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This paper describes a method for systematically obtaining distributions of annealing and/or
creation energies, tunneling distances, and trap depths for specific defect populations from electron-

spin-resonance (ESR) transients. The method of analysis, specifically adapted to the constraints im-

posed by ESR, is presented for obtaining defect distributions from a few transients using time-

dependent temperature variations. Specific important cases, numerical examples, and application to
actual data are examined. A brief discussion of the experimental methods required to obtain the
ESR transients ~ith sufficient sensitivity are described. Finally, issues of resolution and noise, com-

parison to other transient analysis methods, and possible extensions are presented. A detailed dis-

cussion of the application of the method to hydrogenated amorphous silicon is presented in the fol-

lowing paper.

I. INTRODUCTION

In a number of materials, the annealing and creation ki-
netics of defects are of great scientific and technological
interest because the energetics of these processes deter-
mines the defect density and the stability of these materi-
als. In particular, materials such as a-Si:H, GaAs, and
ion-bombarded silicon are important examples where
metastable defects can be removed by annealing at in-
creased temperatures. The energies controlling the an-
nealing and creation of these defects are invaluable in elu-
cidating the microscopic defect structures and dynamics.
Other materials such as silicon dioxide and silicon nitride
contain defects which can be emptied or filled by the vari-
ation of temperature and/or the application of fields. The
distribution of these states and traps as a function of
physical parameters such as distance from the interface or
as a function of energy is of interest.

Unfortunately, many measurements which depend on
defect concentration, such as carrier lifetime or mobility,
do not distinguish between the various defects. Hence, it
is extremely valuable to have a method by which the evo-
lution of a specific type of defect can be studied indepen-
dent of the others. Furthermore, it would be particularly
useful to be able to relate the microscopic structure of the
defect to its energetics. Since electron spin resonance
(ESR) in many cases yields direct information on the mi-
croscopic structure of the defects and is capable of distin-
guishing between various types of defects, one would like
to combine ESR with another method to obtain additional
information.

One recent method which relates ESR to an energy
spectroscopy is spin-dependent deep-level transient spec-
troscopy (DLTS).' In this experiment, the capture and
emission rate of defects in a magnetic field is altered by a
microwave field. The energy information is derived from
the emission and capture rates while the microscopic de-
fect information is derived from the spin-resonance condi-
tion. Unfortunately, this measurement is very insensitive,
is difficult to interpret, and many defects are not expected

to have spin-dependent emission or capture rates. Furth-
ermore, DLTS also requires that the traps be repetitively
filled and emptied, and thus it is not appropriate for cases
where paramagnetic defects are irreversibly destroyed.

In order to circumvent these problems, we describe an
experimental technique which combines ESR with an
energy-sensitive spectroscopy. The basis of this method is
that the rate of change of a given metastable defect popu-
lation is observed by ESR as a function of time and tem-
perature. Because ESR is selective to a specific type of
defect, the change of defect populations with different
spin-resonance transitions can be distinguished. Depend-
ing on the cause of the various rates, different types of in-
formation about the defect population can be extracted
from the observed ESR decays. For example, if the rate
distribution occurs because the defects have different mi-
croscopic environments, the distribution of defect anneal-
ing energies may be determined from the different rates,
or if the rate distribution is due to thermal excitation to a
band edge, the density of states of the particular defect
relative to the band edge can be obtained. Finally, if the
transient ESR signal is due to tunneling, the various tun-
neling distances may be derived from the rate distribution.
Consequently, an otherwise uniform spin population can
be further resolved into subpopulations with different rate
constants.

Although the analysis of the ESR transients in terms of
various rates appears straightforward, and periodically,
Arrhenius analyses are performed on ESR signals, to the
best of our knowledge, it has not been systematically ap-
plied to spectroscopically resolve defect distributions. The
spectroscopic analysis of electrical transients, while com-
monly used in capacitance transient spectroscopy,
thermally stimulated currents, and luminescence mea-
surernents, has only recently been applied to other types
of measurements to yield energy distributions. Kostial
and Slabeycius have applied a special case of the rate
analysis to ultrasonic attenuation measurements in amor-
phous Se to determine the distribution of energies charac-
terizing structural changes in amorphous Se. The at-
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tenuation measurements are not specific to a particular
type of defect, however. The reason for the lack of work
on ESR transients is due primarily to several experimental
considerations particular to ESR. First, the signal-to-
noise ratio for ESR is significantly less than luminescence
or electrical measurements. Second, ESR spin densities
are measured typically by scanning the magnetic field so
the time interval between successive spin measurements is
often greater than 100 s. In addition, one cannot usually
repetitively fill and empty the states. These considera-
tions require that unique experimental methods be used to
acquire the ESR decays which will be discussed in this pa-
per and that the data analysis be particularly efficient for
obtairung information from a few annealing cycles.

This paper begins with a general discussion of the phys-
ical basis and analysis of ESR transient spectroscopy in
Sec. II. The general analysis is applied to a number of im-
portant special cases. In Sec. III we discuss general exper-
imental methods for obtaining the required ESR tran-
sients with sufficient sensitivity. This is followed by a
discussion of a number of issues concerning the resolu-
tion, signal-to-noise ratio, comparison of the analysis to
methods used in other fields, and applicability of the spec-
troscopy in Sec. IV. This section also proposes possible
extensions of the particular analysis developed in this pa-
per. The following paper applies the methods developed
in the first paper to the specific case of annealing distribu-
tions of metastable dangling bonds in hydrogenated amor-
phous silicon.

II. ANALYSIS

The framework for extracting energy distributions from
ESR transients is presented below. Although in simple
cases, the analysis is similar to that used in other areas
such as luminescence decays, 5 we have found that a more
general method, particularly suited for extracting energy
distributions from ESR transients, yields superior results.
Finally, some important special cases are discussed.

A. General theory

Consider a solid in which a metastable population of
spins has been created either by the formation of new de-
fects or by the population of an existing defect with an
unpaired spin. The metastable spins will, in general, have
a distribution of some parameter, S. For example, the
spins may have a distribution of energies or attempt-to-
escape frequencies. Upon annealing and/or passage of
time, the spin population will decay according to the rela-
tion

= —R (S,r)N(S, t),

where N(S, t) is the density of spins (spina per volume per
unit S) at a time t with a rate of decay, R (S,t), character-
ized by the parameter S. A specific example might. be

R (S t) =&oexp[ E /kT(~)]—
where the distribution parameter S is the activation ener-

gy E„vois an attempt frequency, and kT(t) is the time-

dependent temperature in energy units. Equation (1) may
be solved yielding

t
N(S, t) =N(S, O)exp —f R (S,t')dt'

where N(S, O) is the initial spin distribution that must be
determined. The experimentally accessible quantity is the
total spin population given by the integral

N(r)= fdSN(S, r)

= fdS))((SO)ex,p —f R(S) )d) , '. '(3)
The purpose of the subsequent analysis is to extract the
distribution N(S, O) from the time-varying spin popula-
tion N(t).

There are several approaches one may take to derive
this distribution from N(t). If the rate, R (S,t) =R (S), is
independent of time, Eq. (3}can be simplified by a change
of variable giving

N(t)= fdSN(S, O)exp[ —R(S)t]
R(oo)

uX u, Oexp —ut 8, '8 ' u, 4

where u =R(S) and S=R '(u). If the limits extend
over a sufficiently large range, this integral can be approx-
imated by the Laplace transform. The solution to Eq. (4)
1s

N(u, O}=R'(R '(u))L '(N(t)),

where I. ' denotes the inverse Laplace transform. One
could therefore obtain the distribution using a numerical
inverse Laplace transform. Alternatively, one could, in
principle, apply various analysis methods developed for
decay of luminescence such as the method of moments or
nonlinear least-squares fitting. However, there are a
number of problems with these approaches which will be
discussed in Sec. III C.

With these difficulties in mind, we derive a iterative
method which will extract the distribution from Eq. (3)
with very few function evaluations (sometimes as few as
two), constraints are easily incorporated, and the tradeoff
between noise rejection and resolution is quite readily im-
plemented. Moreover, the method does not assume a dis-
tribution a priori. More-detailed discussions of the merits
of iterative deconvolutions over other methods are dis-
cussed in Ref. 9.

The analysis is based on the following observation. All
of the time dependence is contained in the exponential
factor in Eq. (3}. If f R(S,t'} is less than one, the
integrand is approximately N(S, O), while if R (S,t')dr'

0
is greater than one, the integrand is nearly zero. Conse-
quently, Eq. (3) may be approximated by

N(t)= f, dSN(S, O), (6)
S'(r)

where S'(t) is defined implicitly by the equation

f R (S',r')dr'=1 . (7)

deri»ng Eqs. (6)»d (7), we have assumed that
M/BS' ~0 and that Eq. (7) yields a single value of S' for
each t. If M/BS'~ 0, the limits of integration in Eq. (6)
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become 0 and S'(t} and the minus sign in Eq. (9}becomes
positive. In all cases of interest, these assumptions are
justified. Taking the time derivative of Eq. (6) yields

dX N—(S',0)dS'(t)/dt (8)

N —N(S', 0} .

This important result states that if the spin density is
plotted versus S'(t) defined by Eq. (7), the negative slope

of this curve approximately gives the distribution of the
spina in the parameter S'. Although Eq. (9}is an approxi-
mation, it is remarkably accurate and often is sufficiently
accurate by itself. The first example in Sec. II D demon-
strates that Eq. (9) merely broadens the spectrum by a
function of width 2.7kT.

Equation (9) forms the basis for an iterative method in
which one computes a distribution using Eq. (9). Using
this distribution, a new transient is computed, and Eq. (9)
is applied to the difference between this transient and the
observed one. In other words,

Ã~(S', 0) =N; i(S',0}+A,
S'{t)

N»(S') —fdS N; i(S,O)exp —f R (S,S")dS" (10)

B. Distribution in energy

One of the most common special cases occurs when

R (E„t)=voexp[ E, /kT(t) —j, (12)

where vo is an attempt frequency, T(t) is the temperature
which may be a function of time, and the spin distribution
parameter is an activation energy E, . In this case, Eq. (7)
becomes

f voexp[ E, /kT(t')]dt'—=1 (13)

and defines E, uniquely as a function of t For a gi.ven t,
Eq. (13) can be solved for E, using Newton's method. If
the temperature is independent of t, Eq. (13) simplifies to

where N;(S,O) is the ith iteration and the initial guess,
No(S', 0) is given by

No(S', 0)= dN» ldS' —.
A change of variable from time to S' defined by Eq. (7)
was made and N» is the observed spin decay. The factor
A, is a convergence factor which controls the rate of con-
vergence and is typically of order one; large values can in-
crease the convergence rate but may cause instabilities. A
more general discussion of the derivation of this iteration
equation and its convergence is found in the Appendix.

We now consider several important special cases of Eq.
(9) which are of particular interest.

lar rate distribution of Eq. (12) caused by a distribution of
activation energies is valid if decays for different tempera-
tures align for a single value of the attempt frequency. A
distribution of attempt frequencies, for example, would
not yield a universal curve. Second, the value of the at-
tempt frequency can be determined by requiring the spin-
density annealing curves to be independent of T.

The case of a time-dependent temperature is particular-
ly useful since it allows one to determine the complete dis-
tribution from the lowest to the highest activation ener-
gies with a single annealing curve as discussed further
below. Consequently, one can determine spin distribu-
tions in cases where the changes occur over long time
periods and are irreversible, e.g., paramagnetic defects
created by implant damage or plastic deformation.

8 (r) =voexp( 2r /ro ), — (16)

where r is the tunneling distance (the spin distribution pa-
rameter), vo is the attempt frequency, and ro is the tunnel-
ing decay length. Equation (7) becomes

C. Distribution of tunneling distances

Another special case of interest occurs when the spin
density decays by tunneling from states with a distribu-
tion of tunneling distances assuming constant barrier
heights. In this case, the de:ay rate is independent of time
and is given by

E,(t)=kT ln(vot),

and the distribution of spins with respect to the activation
energy E, is given by

(15)

r (t) =(ro/2)ln(vot),

and Eq. (9) becomes

dX = —N(r, O) .
dr (t)

(17)

(18)

In other words, Eqs. (14) and (15) indicate that if the
spin-density annealing curves are plotted versus
kT ln(vot), a universal decay curve should result indepen-
dent of annealing temperature; the decay curve reflects the
initial distribution of activation energies. Equation (15)
has two lIDportant consequences. First, the MOQOIIlolecu-

Thus, in this instance, similar to the activation energy
case, the slope of the spin density plotted versus Int will
yield the distribution in tunneling distances. Unlike the
case of the activation energy distribution, the prefactor is
not temperature dependent but it may be dependent on ap-
plied fields in some cases and hence subject to experimen-
tal control.
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N(t) =exp( R—t), (19)

where R =(10' s ')exp[( —0.9 eV)jkT] is plotted in Fig.
l(a) versus kTln(vot) while the derivative is shown Fig.
1(b). Note that the correct position of the peak in the dis-
tribution is recovered with some small broadening of the
order of 2.7kT. Hence, at lower temperature the resolu-
tion improves. If further improvements in the resolution
are required the iterative method using Eq. (11) can be
utilized. Increasing the resolution significantly beyond
-2.5kT requires a large signal-to-noise ratio which gen-
erally is not obtainable for ESR transients.

The second example we consider is the decay of defects
with a two-peak distribution for different temperatures
(Fig. 2). The decay from this distribution is presented in
Fig. 2(a) and shows a plateau region where the lower ac-
tivation energy defects have been removed while the
higher-energy defects remain. Note also that the various
temperature annealing curves overlap to yield a universal
curve. The derivative is plotted in Fig. 2(b) and accurate-
ly reproduces the original distribution. We see that the
distribution is quite accurately recovered from the decay
without any iteration.

The use of the iterative method is illustrated in Fig. 3.
The solid curve represents the actual distribution respon-
sible for the decay. The dashed curves show the results of
various stages of the iteration. The imtial distribution is
given by Eq. (11) and the subsequent iterations are derived
from Eq. (10). After only two evaluations of Eq. (10), the

D. Examples

In this section the formulas developed in the preceding
sections are apphed to specific examples. The first exam-
ple we consider is the case in which the defects possess a
single activation energy. The decay N(t) is given by
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FIG. 2. (a) Defect decay versus kTln(vp/t) for the distribu-
tion of activation energies given in (b) computed using Eq. (3)
for kT~0.033 eV (solid line) and kT 0.038 eV (dashed line).
Note the overlap of the different temperatures. (b) The solid
line is the original distribution of activation energies versus ener-

gy. The dashed-dotted line indicates the resulting distribution
using Eq. (11). Resolution is -95 meV.

results have converged to the correct distribution. The ef-
fective number of independent parameters of this spec-
trum can be estimated by dividing the total energy span
by the resolution. Since the resolution of the spectrum in
Fig. 3 is -0.08 eV, the spectrum consists of roughly 12
independent parameters.

A more stringent test of the iterative method is shown
in Fig. 4. The method is applied to a signal containing
1% noise, and the final resolution of roughly 0.03 eV was
obtained after seven iterations of Eq. (10) (dashed curve).
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FIG. 1. (a) Defect decay versus kT ln(vpt) for the distribution
of activation energies given in (b) computed using Eq. (3) for
kT=0.026 eV. (b) The solid line is the original distribution of
activation energies versus energy. The dot-dashed line indicates
the resulting distribution using Eq. (9). Resolution is -70 meV.

FIG. 3. Solid curve represents the original distribution.
From a decay derived using Eq. (3), the starting distribution
(dotted) was obtained from Eq. (10), and subsequent distribu-
tions using Eq. (9) (dot-dashed aud dashed). Resolution is -95
meV.
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FIG. 4. Distributions obtained from signals with noise. A
decay curve was derived from the distribution depicted by the
solid line. Relative noise of 1% was added to the decay curve.
Equation (1Q) was used to obtain the dashed curve after seven

iterations. The resolution is -30 meV.

Finally, an example of the case of variable temperature
is exhibited in Figs. S(a)—5(c) on actual data. The curve
in Fig. 5(a) represents an experimental decay of metastable
silicon dangling bonds in hydrogenated amorphous silicon
versus time for the indicated temperature sequence. Fur-
ther details can be found in the following paper and in
Refs. 10 and 11. The activation energy as a function of t
was found using Eq. (7) for a distribution of activation en-
ergies given by Eq. (11) with vo ——10' Hz. The equation
was solved for E, for each t using Newton's method for
nonlinear equations [Fig. 5(b)]. Figure 5(c) shows the spin
distribution plotted versus the energy of Fig. 5(b). Note
that the result is a curve without kinks. This same decay
curve was also obtained from three decay curves measured
at different constant annealing temperatures plotted
versus kTln(vot). This example demonstrates that one or
two decay curves are sufficient to extract a distribution,
particularly if vo is known.

III. EXPERIMENTAL METHODS

The preceding sections have shown that a primary re-
quirement for the ESR transient analysis is high signal-
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to-noise measurements of spin population transients
versus time. Thus, it is important to discuss general
methods for obtaining the transients with sufficient time
resolution and sensitivity.

Usually, the ESR spin density is obtained by measuring
the microwave absorption of a sample in an increasing
magnetic field that is modulated with a small high-
frequency magnetic field. The peak-to-peak amplitude of
the resulting derivative of the microwave absorption line
(Fig. 6), is proportional to the spin population. Typically
the scan takes a minimum of 100 s, limited by the require-
ment to keep the speed of the static magnetic field much
smaller than the ratio of the ESR linewidth to the time
constant used for the synchronous detection. Because in
the case of a known constant line shape only the peak-to-
peak amplitude is needed to determine the spin density,
most of the observation time is wasted providing informa-
tion on line shape and symmetry repeatedly. Further-
more, the long scan makes the measurements sensitive to
spectrometer drifts.

A much more efficient method for determining the spin
density is to find it by a double integration of the curve in
Fig. 6. This integral, A (t), is related to the spin density
by the relation

A(t}=CT 'S(Hi, Ti)N(t), (20)
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FIG. 6. Procedure for obtaining ESR transients. A third
magnetic field with a sawtooth time dependence of frequency ~
causes the output of the high-frequency lockin to exhibit the
time dependence in the inset. The double integral of the curve
in the inset and ihe shaded region is proportional to the spin
density and can be acquired within a 1/cu time period.

where C is a constant, T is the temperature, and the fac-
tor S(Hi, Ti ) describes the saturation of the spin popula-
tion as a function of the microwave field Hi, and the
spin-lattice relaxation time, Ti. The T factor is due to
the Curie-law behavior. In general, the temperature
dependence of S(Hi, Ti } can be determined by ancillary
measurements.

The key to obtaining sufficiently sensitive ESR tran-

sients is to obtain a rapid measurement of the area A (t)
(up to 100 Hz) using a double modulation method. This

can be accomplished by generating a third magnetic field

(in addition to the static and high-frequency fields) which

varies in time as a triangular or sawtooth waveform of

frequency co between 1 and 100 Hz; the static magnetic
field remains constant (Fig. 6). The output of the ESR
spectrometer (high-frequency detector) is a waveform that
resembles the typical ESR spectrum but repeats at a fre-
quency co. This waveform can be averaged in a signal
averager for periods ranging up to 10 s. At the end of the
accumulation period, the double integral of the resulting
waveform can be evaluated by a computer and a new aver-
age accumulated. The result is that the entire observation
time of the spectrometer is now being used to determine
the spin density. The time resolution is limited by the
speed at which the area can be determined and the sweep
rate of the magnetic field. This experimental method
works even if the line shape changes as the temperature is
altered. Furthermore, one could imagine measuring the
decay of two defects simultaneously by applying a mag-
netic field which switches from one line to the other dur-
ing a cycle of the third magnetic field waveform. This
third magnetic field can be generated by the inclusion of
an additional coil within the ESR spectrometer. If the
line shape is temperature independent, the magnetic field
can be modulated sinusoidally, and the signal averager can
be replaced by a lock-in amplifier. Further discussion of
experimental details which depend on specific sample
characteristics are found in the following paper. In gen-
eral, we have found that this procedure yields sensitive
ESR curves suitable for transient analysis.

IV. DISCUSSION

Finally, we discuss various considerations that are im-
portant for the application of ESR transient spectroscopy
such as sensitivity and resolution, etc., as well as possible
extensions of the spectroscopy. The analysis presented
here is compared to those used in other transient analyses.

A. Application of the spectroscopy

One of the most important considerations for applying
the present analysis to a new system is to establish the va-
lidity of a monomolecular rate since the analysis depends
on the fact that that individual defect populations vary in-
dependently of each other. If the paramagnetic defects
obey different kinetics, the analysis is much more com-
plex. The monomolecular recombination law can be es-
tablished by olmerving the decay for different starting de-
fect densities (so: following paper for further details). If
the result decays are independent of the number of initial
defects, the monomolecular relationship is valid. One
must ensure that, as the total number of defects is altered,
their distribution remains the same.

Another important issue to consider is the position of
the Fermi level. Since the spin signal is used to monitor
the defect density or the change of occupancy, the Fermi-
level position during annealing must be known because
the Fermi-level shift can mask actual changes in defect
density. Furthermore, the occupation of the existing de-
fect can be altered by the depopulation of another defect.
In addition, the temperature dependence of the ESR sig-
nal must also be known. For example, the ESR signal can
change as a function of temperature due to the Curie tem-
perature dependence of the susceptibility, and the decays
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must be corrected for this temperature variation.
A final point to consider is the appropriate equation for

the rate R(S,t) .If the rate depends on temperature and
the decay is plotted versus S(r) defined by Eq. (7), a single
universal curve independent of annealing temperature
(Fig. 2) should result using the correct value of vo. If a
single value does not yield a single curve, the spins may
exhibit a distribution of attempt frequencies and a more
complex extension of the analysis, discussed below, must
be invoked.

B. Resolution and noise

In a discussion of a spectroscopic method the noise is
intimately related to the resolution. We observed from
the single exponential example or from the kernal of Eq
(A6) that the usual resolution of the transient spectros-

copy is roughly 2.7kT. From a physical standpoint, this
resolution limit occurs because the change of occupancy
due to thermal processes occurs over an energy of kT
For ESR transients, the signal-to-noise considerations
generally prohibit significant increase of the resolution
beyond this limit. The noise level increases as the resolu-
tion is enhanced. Since each iteration increases the resolu-
tion in a stepwise fashion, the iterative method is contin-
ued beyond the 2.7kT limit until the noise becomes signi-
fican. Direct inversion of the operator Eq. (A4) or a non-
linear least-squares method does not have this flexibility.

There are several ways to improve the signal-to-noise
ratio of the transient analysis. Since the spin density is
often plotted versus the logarithm of time, the signal
averaging should be logarithmic in time as well. The
averaging time for a point in the ¹h decade of time
should be 10 times as long as for a point in the flrst
decade. This procedure assures that the smaller signals at
later times have the same or better signal-to-noise ratio as
the earlier points with larger signals. Another noise-
reduction method utilizes filtering to remove the high-
frequency noise since the derivative required in Eq. (9)
amplifies the high-frequency noise of the measurement.
The sliding average methods of Savitzky and Golay' al-
low one to perform the filtering operation simultaneously
with the derivative. During each iteration, the derivative
in Eq. (10) is computed using the filtering derivative.

Finally, because the derivative amplifies changes in
slope, one inust be careful when combining decay curves
from different temperatures. A small misaligninent of the
different temperatures can give rise to small artifactual
features in the derived distribution. The misalignment
can occur for several reasons. First, it takes a longer time
period for the high temperatures to stabilize so the defect
distribution begins to change during the stabilization
period. As a consequence, the zero of the time and the in-
itial defect density are somewhat uncertain. The uncer-
tainty results in some misalignment when curves obtained
at different temperatures are combined. This problem is
considerably reduced by using the variable temperature
analysis and several different temperatures to capture
both the low-activation-energy (short time) and the high-
energy (long time) components of the decay in a single
curve. The initial starting density is thereby ensured to be

the same for the different temperatures, and the zeio of
the time axis is also consistent between the various tem-
peratures. The second case of misalignment arises from
slight errors in the attempt frequency and yields curves
which systematically are offset as the temperatures in-
crease. The attempt frequency can be adjusted to remove
the discontinuities in the slope and the resulting artifacts
in the distribution.

C. Comparison to other analyses

The transient analysis presented in Sec. II has a number
of advantages over other methods such as nonlinear least-
squares fitting, Laplace transforms, Fourier transforms,
and the method of moments. Since nonlinear least-
squares fitting of the transients from a distribution to the
observed transient usually performs as well as these
methods, we will only discuss nonlinear least squares.
There are a number of problems with this approach.

The first problem is that it is computationally quite ex-
pensive. In the general case when the temperature is a
function of time (more important for ESR transients), the
rate depends on time. One could imagine attempting a
nonlinear least-squares fit of the data to Eq. (3) where
N(S,O) for various values of S are the fitting parameters.
Unfortunately, a reasonable spectrum may consist of up
to 20 to 30 points, and since Eq. (3) is computationally
quite time consuming, involving a double integral, the op-
timization problem is formidable.

For example, the distribution obtained in Fig. 3 took
two evaluations of Eq. (11) to achieve the correct distribu-
tion containing effectively 12 independent parameters.
We can estimate the typical number of evaluations that a
nonlinear minimization routine might require for a prob-
lem of siinilar complexity. The best of 12 nonlinear
minimization routines evaluated in Ref. 13 took an
equivalent of 298 function evaluations for a particular
ten-parameter model.

There is a good reason for this large discrepancy in the
number of function evaluations and corresponding com-
putational effort. The nonlinear fitting routine blindly
adjusts all parameters to obtain a good fit, whereas Eq.
(10) selects only those variations which are required to ob-
tain a good fit. It is based on the physics of the problein
rather than a general mathematical procedure.

The second problem with nonlinear least-squares for-
mulation is more serious, particularly for ESR transients.
The resulting least-squares solution oscillates wildly and
has unphysical negative regions of the distribution. This
phenomenon, well known in various deconvolution prob-
lems, occurs because the high-frequency noise of the mea-
surement becomes amplified by the inversion algorithm. '

Prior information, such as non-negativity and slow varia-
tion of the distributions in the parameter 5, cause the
various N(S, O) values to be interrelated in a complex
manner that is difficult to include within a least-squares
formulation of the problem.

Finally, the third problem is that the most likely spin
distribution is not one which minimizes the sum of the
squares of the error between theory and experiment as as-
sumed in nonlinear least-squares minimization, but rather
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a distribution for which the errors between calculated and
experimental transients are randomly distributed with
zero mean. ' Thus, simple nonlinear least-squares fits to
models expend a great deal of computation to arrive at a
nonphysical distribution.

= 6 (S) R(S)N—{S,r), (21)

where G(S) is the generation rate per unit volume per
unit S for spins characterized by the parameter S. Equa-
tion (21) has a solution given by

EN{S,r)=N(S, ~ )—N(S, r)

= [N(S, 00 ) —N(S,O)]exp[ —R (S)t]

=EN (S, ao )exp[ —8 (S)t] . (22)

Hence, the final distribution of centers created can be
determined using the same analysis as given by Eq. (9).

A second extension consists of the case iri which the de-
fects are distributed according to two parameters rather
than one. 's An example of such a case would occur if the
defects were distributed in tunneling distance or attempt
frequency and in energy. In such a case, Eq. (7) contains
a double integration over both parameters. In Fig. 7, the
time decay of this population is shown for a distribution
in E, and vo. The decay of the population occurs as the

D. Extensions of the transient analysis

There are a number of ways the transient analysis may
be extended to other problems or more complex models.
First, one may include rates of defect creation according
to the relation

line given by the relation Rt= 1 moves to the left through
the distribution. The defects remaining lie to the left of
the line. For higher temperatures, the slope of
8 {vo,E, )t= 1 curve increases. In principal, one could
perform an analysis siinilar to that used in tomography to
separate the distribution in activation energy and attempt
frequency.

The third and most important extension is that all the
techniques described in this paper can be applied to any
measurement which measures monomolecular decays of
populations. The analysis may be applied to metastable
changes in conductivity, luminescence, current, charge,
capacitance, etc. In fact, in the case of weak excitation in-
tensities, luminescence decay curves have been interpreted
in terms of a tunneling distribution. ' Some of the mea-
surements are, of course, equivalent to deep-level transient
spectroscopy measurements. The important point is that
in some cases, one cannot repetitively populate traps as re-
quired by the usual deep-level spectroscopy. A single de
cay experiment is possible using this analysis.

Thermally stimulated current spectroscopy (TSCP)
could also benefit from the transient analysis presented in
Sec. 11 and the Appendix. One of the principal experi-
mental difficulties in performing thermally stimulated
current spectroscopy is to achieve a constant rate of tem-
perature increase. The use of Eq. (7) considerably simpli-
fies a TCSP experiment. One merely needs to ramp the
temperature in any monotonic increasing manner while
the sample temperature is measured. Equation (7) pro-
vides the appropriate defect energy contribution to the
current.

U. CONCLUSION

SLOPE = kT2 & kT) SLOPE = kT)

-l n (t+

FIG. 7. Decay of a population of defects consisting of a dis-
tribution of activation energies and attempt frequencies. The
straight lines indicate the condition 8 (E„vo)t
= tvoexp{E, /kT) = 1 vrhile the shaded region represents the de-
fects decaying in the interval between t and t +h, t for two dif-
ferent temperatures TI and T2. The remaining defects lie to the
left of the line while the annealed defects Be to the right of the
straight lines.

In this paper the theoretical basis for ESR transient

sp trmcopy for studying def~t energies has bmn
pr&ent~. The sp~trm~py enable one to examine the
distribution of defect energies for a specific microscopic
defeat labeled by its characteristic spin signal and hence

may b particularly useful in asm where more than one
defect is present. The transient analysis may contribute to
what is often a major problem in the study of defects in
seiniconductors, namely, how to relate the microscopic in-

formation of the ESR signal of a defect to other proper-
ties such as the defect energy.

The basis of the spectroscopy is to analyze the decays
of a given spin type venus time, temperature, or other pa-
rameters. Using the analysis presented in this paper, the
decay curve can be analyzed to obtain the distribution of
the spin population in energy or tunneling distances. The
iterative method for recovering the defect distributions is
substantially less time consuming than nonlinear least-
squares minimization methods and more importantly, the
distributions are more probable and are physically mean-
ingful.
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A more general mathematical development of the tran-

sient analysis, presented below, justifies the approxima-
tions used, the convergence of the iteration scheme, and

makes a mathematical connection with the recent
developments in modern signal processing.

Starting from Eq. (3), one may take the derivative of
the spin density with respect to the time-dependent pa-
rameter, S'(t) defined by Eq. (7). The result is

X SO, exp — 8 St' t' (Al)

This can be rewritten in the form

= fdSN(S, O)H(S,S'),

where by a change of variable

H(S,S')= R(S,—t) dt

S'(t)
X exp —,R Ss ss'{0) ds

(A3)

Equation (A2), a typical operator equation, can be written
in matrix form

(A4}

If G=(I—AH)C is a nonexpansive operator where I is

the identity operator, C is a constraint operator, and A, is
a number greater than zero, then it can be shown that the
iteration eqgations

No ——dN,

N;=CN; )+A,(dN —HCN); ), i =2,3, . . .
(A5)

&& exp I
—exp[(S' —S)/kTj ) . (A6)

If the spacing between points is kT or greater, the matrix
representation H is very close to the identity matrix used
to obtain Eq. (9). This explains why Eq. (9) performs well
even without iteration.

converge to the solution of Eq. (A3).' Equation (A5) is
identical to Eq. (10}. The constraint operator, C, includes
any known constraints on the spin distribution N such as
non-negativity or the fact that N(S'}=0 for large and
small values of S'. Using the definition of H and assum-

ing C= I, G can be shown to be a nonexpansive operator
for sufficiently small A, and hence, Eqs. (10) and (A5) con-
verge. The approximation used in Eq. (9) is equivalent to
replacing H by —I in Eq. (A2). In some cases it may be
possible to invert Eq. (A4) directly by calculating H
but H is often quite ill-conditioned and dN contains
noise; the iteration equations yield superior results.

For the specific case when R (S,t)=vttexp(S/kT),
H (S,S') has the simple form

H (S,S')= —(1/kT)exp[(S' —S)/kT]
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