the dynamical matrix of Eq. (13)
transforms. Just taking the leading-order term (the others
behave identically),

5:„(k)=c»'kpk,

=S;c'j"'Sr

k�
(Spj kp )(Ssiki )

=S;D1(Spik p)S k, (29)

or, mare schematically,

D '(k) =SD'(S k)ST . (30)

The microscopic dynamical matrix satisfies a very simi-
lar equation under rotation of the coordinate system. The
requirement that the microscopic action [Eq. (22)] be vari-

Equation (27) assumes that the dynamical matrix is an-
alytic in k in the vicinity of k=O. This is actually not
the case for polar crystals, in which' the dynamical ma-
trix D(k) contains terms of the form kakp/k which are
related to the development of a long-range electric field
accompanying strains of the solid, and which are respon-
sible for the LO-TO splitting at k=O. However, the ef-
fect of this nonanalyticity is small for the acoustic disper-
sion of GaAs, and it will be ignored in the development
which follows. (In the Appendix we touch upon the
modifications of the derivation of the elastic theory which
are required, and show that the resulting corrections lead
only to small modifications of the predictions for
ballistic-phonon propagation. } Thus it should be possible
to find a small additional orthogonal transformation
[which we will write as exp(i 5H), where 5H is a small
Hermitian matrix], which again decouples the acoustic
and optic subspaces,
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ant under rotation imposes the following requirement on
the matrix of force constants:

* &S k (X —X'jP P ~ g g PJ' '~pi"p[ I
—

I jg
pv ~~ ~ ~ pl lm e vm .

a P jIm

K„'„~~=QS„lKl '~S„
I, m

(31)
~ IS k (X@—X~')=QS gK '@e "'" ' ' S . (32)pl~M ~ lm e vm.

I, m a p j
Equation (31) permits us to write, for the dynamical ma-
trix [see Eq. (25)],

In matrix notation, we find that the rotation matrix acts
separately on each 3 X 3 block of the dynamical matrix:

R "(k) R '2(k)

R "(k) R »(k)
=

O

Since the matrix

0 R "(R'k) R "(RTk) S' O,

3X3 S R '(R k) R (Rrk) 03 3
Sr (33)

S 03X3

03„3 S

commutes with the U defined by Eq. (26), Eq. (33) applies to the rotated dynamical matrix R U as well.
We now use the symmetry conditions, Eqs. (30) and (33), to constrain the k-dependent small rotation exp(i 5H). In-

serting Eq. (28) into Eq. (33) gives

D'(k) 03 3 S
exp[i 5H(k)] 0 D, k exp[ i 5H—(k)]=

3X3 —3X3

03y3 D'(Srk) 03y3
exp[i 5H(Srk)] 0 D'(S kr)

S" O3X3
X exp[ i 5H(S r—k)]

—3X3
(34)

S=exp[ i 5H(—k)]"Sexp[i 5H(R rk)]" . (35)

Suppose we require that the optic submatrix D' satisfy
the same transformation relation under rotation as D'
[Eq. (30)], i.e.,

D '(k) =SD '(Srk)S (36)

awhile this is not guaranteed by any general symmetry
principle, it certainly has no effect on the condition we are
interested in, namely the rotational invariance of the
acoustic subblock. If Eq. (36) is required, then Eq. (35) is
extended to read

—3X30
O3X3

=exp[ i 5H(k)] ()—O3x3

—3X30

Comparing this with Eq. (30) gives a condition on the
upper 3X3 block of exp(i 5H):

5H(k)=
—3X3

O3X3 5 03X
5H(S rk)

—3X3
(39)

Since 5H is Hermitian and satisfies an equation identi-
cal to Eq. (33), it must have exactly the same form as a
dynamical matrix. Its 3&(3 diagonal blocks, 6H" and
5H, are of exactly the same form as D' or D', and
therefore may be written using the general wave-vector ex-
pansion of Eq. (13):

That is, the unitary transformation exp[i 5H(k)] relating
the microscopic dynamical matrix to the elastic continu-
um dynamical matrix satisfies the same rotational invari-
ance condition as the dynamical matrix itself. [See Eq.
(30).] In addition, by performing a power-series expansion
of exp(i 5H) in Eq. (38) and equating powers of 5H, we
can show

X exp[i 5H(Srk)],

exp[i 5H(k)] =
—3X3

—3X30

ST O3x3
Xexp[i5H(STk)] 0 Sz.—3X3

(37)

(38)

5H--(k)=c'»'k k +ld'»"k k k,p 5 p 5 p

+f'»"k k k k +p 5 p o

The real constants c»s, d»sl', and f »sl' are not
numerically related to the elastic constants, but they have
all the same symmetry properties.

It would appear that Eq. (40) puts a rather strong con-
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straint on the form of 5H. By applying one more symme-
try, time reversal, we show that 5H~ and 5H~ are even
more strongly constrained: they must, in fact, be zero.

The reality of the potential energy (see Sec. IIA) re-
quires that the dynamical matrix go to its complex conju-

gate when k~ —k:
R'(k) =R( —k), (41)

and also, [D"(k))'=D"(—k). We apply these condi-
tions to Eq. (28), which defines exp(i 5H ):

3X30

[D'«)]')
03X3

Ogxs D'( —k)-3X30

exp[i 5H'(k)]R'(k)exp[ i—5H'(k)] =exp[i 5H'(k)]R( —k)exp[ i —5H'(k)]

[D'(k) ]' D'( —k)

=exp[ —i 5H( —k)]R( —k)exp[i 5H( —k)] . (42)

This equation is true if

5H'(k) = —5H( —k) . (43)

This requires that the coefficients of the power series in Eq. ('40) be pure imaginary; however, we have already shown
that they must be real. Therefore, they are zero, and 5H™=5H~=Oi&&i.

These constraints permit a unique perturbation-theoretic solution for the parts of 5H which remain, 5H" and
5H~=(5g") . This perturbation solution is developed as problem (11.10.7) of Ref. 14; we will review the steps and
present the solution here. First, the microscopic dynamical matrix RU(k) of Eq. (27) is divided into three parts:

(k) =H p+ I'(k)+X(k), where

03X3
Ho= (44)

. —3X3 3

ancI

I'(k) —=

—3X30

[E'=0, see below Eq. (26)],

R (k) —E'I -3X30

R pp(k) E'I —
q

(45)

0,„,
X(k) =— (46)

X(k) will se~e as the small parameter of the thm~, b ing of order k. We wish to find the transforation exp(l 5H)
which satisfies Eq. (28). Since 5H is small, we perform a power-series expansion of the exponential and collect the terms
as commutators. Using 5H =5H =0&„i,we find

D'(k) 03@3
=H p+ 1'——[[(Hp+ Ir), 5H], 5H]

-3X3

+—[[[[(Hp+ I'), 5H], 5H], 5H), 5H]+ i [X,5H)+ —[[[X,5H—], 58), 58]+1 l
(47)

ancl

Oixi D™(k)
D~(k) Oi„3

=X——
f [X,58],58]+ . i[(8 + Y'), 58]+——[[[(8 + I'), 58],58],58]+ . . (48)

1

However, we want D"=D~=03x3 we use this to solve
for 5H. Equation (48) can be solved iteratively: the first
iterate of this equation is 5H= i——3X30

R „(k)
Ec Eo

~ H:——iX (50)

i [H p, 5H] =X,

which can be solved:

(49) Eo Ect —3X30

We have used a notation of Lax if [H p, A ]=Z, then
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3 =Z . Subsequent iterations lead to a series solution
for 5H:

high-symmetry directions in k. The ones we use are [us-
ing Eq. (21)]

58= i—XH+i[Y,X ] (51) Da (k, 0,0)= 1111k2+f111111k4

Finally, Eq. (51} may be inserted into Eq. (47) to obtain
the desired result:

D& (k (}(}) c)212i 2+f )22(22k4

D~(k, k, 0)=(c""+c ' ' )k
D'(k)

—3X3

3 X 3 000 =~ X[J]
D'(k)

@[0]=a„Z[')=r,
E(2)=-,' [x",x],
E(')=-,' [x, [Y,xH]"],
E(4)—) [X I [[Y XH)H Y]H+ 2 [E(2) XH)H) ]

(52)

(53)

+(f1)1 1 1 1 +f122122)k 4+6f211222k 4

D4 (k k ()) 2 (122k2+gf 112222k4

D' (k, k, O) =i3d' k

D4 (k k ()) 2c 1212k 2+ 2f 122122k4+6f 122133k

D'„(k,k, k}=2c" k2+gf "2
k4+12f )12233k4

D4 (k k k) c 1lllk2+2c1212k2

(54)

[[E(2)XH) XH)

Equations (52) and (53) provide the desired connection
between the microscopic lattice-dynamical theory and the
phenomenological elastic theory. From the derivation, it
is clear that the connection is unique, establishing the
uniqueness of the elastic model. (We have not explored
the case of more than two atoms per unit cell in detail. In
this case more conditions need to be imposed on 5H be-
cause there is freedom in the choice of basis vectors for
the k=O optic modes in the matrix U [see Eq. (26)]. It
appears certain, however, that a unique elastic theory can
be obtained in this case as well. ) The terms E'J' in the ex-
pansion equation (52) correspond to successively higher
powers of k, although the identification is not one to one.
For the acoustic dynamical matrix, E' ' contributes noth-
ing, E'" and E' ' contribute k2 corrections as well as all
higher powers of k (E' ' describes the so-called "internal
shift"' in nonprimitive crystals), E' ' contributes k and
all higher powers, and E' ' contributes k and all higher
powers. Since we are interested only up to k, we can stop
here. In principle, however, Eq. (52) defines a power-
series expansion to all orders in k of the elastic dynamical
matrix. We speculate that in crystals with 0), symmetry
(e.g., Si, Ge), since the acoustic branches have cusps at the
X point in the Brillouin zone' (because of the degeneracy
of the LA and LO modes at the X point for these crys-
tals), this power series has a finite radius of convergence.
In solids with Td symmetry, the I.A and I.O modes are
nondegenerate at the X point; this means that the acoustic
dispersions are smooth everywhere, suggesting that the
power series defined by Eq. (52) has an infinite radius of
convergence.

B. Computational procure

Finally, we can explain how the elastic constants in
Table II have been extracted from the various lattice-
dynamical models. Using any of these models, " we
can compute the dynamical matrix R U(k} [Eq. (27)] for
any value of k. We then use Eqs. (52) and (53) to evaluate
the elastic dynamical matrix; these expressions are correct
up to order k, and contain high-order terms as well. To
extract the elastic constants, we simply fit to the expres-
sions for certain elastic dynamical matrix elements along

IV. DISCUSSION

In this section we will begin by considering various ap-
proximation schemes which may be applied to our elastic
model that could lead to a simpler description or one
which is more useful as a heuristic tool.

First, as is common in elastic theories, we consider the
isotropic approximation. Here we assume that the pho-
non eigenfrequencies and eigenvectors are the same, no
matter what the direction of propagation. Algebraically,
this means that the dynamical matrices for k and for a ro-
tated direction Sk are related by

D(Sk) =ST(k)S . (55)

This is superficially similar to Eq. (30), but it is, in fact,
much more restrictive, and it requires relationships among
the various elastic constants. These are

2c" 2=c'"'—c'2'

d 12223 0
f122133 1 g)22122

3J
f211222 1 ~111111+ ~ ~)22122

f112222 1 g)1111) 1 ~122122
4J 7

f112233 1 g 111111 1 ~122)22
&2J

(56a)

(56b)

(56c)

(56e)

(56f)

Thus in this approximation, the theory requires no
third-order elastic constants and only two independent
fourth-order constants. (And, as is well known, ' the
number of ordinary elastic constants is reduced from
three to two. } The reason that the fifth-rank tensor van-
ishes is that the underlying symmetry group, Td, has a
mirror plane which, coupled to the assumed complete ro-
tational symmetry, introduces an effective inversion sym-

+(f 1 1 1 1 1 I +2f 122122+6f 122)33

+ 12f2)(222)k4

Fitting these is sufficient to overdetermine the elastic con-
stants; the internal consistency with which the equations
is satisfied is about 10/o, indicating roughly 10% accura-
cy for the elastic constants of Table II.
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metry which requires all odd-rank tensors to vanish. The
two fourth-order constants correspond to very simple
physical quantities: f"'"' controls the dispersion of the
longitudinal wave and f' ' controls the dispersion of
the transverse waves.

A comparison of Eqs. (56) with Table II shows that,
while the assumption of isotropy is not particularly good
for the lowest-order elastic constants c, nevertheless it
correctly predicts the general ordering of the magnitudes
of the six fourth-order dispersive elastic constants. Thus
it should be true that f"""still primarily controls longi-
tudinal dispersion and f ' ' primarily transverse disper-
sion. This is suggestive, since we see that the greatest dis-
tinguishing feature of the shell model (which flts experi-
ment ) compared with the others (which do not) is a much
larger value of f ' ' . This indicates that the most trou-
blesome and crucial feature of constructing good lattice-
dynamical descriptions of dispersion at long wavelength is
to get a sufficiently large dispersion transverse-acoustic
branch. This is to be expected, since it is known that the
TA branch in zinc-blende and diamond crystals has very
unusual dispersion at large wave vector, and is frequent-
ly difficult to fit using lattice dynamics. We seem to see a
reflection of this difficulty at long wavelength in the un-

certainty off '

This suggests several possible approximate schemes for
obtaining a better fit to ballistic-phonon —propagation ex-
periments using the present model. One could make the
isotropic approximation for the f 's (but not, say, for the
c's and d's), fix the value of f'""' to be the average of
those obtained from the lattice dynamics of Table II, and
permit f' ' to be an adjustable parameter. Another
possible approach would not make an isotropic approxi-
mation for the other f 's, but would simply freeze them at
some average value taken from Table II, again letting
f'22'~2 be an adjustable fitting parameter. Either ap-
proach reflects the prejudice of the present analysis that

f 'i2'2i plays the greatest role in determining the observed
dispersions, More numerical work will be required to sub-
stantiate this hypothesis.

Future work developing out of the present model could
move in several directions. Hopefully, phonon imaging or
similar techniques will permit the estimation of higher-
order elastic constants for a whole series of homologous
compounds (e.g., the III-V's). ' Dispersive trends.
should be more evident by use of the present theory than
by comparison of the disparate lattice-dynamical models
for these systems. Again, we speculate that f' ' is the
crucial parameter determining trends through a series.

Another line of future investigation could include the
search for other physical phenomena which are influenced
by dispersion. An obvious one is the low-temperature
specific heat. In the classical derivation of the Debye
specific heat, ' the low-temperature T law arises directly
from the quadratic increase in the phonon density of
states at low frequency, which, in turn, comes directly
from the linear co-vs-k dispersion law. The present exten-
sions to elastic theory permit us to study the leading
corrections to the Debye specific heat. Considering the
isotropic approximation, the correction to the dispersion
law is

pc@ =ck +fk
or, to lowest order,

e) =v, k+uk

where
1/2

(57)

(58)

vg=, N=c 1 f (59)
p 2 pc

This implies a correction to the Debye density of states in
frequency:

2
47T co 5to 4

(2m) v, v,
(60)

2n kb i 20~ iakb

h'v, 63 h'v,
(61)

So, we expect a measurable T enhancement of the
specific heat which is entirely a result of lowest-order
phonon dispersion. This quantity would thus serve as a
check of the elastic constants obtained from the phonon-
imaging experiments. In the more realistic anisotropic
case, corrections to the spo:ific heat would remain Ti,
and v, and w would simply be replaced by some suitable
average over propagation directions.

A rather old experiment of the specific heat of GaAs
(Ref. 41) has actually attempted to extract the coefficients
of the successive powers of T in the specific heat:

Cy ——a1T'+a3 r~+a5T5+ (62)

This experiment finds a i
——24.8 ergs/K2 mol = 1.8

ergs/K cm, a &
——467 ergs/K mol =34.4 ergs/K~ cmi,

and as ——1.43 ergs/K mo1=0. 11 erg/K cm . Using Eqs.
(59)—(61), we can use these numbers to generate predic-
tions for the isotropic average elastic constants c and f;
we obtain c=0.6X10' dyn/cm and f=4&&10 i dyn.
The value for c represents a quite plausible isotropic aver-
age of the elastic constants of Table II; on the other hand,
the value for f does not correspond so well with the values
we have derived from lattice dynamics, being about an or-
der of magnitude too high. Our feeling is that a re-
measurement of this specific heat would be worthwhile.
The value reported in Ref. 41 for a5 is quite possibly un-
reliable, for two reasons: (1) The data were taken over a
very limited temperature range, 1—4.2 K; (2) the GaAs
was not intrinsic, giving the background linear specific
heat mentioned above. Present-day measurement and
preparation techniques can improve on both of these
points.

To summarize, we have developed the theory of the
lowest-order extension of the elastic continuum model of
crystals to include dispersive effects. We may think of

Since f of Eq. (57) is generally negative, ia is generally

negative and the correction to the density of states is posi-
tive; the density of states is typically enhanced compared
with a nondispersive model. This should lead to an
enhancement of the specific heat, and indeed it does. Per-
forming the standard calculations, ' we obtain
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this extension either as permitting the elastic constants
to acquire a wave-vector dependence, or as including
higher-order derivatives of the displacement field in the
elastic energy of the solid. We have applied standard
group-theoretic techniques to analyze the symmetry prop-
erties of the new dispersive elastic constants. This new

elastic model is rigorously derivable from microscopic
lattice-dynamical descriptions of the solid via a unitary
transformation whose derivation we have reviewed. As a
consequence, it is not surprising that the present elastic
model provides a description of dispersive ballistic-
phonon propagation which is of at least equal quality to
that of the lattice-dynamical models. Further adjustment
of the elastic parameters should result in a numerical fit
to experiment which is superior to any previous models.
More importantly, the dispersive elastic model provides a
more natural language for comparing trends among simi-
lar compounds, for understanding which are the most im-
portant parameters describing dispersion (as we have done
for the TA branches), and for uncovering relationships be-
tween dispersive phonon propagation and other physical
phenomena like the specific heat.
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APPENDIX: PIEZOELECTRIC CORRECTIONS
TO ELASTIC DISPERSION

It is mentioned in Sec. III that the long-wavelength
treatment of acoustic waves considered in the present pa-
per is strictly incorrect when the solid is ionic. Ions in-
teract with the electromagnetic field, and as a conse-
quence the acoustic waves are not purely elastic, but they
contain an electromagnetic component as well. In this ap-
pendix we outline how this effect is included in a more
comprehensive phenomenological theory, and we mention
how this comes out of a more careful analysis of micro-
scopic lattice-dynamical theory. The conclusion of this
section will be that the effect of piezoelectricity on the
acoustic modes is negligibly small for GaAs ( &0.5%%uo) in
both the nondispersive and dispersive regimes. %'e are
therefore justified in ignoring it in analyzing ballistic-
phonon propagation.

The proper way of including electromagnetic effects in
our phenomenological elastic m.odel is by incorporating
the electromagnetic action with our elastic one, Eq. (5):
Ignoring dispersive terms for the inoment, we have' '

X t 2pQ~Q~ —
2 C pg gg

+ 2 'EPj EI'Ej BPBI' +e BPu ~EZaPy

2po

E= ——A, B=VXA.1

C
(A2)

The final term in Eq. (Al) gives the linear coupling be-
tween me:hanical strains and the electric field; e is the
piezoelectric tensor. (We will ignore piezomagnetism. )

We now obtain two equations of motion, one from
minimizing the action with respect to u:

pu =c p~ d u —e pi'B&r .a P5 y (A3)

The other is obtained by minimizing with respect to the
vector potential A~:

1 (VXB) +—e gp+ e'P~B—rup=0.1 1

Po C C
(A4)

The existence of a vector potential guarantees that another
of Maxwell's equations,

1 ~

VXE+-B=O,
C

remains unchanged. Combining (A4) and (A5),

(VXVXE) +, e QP+, e PrBruP=O. (A6)

%e now seek solutions to the coupled wave equations
(A3) and (A6). Since we are primarily interested in the
soundlike modes with very low frequency, we make a
quasistatic approximation for E:~

VIE=0.

This permits us to write E as the gradient of some poten-
tial E=VQ. In terms of P, Eqs. (A3) and (A6) are writ-
ten

pu =c r 8 u —e ~BpB (A8)

E~pBQ+e di, up=0 . (A9)

Fourier-transforming in space and time gives

pri)iu = —c~~skpksuy+—e p~kpkyp,

—ie~pkpcu P ie p„kzco up 0—. ——

(A 10)

(Al 1)

We can now eliminate P to obtain a single equation of
motion for u:

(A 1)

The first two terms are the purely mechanical energies
discussed extensively in the text. The next two terms will
produce Maxwell's equations for a medium with dielectric
tensor e;j and magnetic permeability po. As usual, E and
B come from a more basic underlying dynamical variable,
the vector potential A:
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(e @'kpkp)(e~ k„ks)

a cap p

(A12)

nonvanishing. ' e' =0.154 for GaAs (in the convention-
al rationalized MKSA units }. Because of this symmetry,
among the cubic elastic constants, the only one to be stif-
fened is c" . The magnitude of this stiffening is

%'e can view this as an ordinary equation for sound
waves, but with so-called "piezoelectrically stiffened"
elastic constants c

e I'k ke~
Py5 ~ Py5+

k;e;, kJ
(A13)

This is a misnomer for several reasons. First, the sound
velocities may equally well be softened as stiffened by this
new term. Second, it is improper to call c ~& a set of
elastic constants, since they are k dependent (with a non-
analytic dependence around k=o), and hence do not
transform properly under rotation. Still, it is very useful
to use Eq. (A13) to estimate the magnitude of the
piezoelectric stiffening. For crystals with Te symmetry,
only piezoelectric tensor components of the type e'23 are

e123 2

b, c "22= ' =2.2X lO' erg/cm2, (A14)

g~ 1122

0'4% '
C

(A15)

which is utterly negligible.
So much was suspected previously. '" The important

question for the present work is: Does the piezoelectric
effect on the dispersive elastic constants, did Id and bflf,
have similarly small magnitude? The answer is yes, as we
now show. When dispersion is included, the action of Eq.
(A 1) is augmented by the following terms:

taking e=12.5 for GaAs. Comparing this with c" of
Table II, we find

~dispsrsive =f dx dt(d ~pua~spur +f cpu a~~ur +yapy~a~yEp+ 0apyPa~rPp

+g p„sBpu B+r+Ii p„s BpurB~r) . (A16)

y and P are dispersive corrections to the constitutive rela-
tion between the crystal polarization P and the electric
field E. y is known as the optical activity tensor, ' since
it describes the rotation of the plane of polarization of
linearly polarized light. (y=0 for crystals with Te sym-
metry, ' but we will carry it through the analysis any-
way. } g and h are dispersive connections to the piezoelec-
tric tensor.

By working through the identical analysis as above with

Ad;,~;„, included, we find piezoelectrically stiffened
dispersive elastic constants d and f. The result for d is

hkke ekkh gkkg gk(ykk)ke
kek kek kek (kek)2

ek(ykk)kg ek(ykk) ke ek(1}(kk)ke

(kek ) (kek ) (kek )
(A18)

To estimate the relative importance of b,d and hf, we
must have some estimate for y, 1I(, g and h. Since very lit-
tle is known about these elastic constants, we resort to the
dimensional analysis of Sec. II 8, which proved successful
for understanding d and f. Again, we assert that the only
important length scale is ao-10 cm, the interatomic
sparing. Then we estimate

gal yPk~k„e'
d ~py&p d ~prsp+

k;e;J.k)

e @'k k„g"r P e @'k (y; k;kk)kk„eP
(k;ej ki )

(A17)

y =aors=10 cm,

y=a02e= lO-" cm',

g =aoe =10 ' MKSA unit,

h =aoe =10 MKSA unit .

(A19a)

(A19b)

(A19c}

(A19d)

This result has appeared as Eq. (32) of Ref. 18. They
point out the significance of Eq. (A17) for acoustic activi-
ty of solids, which is described by d: Equation (A7)
shows that acoustic activity is never a purely mechanical
effect (described by d p), but is always infiuenced by
coupling to the electromagnetic field. This point was
missed in some previous work. '

A similar expression can be derived for f; since the re-
sult is rather lengthy, we present it without subscripts,
which can be filled in by the interested reader:

hf b.d hc =0.4% .
d c

(A20)

Given the result from quartz, this is, if anything, an
overestimate of the importance of b,d and bf.

The only one of these about which we have some experi-
mental knowledge is y, the optical activity coefficient. In
quartz, y=2X10 cm. So, if Eq. (A19) is true, then
comparison with Eqs. (A17} and (A18}shows
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Finally, eve mention blow the above results are derived
from a microscopic lattice-dynamical model; Ref. 1 con-
tains by far the most lucid discussion of this derivation.
Our calculation of Sec. III assumes that the microscopic
dynamical matrix R(k) is analytic around k=o, and thus
can be developed in a power series. This is not the ease
when the components of the system interact via long-
range Coulomb interactions. As Ref. 1 shows, in addition
to analytic parts, R(k) contains pieces like

(A21)

This nonanalytic piece can be interpreted as the effect of
the macroscopic polarization of the solid, thus leading to
the sort of phenomenological terms in Eq. (Al). The de-
tailed study of other nonanalytic terms in the microscopic
theory, which presumably leads to terms of the sort con-
tained Eq. (A16), we have not undertaken.
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