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Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies
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%e present a first-principles theory of the quasiparticle energies in semiconductors and insulators
described in terms of the e1ectron self-energy operator. The full dielectric matrix is used to evaluate
the self-energy operator in the GF approximation: the first term in an expansion of the self-energy
operator in terms of the dynamically screened Coulomb interaction ( fV) and the dressed Green's
function (G). Quasiparticle energies are calculated for the homopolar materiah diamond, Si, and Ge
as well as for the ionic compound LiC1. The results are in excellent agreement with available experi-
mental data. In particular, the indirect band gap is calculated as 5.5, 1.29, and 0.75 eV as compared
with experimental gaps of 5AS, 1.17, and 0.744 eV for diamond, Si, and Ge, respectively. The Ge
results include relativistic effects. The calculated direct gap for LiC1 is within S%%uo of experiment.
Viewed as a correction to the density-functional eigenvalues calculated with the local-density ap-
proximation, the present results show a correction dominated by a large jump at the gap. It is found
that because of the charge inhomogeneity, the full dielectric screening matrix must be included, i.e.,
local-field effects are essential. The dynamical effects are also found to be crucial. The required
dielectric matrices are obtained within the density-functional approach for the static case and ex-
tended to finite frequency with use of a generalized plasmon-pole model based on sum rules. The
model reproduces the co and ~ ' moments of the exact many-body response function. The qualita-
tive features of the electron self-energy operator are discussed. Using the static Coulomb-
hole —screened-exchange approximation for illustration, the role of local fields in the self-energy
operator are explained. The role of dynamical renormalization is illustrated. The same qualitative
features are observed in both the homopolar and ionic materials.

I. INTRODUCTION

Development of a predictiue theory of quasiparticle en-
ergies and optical properties of semiconductors and insu-
lators has been of long-standing difficulty. Because of the
long-range Coulomb interaction between the electrons, an
adequate treatment of the dynamical correlations in the
motion of the electrons is a formidable many-body prob-
lem. This has been the central problem in first-principles
treatment of the quasiparticle energies in real solids.

The density-functional formalism provides a concise
way to incorporate exchange and correlation effects into
the calculation of the ground-state energy of the
interacting-electron system in an external potentia1. Once
the energy functional is known or approximated, the solu-
tion of the many-body problem is reduced to self-
consistent solution of a set of effective one-particle equa-
tions. This method has the advantage of being a practi-
cal computational scheme when coupled with the local-
density approximation (LDA) for the exchange-
correlation part of the functional. The success of that ap-
proach is well documented for many of the ground-state
properties of a wide range of materials. Unfortunately,
the one-particle eigenvalues in the theory have no formal
justification as quasiparticle energies although, in prac-
tice, these eigenvalues have been used to discuss the spec-
tra of solids. For the case of simple metals, the overall re-
sults are reasonable, although the results do not agree
with experiment for the zone-edge gaps in such materials
as Al (Ref. 4) or with recent measurements of the band-

width of Na. Discrepancies in the case of semiconduc-
tors and insulators are much more dramatic. The band
gap in the local-density-functional eigenvalues (Kohn-
Sham gap e ) is typically 30—50% less than the band gap

3observed in the optical spectrum. For the case of Ge, the
LDA conduction and valence bands in fact overlap when
relativistic corrections are included. The discrepancies
for the details of the band dispersions are typically small-
er, but are also material dependent. For example, the
bandwidth of Ge is well represented by the LDA eigen-
values, but for diamond, it is underestimated as com-
pared to x-ray spectra.

As briefly pointed out here and amply supported in the
literature, this straightforward computational scheme for
including exchange-correlation effects in solid-state calcu-
lations is inadequate for quasiparticle energies and optical
properties. Furthermore, calculations with functionals
that go beyond the LDA suggest that this is not a defect
of the LDA per se. In fact, Sham and Schluter and Per-
dew and Levy' have shown formally that there is an ex-
plicit correction to the Kohn-Sham gap, t.~, even when the
exact exchange-correlation functional is used. The true
minimum gap in the spectrum is given by E~=e+5
where b, is related to a discontinuity in a functional
derivative of the exchange-correlation energy with respect
to density for systems with a gap. Calculations with a
two-plane-wave model suggest that the correction 5 is
substantial. "

A rigorous formulation for the quasiparticle properties
is a Green's-function approach. Application of Green's-
function techniques to the electron correlation problem
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has been extensively reviewed by Hedin and Lundqvist. '

Within the context of the one-particle Green's function,
quasiparticles are associated with the peaks in the spectral
function. If the peak is sufficiently sharp, a well-defined
quasiparticle energy can be obtained. For the general case
of an inhomogeneous system, the quasiparticle energies
and wave functions are obtained by solving'

(T+ V,„, +V„)1t„„(r)+ /dr'X(r, r';Z„„)q„„(r'}

=E„ag„i,(r), (1)

where T is the kinetic energy operator, V,„, is the external
potential due to the ions, Vz is the average Coulomb
(Hartree) potential due to the electrons, and X is the elec-
tron self-energy operator. X contains the effect of ex-
change and correlation among ihe electrons. It is in gen-
eral a nonlocal, energy-dependent, non-Hermitian opera-
tor. The procedure for finding the quasiparticle energies
requires evaluating X and then solving Eq. (1). Since X is
non-Hermitian, the eigenvalues in Eq. (1), E„i„are in gen-
eral complex; the imaginary part gives the lifetime of the
quasiparticle.

For the quasiparticle problem, the central difficulty is
an adequate approximation for the self-energy operator,
X. We use the formulation of Hedin' based on an expan-
sion of the electron self-energy in a perturbation series in

the fully screened (as opposed to the bare) Coulomb in-

teraction. This formulation is quite general and has been
basic to much subsequent development of theories of
quasiparticle energies in semiconductors and insulators.
In the present work, the first term in the expansion is
used; i.e., the GW approximation for X. This requires the
dressed Green's function, 6, and the dynamical screened
interaction, W'=e 'v. Our approach is to make the best
possible approximation for G and W separately, calculate
X, and then obtain the quasiparticle energies by solving
Eq. (1) using the ab initio pseudopotential for the
electron-ion interaction. ' The crucial input required is
the dielectric matrix which describes the dynamical
screening in the solid. We obtain the static dielectric ma-
trices from first principles within the density-functional
approach using the LDA. The frequency dependence is
then obtained with a generalized plasmon-pole (GPP)
model. We emphasize that the full dielectric matrix is
evaluated so that the local-field effects are included.
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The resulting quasiparticle band structure has been ob-
tained for the homopolar semiconductors diamond, Si and
Ge as well as the ionic insulator LiC1.' ' (Lifetime ef-
fects are not considered here. ) The calculated band gapa
and band dispersions agree very well with available opti-
cal, photoemission, and inverse photoemission data.
Table I illustrates the results of the present theory for the
minimum gap in each material as compared to experi-
ment. ' ' The corresponding gaps in the LDA eigen-
values are shown for reference. The minimum gap opens

up dramatically as compared to the LDA eigenvalues.
The results of the present theory can be presented in the
form of a correction to the LDA eigenvalues. In Fig. 1,
the difference between the quasiparticles energies calculat-
ed here and the LDA eigenvalues [in the random-phase
approximation (RPA)]' are plotted as a function of the

TABLE I. Results of the present work for the fundamental

gap E of diamond, Si, Ge, and LiCl are compared to experi-
ment and the gap in the LDA eigenvalues. The results for Ge
include relativistic effects. All energies in eV.
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FIG. 1. The difference between the quasiparticle energy, E ~,

and the eigenvalue in the LDA, e"o~, is plotted against the
quasiparticle energy for states at several high symmetry points
in the Brillouin zone. The straight hnes are drawn as a guide to
the eye. Data for four materials is displayed: (a) diamond, (b)

Si„(c)Ge, and (d) LiCl.
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quasiparticle energy. The required correction to the LDA
eigenvalues is dominated by a jump at the gap. Away
from the gap region the correction varies fairly smoothly
with energy. Also, we find that the quasiparticle wave
function g„i, is essentially unchanged from the LDA one-
particle wave function P„i,. These trends follow through
the four materials studied ranging from wide to narrow

gap as well as from covalent to ionic bonding.
The remainder of the paper is organized as follows. In

Sec. II the Green's-function method is briefly reviewed
and our approach discussed in detail. The dielectric ma-
trix and the GPP model are described in Sec. III. We
describe the details of the calculation of X and the solu-
tion of Eq. (1) in Sec. IV. In Sec. V, we discuss the quali-
tative features of the screened Coulomb interaction and
the self-energy operator. The static Coulomb-
hole —screened-exchange (COHSEX) approximation for X
introduced by Hedin" provides a useful means for under-
standing the crucial role of local-field effects as well as
the intrinsic nonlocality of the self-energy operator in real
space. The role of dynamical renormalization is
described. The trends in the calculation are discussed and
a detailed comparison to the LDA potential is given. Sec-
tion VI gives the results for diamond, Si, Ge, and LiC1 as
compared to available experimental data. In Sec. VII,
previous work on quasiparticle energies in semiconductors
and insulators is briefly discussed and the results of the
present study are compared to those of four recent calcu-
lations. Finally, the paper concludes with a brief sum-
mary in Sec. VIII. Some of the details of the theory are
described in the Appendixes. A reader interested only in
the qualitative features of the present theory and the re-
sults might wish to go directly to Sec. V.

II. SUMMARY OF GREEN'S-FUNCTION APPROACH

, A (r, r', E')
(2)

The contour C runs infinitesimally above the real axis for
E' &p and below the real axis for E'~ p where p is the
chemical potential. The spin dependence is not shown ex-
plicitly. The spectral function is just proportional to the
imaginary part of the Green's function:

A(r, r', E)=—
~
ImG(r, r';E)

~

. (3)

If the matrix element of A with respect to a one-particle
state is. sharply peaked as a function of energy, then it is
meaningful to speak of a particlelike excitation of the
many electron system. This corresponds to a pole in the
Green's function at a complex energy. Finding this pole

In this section we summarize the relevant results from
the Green's-function approach. The details are discussed
in the review of Hedin and Lundqvist' and the original
paper by Hedin. ' Here we focus on the physical aspects
related to evaluation of the self-energy operator in the
68' approximation.

We start by introducing the spectral weight function
A (r, r', E). The single-particle Green's function is related
to A in the usual way

is equivalent to solving the quasiparticle equation (1). The
position of the peak in A is the quasiparticle energy (real
part of E„i,} and the width corresponds to the lifetime of
the quasiparticle (imaginary part of E„i,). Since X is ener-

gy dependent, Eq. (1) in general yields a spectrum that de-
pends on the energy argument in X: E„i,(E). The pole in
the Green's function requires the energy in X be the quasi-
particle energy. This is just the energy self-consistency in
Eq. (1). For sufficiently sharp peaks (long quasiparticle
lifetime) we can write this as

Eg =ReE„i,(Eg ), (4)

where we denote the quasiparticle energy by Eqi'. The
imaginary part may be neglected in that case.

The primary task is to evaluate the electron self-energy
operator required in Fq. (1). The self-energy operator
should in principle be obtained together with 6 in a self-
consistent procedure. They are related to each other as
well as the screened Coulomb interaction W and a vertex
function I by a set of four integral equations. For com-
pleteness, these are

IV(1,2)=u (1,2)+ f d (3 4)u (1,3)P (3,4) W(4, 2),

I (1,2;3)=5(1,2)5(1,3) .

Then the polarizabihty is given by

P(1,2)= iG(1,2+)G—(2, 1) .

This corresponds to the random. -phase approximation
(RPA} for the dielectric matrix. To first order in W, the
electron self-energy is given by

X(1,2)=iG(1,2)W(l+, 2) .

This is the 68' approximation. One can iterate again to
obtain X to second order in W, etc. We stop at first order

P(1,2) = i f—d '(3 4)G (1,3)G (4, 1+)1"(3,4;2),

X(1,2)=i f d(34}G(1,3)1'(3,2;4)W(4, 1+),

I'( l, 2, ;3)= 5(1„2)5(1,3)

4567

X G (4,6)G (7,5)1'(6,7;3) .

Here we adopt the compressed notation 1=(r,cr, t), etc.
Also 1+ means that tent +5 where delta is a positive in-
finitesimal. The bare Coulomb interaction is denoted
u(1,2) and P denotes the irreducible polarizability from
which the screened interaction is derived as usual in Eq.
(5a). These can be derived by the functional-derivative
technique as outlined, for example, in Ref. 13.

The approach taken by Hedin' essentially generates a
perturbation series in the screened interaction 8'. He
starts with the vertex function to zeroth order in W:
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and proceed to calculate X. As in any perturbation
theory, there is concern that important terms may be
neglected. Strictly, thought of as an expansion in terms of
the screened interaction, the expansion parameter here is
approximately proportional to r, /(1+r, ) for the electron

gas. ' Thus there are not the usual convergence difficul-
ties encountered in the perturbation expansion in the bare
Coulomb interaction for r, in the physically interesting
range, e.g., r, =2 for Si.

It is convenient to make a division between the core and
valence electrons in a solid. The Green's function is
separated according to 6 =6,+G„where 6, includes
only the core states and 6„ includes the balance of the
states. Similarly, the polarizability is separated into a core
and valence part: P=P, +P„. Then the electron self-

energy operator breaks into three terms

X=iG, W+iG„W„P, W„+iG„W„.

The first term is a core-valence exchange contribution.
As noted by Phillips, the screening is ineffective in this
case so this term is essentially the bare core-valence ex-
change interaction. The second term is a screened polari-
zation potential due to the cores. The final term is the
self-energy of the valence electrons. The first two terms
are generally small and will be discussed further in Sec.
IVB. Here we focus on the final term which only in-

volves the valence electrons. It will be implicitly under-
stood that X refers to the valence-valence part only from
this point forward,

After Fourier transformation to energy, the GW ap-
proximation for X is

X(r, r', E}=i e ' 6 (r, r';E E') W(r, r', E'),——isE'

2m

(10)

where 5=0+. The required frequency integrals can be
carried out formally by making use of the spectral repre-
sentation of the Green's function, Eq. (2), and an analo-
gous decomposition of the screened interaction:

, 2E'8(r, r', E)
E (E' iri)— —

where g =0+. The bare Coulomb interaction is
U (r, r') =e /

~

r—r'
~

. 8 (r, r';E) is the spectral function
for the screened interaction and is related to the imagi-
nary part of W. The real part of X breaks into two terms:

Re& =&sEx+ &coH (12)

where the screened exchange part XsEx arises from the
poles in the Green's function and the Coulomb-hole part
XcoH from the poles in the screened interaction. These
are written explicitly for the real part:

XcoH(r, r', E)= —f dE' A (r, r';E'}

xP "dE"

Xspx(r, r;E)= —y /gal(r)((}gg(r ) W(r, r';E —&„g), (17a)
n, k

XcoH(r, r', E)= g P„v(r)ii}„'x(r')P f dE', 8(r, r', 'E)

n, k E—n) —E'

(17b)

In this form, the interpretation of the first term as a
dynamically screened-exchange interaction is clear. Also,
when taking matrix elements of X in Eq. (17), the electron
only couples to the states of the same spin in the sum.

The advantage of formulating the self-energy operator
in terms of the spectral function is that one see how to
systematically improve the calculation of 6 and thus X.
A better approximation to the spectral function is to in-

clude the shift and width of the peaks due to the self-
energy operator. This yields

I'„i,/m
A(r, r', E)= g P„i,(r)P„'z(r') zI „i,+(E—E„i,)

(18)

(13b)

The principal part of the E' integration is to be taken in
the Coulomb-hole term. In the present paper, we will

only be explicitly concerned with the real part of the self-
energy operator.

In order to make further progress, approximations for
G and W are required. The screened interaction is dis-
cussed in the next section. The Green's function is calcu-
lated iteratively with the simplest initial approximation
being to replace the self-energy operator by an energy-
independent effective potential:

X(r, r', E)~V,rf(r, r') .

There are several reasonable choices that could be made,
including the exchange-correlation potential from the
density-functional theory. The essential requirement
turns out to be that the resulting spectrum c„k and wave
functions ((}„q be reasonable. With this approximation,
the expression for the Green's function simplifies because
the resulting spectrum is real and independent of E. The
explicit expression for the Green's function is

6( g E) y 0nk Ant

~et '5nt

where 5„i,——0+ for e„i, &p, and 5„q——0 for e„q&p. The
corresponding spectral function is simply

A (r, r';E) = g P„i,(r)P„'i,(r')5(E —e„q) .
n, k

Then the real part of the self-energy operator is given by

XsEx(r, r', E)= —J dE' A (r, r', E')

)& Re W(r, r', E E'), —(13a)

Here, the new spectrum E„k is just the real part of the
solution of Eq. (1) and I „z is the imaginary part. We will
show below that the corresponding wave function is in-
sensitive to the choice of V,ff as opposed to the full X. If
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it is further assumed that I „i, is sufficiently small, then
the new spectral function in Eq. (18) reduces to that in

Eq. (16) with the important exception that the spectrum is

improved to include the effect of the full self-energy
operator. This process is repeated until a self-consistent
spectrum is obtained. The only important approximation
in the spectral function then is concentration of all of the
spectral weight in the quasiparticle peaks which are ap-
proximated by 5 functions.

In the present calculation, we approximate the spectral
function imtially by the wave functions and spectrum
from a density-functional calculation using the I.DA for
the exchange-correlation potential. Thus V,ir has the fur-
ther advantage of being local. Then the self-energy opera-
tor is evaluated by the means to be described below and
the quasiparticle energies are calculated from Eq. (1).
This new spectrum is then used to construct an improved
self-energy operator as just described. For the materials
studied, we find that the final spectrum exhibits small,
but not negligible, changes due to this self-consistent in-
corporation of the quasiparticle spectrum in the evalua-
tion of the self-energy operator. A third iteration is not
necessary.

The static COHSEX approximation to X of Hedin' is
simpler to apply and interpret. As such, it is a useful
reference point for understanding the important physical
ingredients in the self-energy operator, particularly the
role of local fields. It can be obtained from Eq. (17) by
assuming that E—e„i,~O. The result is

(19a)

XcoH(r, r')= —,'5(r —r')[W(r, r', E =0)—u(r, r')] . (19b)

The sum over all states in the Coulomb-hole term gives
the 5 function using the completeness relation. The
screened-exchange term goes over to a static screened-
exchange interaction and the Coulomb-hole term simpli-
fie to a local interaction. In fact the physical interpreta-
tion of the Coulomb-hole part is clear in this approxima-
tion: it is the interaction of the quasiparticle with the in-
duced potential due to the rearrangement of the electrons
around the quasiparticle. The quantitative validity of the
COHSEX approximation depends on whether the ex-
change frequency Equ —s„i, is small compared to the
characteristic frequency in the screened interaction, essen-
tially the plasma frequency. Comparison to the results of
the full calculation shows that the COHSEX approxima-
tion consistently overestimates the magnitude of the elec-
tron self-energy. We also note that the COH term in the
full self-energy operator in Eq. (17b) is not a local poten-
tial; the sum over states is modulated by a frequency-
dependent part.

III. EVALUATION OF THE DYNAMICALLY
SCREENED INTERACTION

Unlike the case of simple metals which can be modeled
by an electron gas, screening in an insulator is qualitative-
ly different and more complex. The calculation therefore
requires the full dielectric matrix e '(r, r', co) which de-
pends separately on r and x'. As will be discussed in de-

WGG (q, co) =eoG (q, co)u (q+G') . (22)

The Fourier transform of the bare Coulomb interaction
has the usual form u(q)=4ire /Qq with Q being the
crystal volume. In this form, the G+G' components
yield the local fields. Finally, for the choice of vertex
function in Eq. (6), the dielectric matrix is related to the
irreducible polarizability P by

zoo (q, co) =5G G u(q+G—)PGG (q,) . (23)

This is simply the usual RPA wheb Eq. (7) is used for P.
There are two problems associated with calculating the

full dynamical many-body response function, even in the
RPA. The first problem is the establishment of an ade-
quate approximation for the Green's function required as
input to Eq. (7). Generally, empirical band structures
have been used but such an approximation for 6 does not
carry any a priori justification. The second problem is the
technical difficulty of evaluating e(co) numerically. This
requires a careful evaluation of the required Briilouin-
zone summations and is very time consuming. The ap-
proach adopted here is to obtain the static dielectric ma-
trices from first principles using the density-functional
approach. This is described in subsection A. These re-
sults are then extended to finite frequency using a general-
ization of the plasmon-pole model fixing the parameters
with sum rules. The extension to finite frequency is dis-
cussed in subsection B.

A. Ab initio static dielectric matrices

Evaluation of the longitudinal dielectric matrix requires
a ground-state expectation value of a pair of density-
fluctuation operators, precisely the density-density corre-
lation function. For the static case, there is no ambiguity
as to whether this is a ground-state property. As such, it
is obtainable from the density-functional approach. There
has been some discussion of evaluation of ground-state ex-
pectation values using the density-functional approach in
the literature. ' In this paper, we formulate the problem
in terms of the self-consistent response of the crystalline

tail in Sec. VA, this then includes the important local
fields in the screening. The local fields are the variations
in screening due to the charge inhomogeneity. This is
quite important in a semiconductor or insulator. The
screened interaction is related to the dielectric matrix by

W(1,2)= I d(3)e '(1,3)u(3,2) . (20)

Here we require the time-ordered dielectric matrix. This
is simply related to the usual linear-response (causal)
dielectric matrix: for positive frequencies, they are the
same; for negative frequencies, the imaginary part of the
causal dielectric matrix changes sign. Equation (20) can
be Fourier transformed to the energy and wave-vector
basis using the following convention for the latter

W(r, r', E)= g e' + "WGG(q, co)e ' +0" . (21)
q, G,G'

Here G is a reciprocal lattice vector and q is a wave vec-
tor in the first Brillouin zone. With this
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charge density to an added periodic perturbation.
The ground-state calculation is performed using the

density-functional-theory approach yielding the density, p.
Then the external potential is perturbed by an infin-
itesima 5V,„, and the ground-state calculation is repeated
with the new external potential yielding p+5p;,~. The po-
larizability is defined by just 5p;„z——P5V,„„adopting a
matrix notation. I', in principle, includes all exchange-
correlation effects from the density-functional approach.
This then involves the comparison of two ground-state
calculations. A procedure for obtaining the polarizability
matrix within the linear-response regime can be carried
through numerically along these lines. z2

The RPA corresponds to using the independent particle
polarizability, P, given generally by Eq. (7), for e in Eq.
(23). The relationship to P derived above is obtained from
the definition of P via

5p;„g——P (5V,„,+5V;„g) .

Interpreting the effective potential in density-functional
theory as a self-consistent field, one obtains

P= [1 P(E„,+—U)] 'P

Here E„,=5V„,/5p gives the change in the exchange-
correlation potential in the density-functional theory due
to the change in the density. Thus, within the self-
consistent field interpretation, the polarizability obtained
from the ground-state calculations leads unambiguously
back to the irreducible polarizability I' and hence the
RPA for e ', given a form for E„,. A direct approach
for obtaining the RPA response function has also been re-

cently proposed.
Using the density-functional approach, it is straightfor-

ward to go beyond the RPA and include exchange-
correlation effects in the response function, at least within
the LDA. In the context of the Green's-function ap-
proach, this is equivalent to an approximate evaluation of
the vertex function. i We have done calculations for Si
within the COHSEX including exchange-correlation ef-
fects in the dielectric matrix within the LDA. The result-
ing relative quasiparticle energies differ from those within
the RPA by less than 0.1 eV. This suggests that the ver-
tex corrections may not be too important in the evaluation
of the quasiparticle energies in insulators.

In the present calculation, we use the dielectric matrix
within the RPA, i.e., Eq. (7) for the irreducible polariza-
bility. Rather than doing the direct calculation suggested
above, the equivalent Adler-Wiser2 ' formulation is used:

( o, , f(&',~+q) —f (&., i )

PGG (q, co=0)= g t'n, k
~

e 'q+o"
~

n', k+q)(n k'+, q ~e'q+o'"
( n, k)

n, n'k ~n', k+q —&nk

The fermion occupation factors are denoted by f(s).
Then the static RPA dielectric response matrix is obtained
from Eq. (23}using P=P .

The irreducible polarizability is obtained from the spec-
trum and wave functions of a self-consistent ab initio
pseudopotential' ' density-functional calculation within
the LDA (Ref. 28} using Eq. (25). For the case of Ge,
scalar relativistic effects are included. The static dielec-
tric matrices are well converged with respect to all numer-
ical cutoffs. We have also compared our calculated
dielectric matrices to results obtained using direct
methods proposed recently. The agreement is excel-
lent. More details of the calculation of the static dielec-
tric matrices will be published at a future date. 0 For the
present calculation, dielectric matrices of approximate
sizes 140X 140 are used for Si and 200 X 200 for diamond,
Ge, and LiC1. We find this to be sufficient to represent
the local-field effects in the present problem.

B. Generalized plasmon-pole model

To extend the dielectric matrix to finite frequencies, we
propose a generalized plasmon-pole (GPP) model. Vari-
ous forms of plasmon-pole models have been used in the
evaluation of the self-energy. " ' In particular,
Lundqvist used that approach for evaluating the quasi-
particle energies in the elytron gas case. He found the re-
sults differed very little from those obtained using the full
Lindhard response function. In order to extend this ap-

proach to the full dielectric matrix, we observe that realis-
tic calculations of the response function show that
ImeGG (q, co) is generally a peaked function in co. Figure 2
displays the real and imaginary parts of eG G(q, co) for Si
from a previous calculation using an empirical pseudopo-
tential band structure. Both the cases where G=G' and
the off-diagonal case exhibit a peak. For cases where
there is not a single well-defined peak, the amplitude
tends to be small and Ime(co) fluctuates in sign.

Based on this observation we generalize the plasmon-
pole model to the full inverse dielectric matrix. For each
set of momentum components (q, G,G'), Ime ' is taken
to be

Imeoo (q, co) =AOG (q) I 5[co—coG(i (q)]
—5[~+~GO(q)] I . (26)

We work with the causal dielectric matrix here for con-
venience. The corresponding real part is given by

QGG (q)
ReeGG (q, a) ) = 1+

~ —~ GG'(q)
(27)

The effective bare plasma frequency QGG (q) introduced
here is define by Eq. (31) below. Thus the full co-

dependent dielectric matrix can then be obtained once the
matrices AoG (q) and EGG (q) are determined.

In order to eva1uate A and co we employ exact sum
rules and the static dielectric matrices described in Sec.
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The result established independently here' (see Appendix
A) and discussed extensively by Taut applies generally to
the exact many-body linear-response function e '(co).

Using the exact results Eqs. (28} and (29}, the parame-
ters co and A can be obtained for each set of Inomentum
components q, G, G'. The mode frequency is

QGG (q)
COGG (q) = (30)

5GG —EGG (q, CO =0)

Here we define an effective bare plasma frequency based
on the right-hand side of the sum rules Eq. (29):

2 (q+G) (q+G') p(G —G')

I
q+G I'

The amplitude A can similarly be determined:

3
4)

GPP I

n. &GG(q)
~GG (q}=——

2 ~GG(q}
(32)

&o ~=(oAP)
G=B'=(1PP )

—2
0

0.4
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0.0
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G =(vv),
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FIG. 2. Real and imaginary parts of the numerically calcu-
lated elements of the dielectric matrix based on the empirical
pseudopotential results of Ref. 34 are plotted as a function of
frequency for Si, In addition, the real part of the GPP model

discussed in the text is plotted.

There are no adjustable parameters. The model moreover
reproduces the co and co

' moments of the exact response
function by construction. The present model as applied to
the diagonal elements of the response function is similar
to that used by Overhauser for the electron gas, ' al-
though derived from a different point of view.

Since the evaluation of the self-energy operator general-
ly involves a sum over frequencies in the screened
Coulomb interaction, the fine details of the frequency
dependence of the dielectric function should not be impor-
tant. Thus for the present purposes, the GPP model is
valid if it represents the average features of Re@ '(01} for
all the important elements of the dielectric matrix. As
one measure of the reliability of the GPP model, we com-
pare it to the numerically calculated dielectric matrix
from Ref. 34 for the elements depicted in Fig. 2. When
the plasmon-pole model for e '(co) is inverted to yield
e(01), the result is that Ime(co) has a 5-function peak at an
average energy gap c00. This is related to the mode fre-
quencies by

GG (q) =0~2(q)+N02, GG.(q) .

IIIA. The Kramer-Kronig relation provides one con-
straint

ReeGG (q, co=0)=5GG +—P dco —ImeGG (q, c0) .
7T 0 CO

The second constraint is provided by a generalized f-sum
rule relating the imaginary part of the many-body dielec-
tric matrix to the plasma frequency and the crystalline
charge density:

f dCO Co III1 eGG (q, CO)

2 (q+G) (q+G') p(G —G')

I
q+G I'

Equation (29) is analogous to the Johnson sum rules.

Then the same procedure described above can be used to
generate a model for all the elements of the eGG (q, co) ma-
trix. The result is plotted for each case in Fig. 2. The fre-
quency ~0 is indicated. The model reproduces the numer-
ically calculated Re@(co} very well except in the region of
the resonance. The numerical calculation interpolates be-
tween the two branches of the model in the region where
Ime(co) is large. This is true for q~O as one might ex-
pect since the plasmon is a well-defined excitation. As
seen in Fig. 2, it is also a reasonable approximation for
larger values of q+Ci and off-diagonal elements where
there is no sharp excitation.

In the self-energy calculation the important contribu-
tions generally involve frequencies small compared to co.
Therefore a more useful comparison is for Res '(co) in
that range. In Fig. 3, the numerically calculated Ime
for Si based on the empirical pseudopotential is shown
for q=G=G'=0 and q=(w/cI, O, O), G=G'=0. The
corresponding plasmon-pole model is also shown. The
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0.4
Si

0.0

momentum components. This is reasonable in the context
of the self-energy calculation as discussed above. There
are no adjustable parameters in the GPP model and it
compares favorably to numerical results for the frequency
dependence of the response function in the important fre-

quency range.

—0.2-
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0
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Walter and Cohen
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IV. EVALUATION OF
THE QUASIPARTICLE ENERGIES

The technical details of the calculation are described in
this section. The approach for solving the quasiparticle
equation is discussed in subsection A. Subsection 8 gives
the details of the pseudopotential used for the electron-ion
interaction. Details of numerical convergence are present-
ed in subsection C.

—0.8-
",=(~,Oa)«/a

0 4 Walter and Cohen
---- GPP Model

-0.6
0

5.~ (ev&

FIG. 3. The real part of e ' derived from the numerical re-

sults in Ref. 37 is plotted as a function of frequency in compar-
ison to the GPP model results as described in the text.

comparison is quite favorable, even for q well away from
zero where the imaginary part is broad as in the examples
shown in Fig. 2.

In summary, we note that the GPP model essentially
assumes the spectral function for the screened interaction
to be a single narrow peak in frequency for each set of

t(„i,(r) = pa„„(k)P„~(r) .
n'

(33)

The wave functions P„i, are derived from solving the ef-
fective one-particle equations with V,rt ——V„, evaluated in
the LDA. Thus Eq. (1) is transformixi to a matrix eigen-
value equation with matrix elements of the self-energy
operator required between the LDA states. Expanding
the screened interaction in plane waves and using the
form for the dielectric function given by the GPP model
described in Sec. III 8, the form of the matrix elements is
given by

A. Solution of the quasiparticle equation

In order to solve Eq. (1), the quasiparticle wave func-
tion is expanded in a basis set consisting of the self-
consistent wave functions used in the construction of the
Green's function as described in Sec. II:

& "k IXsEx(r r"E) In'k&= —g g (nk(e"q+ "(ni,k q&&—nik ,q—~e 'q+ ''~ n'k&
nl q, 6,6'

QGG (q)
X 1+ v(q+ G'),

(E —s„,i, q) —EGG(q)
(34a)

IIGG(q)IX— v(q+G') .
EGG(q)R s., i q—~GG-(q) j

(nk
~
XcoH(r, r';E)

)
n'k) = g g (nk

~

e'q+G"
) ni, k —q)(ni, k —q ~

e "q+G"
)
n'k)

n& q, Q, Q'

(34b)

The states
~
nk) are the P„i,. In the sum over n i, only the

states of the same spin as (n, k), (n k) co',ntribute. Fur-
ther details of the evaluation of the matrix elements are
given in Appendix B.

In principle, a secular determinant in n, n is required.
In practice, this is unnecessary. We find that a„„=5„„.
As described in Appendix 8, one can also obtain
XGG (k;E). Then Eq. (1) can be diagonalized directly in a
plane-wave basis. This was done for several states at sym-

I

rnetry points in the Brillouin zone. We find that the re-

sulting quasiparticle wave function has better than 99.9%
overlap with the corresponding one-particle wave function
from ihe density-functional band-structure calculation.
That the quasiparticle wave functions should be so close
to the LDA wave functions is a somewhat surprising re-
sult. The approximation of using only the diagonal ele-
ment (nk

~

X
~
nk) in evaluating the quasiparticle energies

leads to errors ranging from less than 0.01 eV for Si to
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b,X„i,(e„i,)lb E
El~l —~nt+

1 gy ( }/gg ( nk nk) ~ (36)

where

ZO„=.LP~ —&nk
~

VLD"
~

nk&+&nk
~

X(eL„'"}
[ nk& .

A compact notation for the matrix element of the self-

energy operator is used. The energy derivative is evaluat-
ed through a finite difference with hE typically 1 eV.
The results are quite insensitive to a reasonable choice of
&K From Fig. 1 it is seen that Eqi' does not differ by
more than approximately 2 eV from e for the materials
considered here with LiC1 exhibiting the largest changes.
The difference between the first and second iteration
quasiparticle energies is much smaller when the spectrum
is updated and X recalculated as described in Sec. II.

B. The electron-ion interaction

We treat the e1ectron-ion interaction using the ab initio
pseudopotential technique. ' ' The reference configura-
tion was chosen to be singly ionized and the Ceperely-
Alder form of the LDA was used. For the case of Ge,
relativistic effects were included in the generation of the
pseudopotential. Thus scalar relativistic effects are car-
ried through the entire Ge calculation through the pseu-
dopotential. The spin-orbit part is included at the end in
first-order perturbation theory. In each case, transfera-
bility of the potentials to atomic configurations nearby in
energy was found to be of order 1 mRy or better, with
only the Li potential being slightly worse (5 mRy).

An important point to note here is that the valence-core
exchange-correlation term frozen into the pseudopotential
is taken within the LDA. Thus we have taken

less than 0.05 eV for LiCl.
This allows the further simplification of only calculat-

ing the diagonal matrix elements of the self-energy opera-
tor. Equation (1) can be reduced to

Zg=e„"~D"—&nk
~

V„'D"
~

nk&+&nk
~

r,(Eg) [~k& .

(35}

The self-energy operator must still be evaluated at the
quasiparticle energy. This is done by expanding the ma-
trix element of the self-energy operator to first order in
the energy around c.„I,. Then the quasiparticle energy is
obtained explicitly:

ment of the proper core-valence terms by the LDA contri-
bution as indicated in Eq. (38).

Among the four materials considered here (diamond, Si,
Ge, and LiCl), we expect Ge to have the largest errors be-
cause of its relatively large and soft core. We have made
estimates of the core-valence interaction for atomic Ge in
the configuration 4s'4p . The contribution of the core-
valence part of the exchange-correlation potential is taken
to be

& i
I V-----i I

i & = &i
I V-I pi.il I

i &
—&i

I
V..lp,.if I

i &

(39)

where i is the 4s or 4p atomic wave function. The bare
valence-core exchange can be derived from an atomic
Hartree-Pock calculation. The bare core-polarization
contribution can be estimated from the Rydberg states of
the Ge + ion; it is given by the difference between the
Hartree-Fock energy parameter and the experimental term
value, corrected for relativistic effects. Our estimates of
these quantities are listed in Table II for the 4s and 4p
electrons. The final column gives the difference between
the two sides of Eq. (38). The net difference is quite
small. It suggests that the approximation in Eq. (38)
could introduce, at most, approximately 0.3 eV shift be-
tween states of entirely p character and those of entirely s
character.

In practice, the atomic estimates reported in Table II
are hard to apply to the covalent crystal where the eigen-
states are bonding and antibonding combinations of atom-
ic orbitals. Further, the core-polarization term requires
double screening in the solid. Also, most of the eigen-
states are of mixed angular momentum character around
the atomic sites. There is one exception to this. In the
homopolar semiconductors, the conduction-band state
with 12 symmetry is of almost pure s character and fur-
ther has all of its weight localized on the ion cores. This
state will maximally probe the approximation in Eq. (38).
It turns out that this state is systematically too low in en-

ergy in our calculation throughout the series of homopo-
lar materials. The valence-core contribution from LDA is
too deep for the s states relative to the p states. There-
fore, proper account of the core-valence terms would tend
to increase the energy for the s states relative to the p
states at the valence-band edge. As will be shown in Sec.
VI, this will bring the theoretical results into even better
agreement with experiment.

~X Core-Val+ ~Core-POl~ VXCCOre-Val s (38)

where the core-valence exchange and core-polarization
contributions to X were discussed in Sec. II. These terms
are generally small as shown explicitly in the case of
atomic Na. ' They have also been estimated for solid
Al. These results suggest that the core-valence terms
give a net contribution to the quasiparticle energy of ap-
proximately 1 eV relative to the bottom of the valence
band in absolute terms. However, here we only need to es-
timate the much smaller error introduced by the repIaee-

LDA

—0.322
—0.162

Exchange

—0.221
—0.108

Core
Polarization

—0.077
—0.057

—0.024
0.003

TABLE II. The core-valence contribution to the atomic
eigenvalues of atomic Ge in the configuration 4s'4p . The
exchange-correlation potential in LDA is compared to the bare-
exchange plus core-polarization contribution. Energies are
given in Ry.
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C. Numerical details

The self-consistent density-functional calculation is car-
ried out in momentum space. ' The wave functions are
expanded in plane waves with an energy cutoff: 50 Ry for
diamond, 17 Ry for Si, 20 Ry for Ge, and 25 Ry for LiC1.
These were chosen to ensure complete convergence of the
corresponding spectrum including the 1 z, state to within
a few hundreths of an eV. Similar cutoffs were employed
in the wave functions and spectrum used to compute the
dielectric matrices. Summations over the Brillouin zone
were carried out using the special points scheme. 2

In the evaluation of the matrix elements of the self-

energy operator in Eq. (34), another sum over the Bril-
louin zone is required. For this case, a different grid was
used. The unit cell in reciprocal space was uniformly di-

vided such that the grid included the point q =0. These
k points were then reduced to the irreducible wedge of the
Brillouin zone. For the diamond and rock-salt structures,
this generates sets including 3, 8, 16, etc. points in the ir-
reducible part of the Brillouin zone. The point q =0 re-

quires special handling when G'=0 in Eq. (34) because of
the singularity in the bare Coulomb interaction. This is
treated in the manner described by Phillips and Klein-
man" as discussed in Appendix B. We have found that
the quasiparticle energies are well converged for the set of
8 q points in the irreducible wedge of the Brillouin zone. ~
There are several other cutoffs required in the evaluation
of the matrix elements of the self-energy in Eq. (34). The
sum over umklapp scattering G,G' is cut off by a 6,„
such that

~
q+6

~
&6,„. For the parts involving the

dielectric matrix, the sizes of the dielectric matrices were
chosen to ensure convergence and are representative of the
cutoffs used. It turned out that the COHSEX calcula-
tions were more sensitive to this cutoff than the final
dynamical calculation. The sum over bands in the
Coulomb-hole term in principle ranges over all states. In
practice, the plane-wave matrix elements damp the contri-
bution of the higher states. We find, however, that ap-
proximately 64 bands are required to achieve full numeri-

cal convergence.
In summary, we estimate that the results for the band

gapa and band dispersions reported in this paper are reli-
able to within approximately 0.1 eV for the homopolar
materials and somewhat worse for the gapa in LiC1. The
absolute magnitude of the matrix elements of the self-
energy operator, (nk

~
&

~
nk), are converged to within a

few tenths of an eV. At that level, the numerical results
for the band structure are representative of the fundamen-
tal approximations made in the theory and are within the
experimental uncertainties of most of the available optical
and photoemission data.

vides a useful intermediate step. The role of local fields is
brought out clearly through the simpler COHSEX ap-
proximation to the self-energy operator. The nonlocality
in real space is also illustrated. Then the role of dynami-
cal effects can be traced, in part, through the differences
between the COHSEX approximation and the full GW
expression for the self-energy. As a separate issue, the de-
gree to which the exchange-correlation potential, V„„in
the LDA reproduces the effect of the self-energy operator
is also quite interesting.

In Table III, the results for the fundamental gap are
given for the materials studied here using four different
approximations in comparison to experiment. ' ' The
four approximations are: the LDA potential, the
COHSEX approximations without local fields, the
COHSEX approximation including local fields in the
screening and, finally, the full 6W approximation
evaluated within the GPP model. The trend for all the
materials is clearly the same. The LDA potential gives
band gaps that are too small as compared to experiment
by 30% or more. For the case of Ge, the indirect gap
shown here is still nonzero, but the direct gap has closed
leading to semimetallic behavior. The COHSEX approxi-
mation with homogeneous screening (diagonal elements of
the dielectric matrix only) generally gives a gap in better
agreement with experiment, although not for Si. In-
clusion of the full dielectric matrix in the COHSEX ap-
proximation dramatically opens up the gap. Finally, the
full GW expression yields the gap in excellent agreement
with experiment; taking account of the dynamical effects
reduces the gap.

Figure 4 gives a different perspective on the same se-

quence of approximations. In this case, we focus on Si
and track the magnitude of the matrix element of the
self-energy operator for the valence-band edge and
conduction-band edge (actually the Xi, state). The LDA
potential is evaluated using the RPA for the correlation
contribution. ' The values given for the 68'approxima-
tion are for the self-energy operator evaluated at the ap-
propriate quasiparticle energy. To interpret this figure,
note that the difference

TABLE III. Trends are shown for the fundamental gap E~
of diamond, Si, Ge, and LiC1 for several approximations to the
electron self-energy operator as described in the text in compar-
ison to experiment. For Ge the indirect gap is shown including
relativistic effects.

V. QUALITATIVE FEATURES
OF THE ELECTRON SELF-ENERGY OPERATOR

Two main features of the calculation to be sorted out
are the role of local-field effects in the screening and the
effect of dynamical renormalization. Both are crucial for
obtaining the quasiparticle energies. For the purpose of
analyzing these effects, the COHSEX approximation pro-

Diamond
Si
Ge
LiCl

LDA

3.9
0.52
0.07
6.0

'Reference 17.
bReference 18.

5.1
0.50
0.33
8.2

6.6
1.70
1.09

10.4

COHSEX COHSEX
no LF LF 68' Expt.

5.6 5.48'
1.29 1.17'
0.75 0.744'

9.4'
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FIG. 4. The matrix elements of the electron self-energy
operator are compared for four different approximations dis-
cussed in the text for the case of Si. The matrix elements for the
states at the valence-band edge and conduction-band edge are
shown.

TABLE IV. The SEX and COH contributions to the matrix
elements of the self-energy operator for the states at the valence-
and conduction-band edges in Si are shown separately in three
different cases: the static COHSEX approximation with no lo-
cal fields (no LF), the COHSEX approximation including local
fields {LF), and the full dynamical calculation including local
fields.

&SEX

no LF
COHSEX

LF

gives the exchange-correlation contribution to the band-
gap energy. Thus, for example, a deepening of the
valence-band self-energy relative to the conduction band
leads to a larger band gap. Compared to the LDA poten-
tial, the COHSEX approximation gives larger self-
energies, although the relative change for Si is small. In-
clusion of local-field effects further deepens the valence
electron self-energy while reducing the conduction-band
self-energy slightly. This is the effect of local fields on
the band gap. The net effect is a large increase in the
band gap. The GW approximation yields self-energies
comparable to the LDA potential with the valence elec-
tron self-energy being similar and the conduction electron
self-energy less deep. This yields a gap that is larger than
that found with the LDA potential. It is also clear from
Fig. 4 that the COHSEX approximation systematically
overestimates the magnitude of the self-energy operator
by appl'oxliilately 20%.

To supplement the data in Fig. 4, the matrix elements
of the self-energy operator are broken down into the SEX
and COH contributions in Table IV for the valence-band-
edge and conduction-band-edge (Xi, ) states in Si. For the
COHSEX approximation, the cases without and with lo-

cal fields are shown separately. The results of the dynam-
ical calculation are also shown. In the COHSEX approxi-
mation, it is clear from Table IV that the largest effect of
local fields is on the Coulomb-hole term. The Coulomb-
hole term is primarily responsible for the dramatic in-
crease in the band gap observed when local fields are in-
cluded in Table III and Fig. 4. It is also seen from Table
IV that the contribution of dynamical effects changes
most the Coulomb-hole term. However, we emphasize
that the screened-exchange and Coulomb-hole terms must
be treated with the same degree of approximation to ob-
tain quantitatively reliable quasiparticle energies.

The foregoing discussion is an overview of the qualita-
tive features of the present calculation. In the remainder
of this section, we will take up in detail the role of local
fields and nonlocality using the COHSEX approximation
in subsection A, the role of dynamical effects in subsec-
tion 8, and finally an analysis of the LDA potential in
comparison to the self-energy operator in subsection C.

A. Local fields and nonlocality in the self-energy operator

The local fields in the screening arise from the micro-
scopic response of the inhomogeneous charge density in
the crystal to a perturbation. The local fields are
described by the off-diagonal elements of the dielectric
matrix. It is intuitively clear that this is important for
discussing the response to a perturbation in a semiconduc-
tor or an insulator. There is significant accumulation of
charge in the covalent bonds or around the anion in ionic
compounds. In a simple metal this effect is much less im-
portant. It is thus expected that many of the properties of
a simple metal can be represented by a uniform charge
density, the jellium model. With the full translation in-
variance in the jellium model, all two-point functions de-
pend only on the difference between the two coordinates:

I
r —r'I. For example, the potential around an added

point charge will not depend on i.ts location, r'. Further-
more, the screening potential will have spherical syrn. me-
try around r'. However, for the inhomogeneous case of
semiconductors or insulators, this is not an adequate ap-
proximation. In the example of the added point charge,
the induced potential is a full two-point function,
V,(r, r'). The details of the screening potential depend
dramatically on the location of the added charge, r', and
in general the screening potential is anisotropic. First we
will illustrate this for the case of Si responding to an extra
point charge of one electron and then discuss the effects
of local fields on the self-energy operator. Finally, the
nonlocality of the self-energy operator will be discussed.

The expression for the electrostatic screening potential
around an extra electron is straightforward to derive in
terms of the dielectric matrix:

—4.44
—2.37

—3.85
—2.08

—3.56
—1.65 24 PTER j (q+ Q ),g

&
I
q+G'

I

' (40)

—8.72
—8.72

—10.30
—8.70

—8.41
—7.40

For simplicity of discussion, only the static case is con-
sidered. The usual Coulomb interaction is present as the
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FIG. 5. In (a) and (c) the screening potential in response to a
single electron at r' (indicated by the + ) is displayed in the
(110)plane of Si in units of Ry. (b) and (d) give the contribution
from local fields only. The bond chain is indicated schematical-
ly.

perturbation from the point charge at r'. In the case
where the dielectric matrix is zero for G&G' (local fields
are negligible) this expression reduces to being a function
of r —r'.

The screening potential around a point electron has
been computed for Si in the (110) plane for the added
electron at several points using Eq. (40). The static dielec-
tric matrices computed in the RPA as described in Sec.
III A are used. The screening potential is shown in Fig.
5 for the added electron, r', at the bonding (a) and anti-
bonding (c) sites. Negative contours are dashed and the
figure reflects the fact that the added electron repels the
other electrons, leading to an attractive screening poten-
tial.

For the case of the center of the bond, Fig. 5(a), the
screening potential is close to spherical in the bond region
but shows some elongation reflecting the underlying crys-
talline charge density in the bond. In Fig. 5(b), the contri-
bution to the screening potential from local fields only is
displayed for the case of an added electron at the center of
the bond. This is the contribution from the terms in Eq.
(40) with G&G'. lt is clear from Figs. 5(a) and 5(b) that
the local fields contribute more than one-third of the
screening potential in the region near the center of the
bond. This is also the contribution responsible for the an-
isotropy evident in Fig. 5(a). For the case of the added
electron at the antibonding site, Fig. 5(c), the induced
charge is both anisotropic and centered away from r' be-
cause the charge density is highly anisotropic around this

site. The screening potential is correspondingly distorted
towards the region of bond charge. Figure 5(d) shows the
local-field contribution in this case. It is the local-field ef-
fect which shifts the screening potential, building it up
near the bonds and reducing it in the interstitial region of
low-charge density. The local fields reflect the difference
in polarizability between the bond region and the intersti-
tial region. The result displayed in Fig. S is precisely
what one expects intuitively: because of the higher charge
density in the bond region, an added electron can produce
a deeper screening hole while in the interstitial region the
low crystalline charge density leads to a shallower screen-
ing hole. Also, the short-range nature of the local-field
effects are evident in Fig. 5. More than a bond length
away from r', the screening potential is close to spherical
and the local-fiel contribution is small.

We now examine the effect of local fields on the self-

energy operator using the simpler COHSEX approxima-
tion of Eq. (19). As noted in the discussion of Table IV,
the Coulomb-hole term is primarily responsible for the
dramatic increase in the band gap observed when local
fields are included. This was illustrated in Table III and
Fig. 4. In the COHSEX approximation, the Coulomb-
hole term can be written in terms of a local potential:

~coH ~(r r ) VcoH(r)

(41)
1

VcoH(r) = —, V,«(r, r),
where V„, is given by Eq. (40). The potential is the in-
duced potential due to an electron at r evaluated at the
site of the electron, r. The factor of a half relates to the
adiabatic buildup of the screening charge in evaluating the
energy gained by building the screening hole around the
added electron. It is clear that if V„, depends only on
r —r', then VcQH(r) will be uniform. Therefore, if local
fields are neglected in the COHSEX approximation, the
Coulomb-hale term makes no contribution to dispersion
within a band or the band gap. Inclusion of local fields
leads to a potential plotted for the case of Si in the (110)
plane in Fig. 6. In accordance with the discussion of V„,
above, VcoH is deeper in the bond chain and shallower in
the interstitial region. This leads to a substantial contri-
bution to the gap since the valence- and conduction-band
states are concentrated in different places in the unit
cell. In particular, the valence-band-edge states are lo-
calized in the bond region. From Fig. 6 it is clear that lo-
cal fields deePen the matrix elements of XcoH for the
valence-band edge as observed in Table IV. This is the
dominant contribution of the local fields seen in Table III
and Fig. 4.

The screened-exchange term is nonlocal and, in the
COHSEX approximation, can be factored in real space
into the exchange charge

p„(r,r') = g P„g(r)P„"j,(r'),
n, k

and the static screened Coulomb interaction. Accounting
for the fact that a given electron only couples to the states
of the same spin in the sum over states in Eq. (19) or Eq.
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(42), the screened-exchange operator can be written as
r

(43)

FIG. 6. The local potential that y'ves the Coulomb-hole part
of the electron self-energy in the COHSEX approximation is

plotted in the (110)plane of Si. The units are Ry.

a.u. Since the bond length is approximately 4.4 a.u. , one
can see that the average distance of the first nodal surface
indicated in Figs. 7(a) and 7(c) from r' is of that magni-
tude.

The degree of nonlocahty in the self-energy operator is
measured primarily by its range and secondarily by the
detailed anisotropy. These properties are essentially given
by the placement of the first nodal surface. In the
COHSEX approximation, the nodal structure of Xsax is
taken precisely from the exchange charge. In particular,
for an electron in the bond center, the nodal surface passes
through the neighboring bonds. Therefore, in a local orbi-
tal picture the interaction with neighboring bonds should
be relatively small. For the electron at the antibonding
site, nodal surface passes through the second closest bonds
so that the most significant interaction is with the neigh-
boring bonds. The screened-exchange operator in a semi-
conductor is in principle long range due to the incomplete
screening. However, far from r', the operator is reduced
by a factor of eo from the bare-exchange operator. Even
the first lobe after the nodal surface is much reduced.
From Figs. 7(b) and 7(d) one can see that the practical
range is much shorter, at most a few bond lengths.

One interesting question regarding the nonlocality is its
effect on the matrix elements of the self-energy operator.
Referring to Table IV, the matrix elements of the

The effect of the local fields on V„, are confined to the
region near r'. But in this region, the screened-exchange
operator is dominated by the bare part of the interaction.
Therefore the effect of local fields on XsEx is relatively
small as seen in Table IV. Generally speaking, the local-
field contribution to the gap from XsEx is less than 25%
of the contribution from XcoH, but of opposite sign. Lo-
cal fields must be included in both terms for quantitative-
ly accurate results.

In the balance of this section, we examine aspects of the
nonlocality of the self-energy operator using XsEx in the
COHSEX approximation for illustration. The exchange
charge for Si in the (110) plane has been calculated for r'
at several points. Then using the screening potential dis-
cussed above, the screened-exchange operator is calculated
as in Eq. (43). These are displayed in Fig. 7 for r' fixed at
the center of the bond, 7(a) and 7(b), and at the antibond-
ing site, 7(c) and 7(d). Because of the singularity in the
screened-exchange operator at r=r', it has been multi-
plied by

~

r—r
~

in the figure. This yields a finite value
at r=r' and amplifies the lobes somewhat at large dis-
tance. Also, a logarithmic contour interval has been
adopted for the plot of the screened-exchange operator.

The exchange charge in Figs. 7(a) and 7(c) reflects the
buildup of charge in bonds and displays significant aniso-
tropy. The value at r=r' is precisely p(r). Both the mag-
nitude and shape as a function of r depend dramatically
on r'. In the jellium model, p„ is spherically symmetric
with nodes at radii such that rkF is a zero of the spherical
Bessel function ji. For an average density appropriate for
Si, this places the first node at a radius of approximately 5

/p/

+Px
FIG. 7. In (a) and {c) the exchange charge is plotted in the

(110) plane of Si with r' fixed (indicated by the + ). The units
are electrons/cell. In (b) and (d) the screened-exchange part of
the electron self-energy operator is plotted in the combination

~
r —r'

~
XsEx(r, r') in the COHSEX approximation. The units

are a.u. Ry/cell and the contours increase in powers of 2.
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screened-exchange operator decrease in magnitude upon
crossing the gap from occupied to empty states. This is
even more dramatic for the bare-exchange operator where
the relevant values are —12.54 eV (I 25„) and —S.28 eV

(Xi, ). Unlike a local potential, the matrix elements of a
nonlocal operator can be sensitive to the phase of the wave
function. Therefore the matrix elements of the screened-
exchange operator are sensitive to the extra nodes present
in the conduction-band wave function. However, matrix
elements of a local potential can also jump in magnitude
when crossing the gap because the bonding states are con-
centrated in different parts of the unit cell than the anti-
bonding states as emphasized above in connection with
the Coulomb-hole term. Figure 7 suggests that this mech-
anism may also be relevant for the screened-exchange
operator. The matrix elements of the screened-exchange
operator with respect to the valence-band edge states will

essentially average over the operator shown in Fig. 7(b) in

the bond region. However, the conduction-band states at
I are spatially located in the region around the antibond-
ing site. That matrix element will essentially average over
the operator shown in Fig. 7(d). From Fig. 7, these two
cases display rather different magnitudes which can then
account for the differences in the value of the matrix ele-
ments. Thus for an inhomogeneous charge density, both
nonlocality and charge inhomogeneity seem to contribute
to this effect.

—8

—12-

—16-

—20-
X4„ I as

l

Xi. I"ts.
I

X4„

5 10 15

tual collective excitations; the quasiparticle is a well-
defined particlelike excitation.

These general ideas give the framework for studying the
role of dynamical renormalization in the present theory.
For each of the materials studied here, we plot matrix ele-

ments of X as a function of energy near the gap region.
These are given in Fig. 8 for a few states near the gap.
The corresponding quasiparticle energies are indicated by
ticks on the horizontal axis. These plots summarize con-
cisely many of the important results here. First, these
give the magnitude of the self-energy for each material in
the 68' approximation using the GPP model. Second,
the dispersion in energy conforms to the general features
described above. Third, the curves for electron states are

B. Dynamical effects in the self-energy operator

In general terms, dynamical effects correspond to the
energy dependence of the self-energy operator. For com-
parison, we summarize the general features expected for
X(E) here. A complete discussion is given in Ref. 12.
Since X(E) satisfies a dispersion relation, the energy
dependence of the real part is related to the imaginary
part of X being nonzero. In the jelhum model, the disper-
sion of X(k,E) displays resonances centered at @+cubi.

'2

For hole states (k ~kF), the resonance at p —co& is
stronger than the resonance at p+coz with the opposite
behavior for electron states (k & kF ). On general grounds,
one expects similar behavior in semiconductor systems, al-
though the details of the imaginary part of the matrix ele-
ments of X(E) will be richer. For energies near the quasi-
particle energy, this leads to a general behavior of the real
part of matrix elements of X(E). The curves will have
negative slope near the quasiparticle energy. They will be
concave upwards for hole states and concave downwards
for electron states. The nonzero slope at the quasiparticle
energy is related to the renormalization constant

—8-
—10-

X4„
I

—16
—5

X4„
I

—2 I

LiCl

A
tA —5

6

8
tA

—10-

~85'v X le ~1Sc
I

~as' &c I &sc
I I I

0 5

Xio
~15c

(c)

~15c
LIc

~a5.
X4„

XI,
I„

10

10

BX„i,(E)
Z„g——

E=Eqp
nk

(44)

The matrix element of X is indicated in a compressed no-
tation. The renormalization constant gives the weight of
the quasiparticle peak in the spectral function. Physical-
ly, the bare electron is renormalized: the quasiparticle in-
cludes the cloud of excitations associated with screening
in the solid, electron-hole pairs and plasmons. A value
near unity is indicative of a small associated cloud of vir-

X4„ I,s„
—22

—10 —5 0 5 10 15 20

Energy (eV)

FIG. 8. Matrix elements of the electron self-energy operator
evaluated in the GS' approximation are drawn as a function of
energy for selected states near the band gap. Results are
displayed for (a) diamond, {b)Si, (c) Ge, and (d) LiCl.
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close together as are the curves for the hole states. How-
ever, there is a substantial gap between the electron states
and the hole states.

To analyze the contribution of the self-energy operator
to the gap energy, consider breaking X„i,(E) into two
terms: an energy-indePendent Part X„z(EviiM) and the
remainder which contains the energy dependence. As an
example, we consider the indirect gap in Si. The first
term corresponds to drawing a vertical line at the
valence-band-edge energy (I is„ ) in Fig. 8. The intersec-
tion with each curve in Fig. 8 is the contribution of the
first term to the self-energy operator. In particular, the
X„i,(E) curves for the I zs„and Xi, states are well separat-
ed. This first energy-independent term gives a large posi-
tive contribution to the gap energy. This contribution is
due to real-space effects along the lines discussed in Sec.
V A. The real-space contribution appears to be a large ef-
fect, but the energy dependence of the self-energy cannot
be neglected: the slope of the curves is approximately
—0.2. The self-energy operator must be evaluated at the
quasiparticle energy, X„q(E„i). Therefore the energy-
dependent term that remains accounts for moving from
E =Er, to E =Ex along the curve Xx (E). This gives

1c 1c

a substantial negative contribution to the gap energy.
The suggested separation of real space and dynamical

contributions to the gap energy gives us some insight into
the trends shown in Tables III and IV and Fig. 4. In all
the materials studied, inclusion of dynamical effects in
comparison to the static CGHSEX approximation reduces
the gap energy. We emphasize that the COHSEX approx-
imation is different in technical detail from evaluating the
self-energy operator at a fixed energy such as the valence-
band edge as suggested above. However, this analysis
does give a picture of how introduction of dynamical re-
normalization leads to a reduced gap.

The final feature of Fig. 8 that we emphasize is that the
renormalization constant Z introduced in Eq. (44) is
roughly the same for the electron and hole states. Furth-
ermore, Z is similar for all four materials studied. The
actual values of Z for the valence- and conduction-band-
edge states for the four materials studied are summarized
in Table V. This similarity throughout is somewhat
surprising in that semiconductors and insulators generally
do not exhibit electron-hole symmetry. The similarity for
the four materials may refiect the fact that the average
electron density is similar for all four (r, =2) although the
chemical aspects of the bonding vary considerably as to
degree of metallicity and ionicity. With Z=0.8 dynami-
cal renormalization is not negligible; account of dynami-
cal effects in the present theory is crucial for quantitative-

ZvBM

ZcBM

Diamond

0.86
0.86

0.78
0.80

0.79
0.80

LiCl

0.83
0.87

TABLE V. The renormalization constants Z for the hole

state at the top of the valence-band model (VBM) and the elec-

tron state near the bottom of the conduction-band model (CBM)
are shown for diamond, Si, Ge, and LiC1.

A
tA

—2

—6-
tA -8
V —5

X4„
I

~85'v X io ~15c
I I I

I"a5.
X4v

ly correct results. However, that Z is close to unity sug-
gests that using the lowest-order term in a perturbation
series, the GW approximation, is a reasonable approxima-
tion.

It is often instructive to separate out the correlation
contribution to the self-energy; i.e., the bare exchange part
of the operator is subtracted out. In Fig. 9, the correla-
tion part of X(E) is plotted as a function of E for Si. The
trends for the other materials are similar. The results cor-
respond to qualitative expectations. The correlation ener-

gy is positive for hole states and negative for electron
states. The electron-hole asymmetry is evident as the
magnitude of the correlation energy is substantially larger
for the electron states. One interesting feature of Fig. 9 is
that for states near the gap, the curves for the hole states
are very close together. This is also true for the electron
states. This suggests that the correlation energy near the
gap region can be modeled by a constant shift plus an
energy-dependent term for each case:

Eg,corr(E) Ee,corr(EGBM)++(E EciiM) (45)

with a similar expression for the hole states. This is simi-
lar to the results of the simplest treatment of the polaron
problem where the correlation energy consists of a self-
energy shift plus a mass correction.

As a final point regarding dynamical effects, general
reasons for the overestimation of the self-energy operator
in the COHSEX approximation can be given. This is il-
lustrated in Fig. 4 and also can be seen to predominantly
arise from the COH term in the self-energy operator from
Table IV. An alternative view of dynamical effects is to
note that the screened interaction of the added electron (or
hole) with the other electrons in the crystal depends on the
energy of the added electron. Loosely speaking, the de-
gree of screening depends on how fast the electron is mov-
ing. This leads to analyzing the role of dynamical effects
in terms of the details of the dynamical screening process.
This can be done directly, . but we suggest a more general
argument here. Consider the case of a quasielectron cor-
responding to an added electron in the crystal. The
COHSEX approximation as derived in Sec. II assumes

Energy (eV)
FIG. 9. For the case of Si, the matrix elements of the correla-

tion part of the self-energy operator are displayed as a function
of energy for several states near the gap region.
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that the added electron interacts with the other electrons
on a time scale long compared to the response time of the
crystalline charge density. Essentially, it is assumed that
the screening charge responds instantaneously to the
motion of the added electron. The other electrons op-
timally screen the added electron leading to the lowest en-

ergy. However, in reality, the screening charge does not
respond instantaneously so that the added electron is not
optimally screened. The energy associated with the
screening is not as low as that of the static case. Now the
COH term in the self-energy operator is just the interac-
tion of the added electron with the scrix,ning charge and
so this argument suggests a reason for the overestimation
of the magnitude of the self-energy operator in the
COHSEX approximation. This picture corresponds to
the common statement that the quasiparticle drags some
of the screening cloud along with it.

C. Comparison to the LDA potential

Although our calculation does not proceed as a correc-
tion to the eigenvalues from the LDA potential, it is still
interesting to see the character of such a corre:tion. This
is particularly true in light of recent interest in such
corrections for the minimum gap. ' We can examine a
posteriori the form such a correction seems to have

In Fig. 1, the difference between the quasiparticle ener-

gy computed using the GW approximation and the eigen-
value from the LDA potential in RPA (Ref. 19) is plotted
versus the quasiparticle energy for several high-symmetry
points in the Brillouin zone. The straight lines are drawn
as a guide to the eye. As described in the Introduction,
the main feature of these plots for all four materials (dia-
mond, Si, Ge, and LiC1) is the large jump at the gap re-
gion. The correction near the gap region dominates. The
other general feature is that the correction is a relatively
smooth function (close to linear) of the quasiparticle ener-

gy away from the band edges. The scatter is small com-
pared ta the jump. The magnitude of the energy depen-
dence varies with material, with diamond showing the
largest energy dependence. Also, the conduction electrons
show a different energy dependence, in general, than the
valence electrons. Further, the distribution of the correc-
tion between the conduction electron self-energy and the
valence electron self-energy is material dependent. Final-
ly, the correction turns upwards deep in the valence band
leading to relatively small corrections to the overall
valence-bandwidth. This last effect may be related to the
approximations used in evaluating the self-energy opera-
tor. In particular, one certainly expects the GPP model to
work best for states near the gap region and deteriorate
somewhat when the characteristic exchange frequencies
required approach the magnitude of the plasma energy, as
is the case for the states at the bottom of the valence band
(or s band in LiC1).

There are general arguments which suggest that the en-
ergy of the highest occupied state should be given correct-
ly by the exact density-functional eigenvalue for that
state. This implies that the correction for the valence-
band-edge states should be zero {at Eqi'=0 in Fig. 1). The

degree to which this is satisfied by the LDA potential
gives some information on the reliability of the LDA for
ground-state properties. The degree of lineup at the
valence-band maximum also depends on the convergence
of the absolute magnitude of the matrix elements of the
self-energy operator (as opposed to the differences re-
quired for the gaps and band dispersions). From Fig. 1,
we see that this is reasonably satisfied for the homopolar
materials. There is a trend showing a smaller correction
as a function of increasing metallicity (from diamond to
Ge). For the case of LiC1, the correction at the valence-
band edge is substantial suggesting that the LDA is not as
good for this highly ionic {and inhomogeneous) material.

Figure 1 also suggests that the assumption usually
made in applying the self-interaction correction to the
LDA to solids is not correct. The correction is not due
to a lowering of the valence electron energy by removal of
the spurious self-interaction energy. Rather, most of the
correction is for the conduction-band electrons in the
homopolar materials. For LiC1, the correction is evenly
divided between valence and conduction bands.

The result shown in Fig. 1 together with the previous
discussion of the quasiparticle wave functions give in-
direct evidence supporting the proposal of Sham and
Schluter. Through the occupied valence bands, the ma-
trix element of the LDA potential tracks the matrix ele-
ment of the self-energy operator fairly closely. But upon
crossing the gap, there is a substantial decrease in the ab-
solute magnitude of the matrix elements of the self-energy
operator that is not reproduced by the LDA potential.
This appears to be in accord with the picture proposed by
Sham and Schluter. The added electron in the first excit-
ed state of the conduction band moves in a potential that
differs from the potential seen in the X-electron system by
a constant shift. This constant is traced to the discon-
tinuity in a functional derivative of the exchange-
correlation energy upon filling the system upto and across
the gap. The near perfect overlap of the one-particle wave
functions from the LDA potential with our calculated
quasiparticle wave functions also supports this picture.
Away from the gap region, the theory of Sham and
Schluter does not apply and indeed Fig. 1 exhibits cases
where the correction is dependent on energy away from
band edges (diamond in particular).

VI. COMPARISON OF QUASIPARTICLE ENERGIES
TO EXPERIMENT

We preface detailed discussion of the comparison of the
present theory to experiment by noting that the quasipar-
tiele energies calculated here strictly refer to experiments
where an electron is added or removed from the solid.
This corresponds, in principle, to inverse photoemission
and photoemission. Optical experiments where both an
electron and a hole are created do not strictly probe the
quasiparticle energies. In principle, the optical response
function can exhibit many-body effects beyond the quasi-
particle interpretation, e.g., the effect of the electron-hole
interaction. This has been shown to have a marked effect
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on the amplitude of the features of the absorption spec-
trum of diamond ' and Si. However, a recent model cal-
culation suggests that the critical points in the spectrum
are not shifted. The important point is that most of the
data on critical points in the quasiparticle band structure
have been unravelled from optical experiments or relative-
ly low-energy photoemission experiments where such ef-
fects may manifest themselves. Values so derived may be
shifted from the strict quasiparticle energies calculated
here. We proceed on the assumption that such effects are
relatively small, if present. The calculated gaps and direct
transitions presented here will be taken as the difference
between quasiparticle energies in keeping with a quasipar-
ticle interpretation of the optical response.

The calculated results for diamond are compared to ex-
perimental results' ' in Table VI. The calculated re-
sults differ slightly from those reported earlier's because
of improvements resulting from the second iteration in
the calculation with the improved spectrum as described
in Sec. II. The most reliable experimental results are the
optical data for the fundamental gap (indirect at approxi-
mately 0.756) and direct gaps at I". The theory agrees ex-
tremely well with the absorption edge' and the direct
gaps derived from reflectance. The calculated band-
width is somewhat (5%) too narrow compared to the XPS
measurement. The angle-resolved ultraviolet photoemis-
sion spectroscopy (UPS) measurement of the bandwidth
by Himpsel et al. is significantly narrower than the x-
ray photoemission spectroscopy (XPS) measurement and
the theoretical value. This trend is also seen for the criti-
cal points measured at the I. point in the Brillouin zone.
Himpsel et al. deduce the conduction-band energy for the
L2, state from the valence-band energies together with
the photon energy. The fact that the theoretical value is
too small is also consistent with the compression of the
valence bands in the UPS data. Based on constant
initial-state spectroscopy, they deduce the energy of the
12, state. The theoretical value is consistent with the
experiment, although somewhat small. Roberts and
Walker measured the reflectivity of diamond and obtained

TABLE VII, Comparison of results (in eV) from the present
calculation of the quasiparticle energies to experiment for Si.

Silicon

Present theory Expt.

1.29 1.17

II lv~I 25v
II 2sv~I 15c
I II 25v~I 2c

12.04
3.35
4.08

12.5 +0.6
3 4h

4.2

ez. The spectrum is dominated by a broad peak around
12 eV. Painter et al. analyzed the reflectivity data in
terms of an Xa band structure and deduced that direct
transitions near points X and I. contribute to that broad
peak. The current theory is in reasonable agreement with
those values.

The results for Si are summarized in Table VII in com-
parison to experiment. ' * The calculated results are
slightly different than those reported previously" because
we make a second iteration to include an improved spec-
trum in the calculation of X. The fundamental gap (in-
direct at approximately 0.85) is about 0.1 eV larger than
experiment. The prominent critical points in the optical
spectrum are well represented by the calculation. Here we
make a comparison to features in the optical spectrum
that are generally believed to be associated with direct
transitions near high-symmetry points in the Brillouin
zone. Based on the wavelength modulated reflectivity
measurements of Zucca and Shen, the F. ~ feature is as-
sociated with a direct transition at L (L'3, ~L j, ). The EI
transition is also assigned to L (L 3,~L3, ). The calculat-
ed second gap at the zone center (I z, ) is a little too small
in Si as noted for diamond. The second conduction-band
edge in Si is at I.. There are boih absorption measure-
ments of the second indirect gap

' and angle-resolved in-
verse photoemission measurements of the empty states at
L. The two experiments nominally differ by 0.3 eV for
the L~, . The theory gives a value intermediate between

Diamond

Present theory Expt.

TABLE VI. Comparison of results (in eV) from the present
calculation of the quasiparticle energies to experiment for dia-
mond.

CX4v~I 25v
II 25v ~X1c

I I
L2. I 25.

ILI.~I 25.
I 25.

2.99
1.44

9.79
7.18
1.27

29 33 +0.2'
13

9.3 +0.4
6.7 +0.2
1.2 +0.2, 1.5'

I

I 25.
II 25. I 2.

5.6

23.0
7.5

14.8

5.48'

24.2+1, 21+1'
7.34

15.3+0.5'

~25v ~L 1c

~25v L3c

L3„~LI,
L3„~L3,

2.27
4.24

3.54
5.51

2.1, 2.4+0. 15~

4.15+0.1g

3.45"
5.50"

I Ir„„
ILIv~I 25.

I 25v~L2c

'Reference 17.
Reference 54.

'Reference 55.
Reference 56.

17.3
14.4
17.9

15.2+0.3'
12.8+0.3'
20 +1.5'

'Reference 17 except where noted.
Reference 58.

'Reference 59.
Estimated from the indirect gap and longitudinal mass.

'Reference 60.
Reference 61.

gReference 62.
"Reference 63.
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the experiments and does not give new insight into wheth-
er the electron-hole interaction is responsible for the
difference between the experiments. The theory agrees
with the inverse photoemission data for the Li, . Turning
to the XPS results for the occupied states, the overall
agreement with experiment is quite good. The bandwidth
is a few percent too narrow, but the L2„an L,„critical
points are a little too deep in energy. This reflects the
bowing discussed in connection with Fig. 1. For both the
X4„and L i„ the newer angle-resolved UPS data5 ' place
these critical points deeper than the older XPS data. In
both cases, the theoretical results fall between the two.

The calculated results for Ge are compared to experi-
ment' ' '~'65 in Table VIII. The calculation includes sca-
lar relativistic effects at all stages. The effe:ts of spin-
orbit coupling are included in first order using the vector
part of the pseudopotential which yields spin-orbit split-
tings in the crystal in good agreement with experiment.
The theoretically calculated indirect gap is in excellent
agreement with experiment. Where direct transitions at
symmetry points are associated with features in the elec-
troreflectance spectrum, the present theory is compared to
the data of Aspnes. The direct gap to the I'7, is approx-
imately 0.2 eV too small. This is discussed below. The
transitions to the I 6, and I s, states are very well repro-
duced by the theory. Also the spin-orbit splittings at I
and at L agree very well with the electroreflectance data
(not shown for L). The other conduction-band energies

TABLE VIII. Comparison of results (in eV) from the present
calculation of the quasiparticle energies to experiment for Ge.
Calculated results include relativistic effects.

were derived from direct transition analysis of UPS data
where the spin-orbit splitting is not resolved. At both X
and L the agreement with theory is good. There is also
recent inverse photoeinission data for Ge iving results
for the conduction-band critical points at L. The results
for the L6„L4 5, complex, in contrast to Si, are somewhat
smaller than that deduced from direct transition analysis.
The data for L6, agrees well with both the direct-
transition data and the present theory. The theoretical re-
sults for the occupied states are in good agreement with
the XPS data as well as the more recent angular-resolved
UPS measurements reported by Wachs et al. This is
displayed clearly in Fig. 10 where the data taken for
Ge(111) and Ge(001) surfaces from Ref. 59 are shown in
comparison to the quasiparticle band structure. The zero
of energy is fixed at the top of the valence bands. It does
appear that the dispersion along the 5 direction observed
in the experiment is consistently somewhat larger than
that predicted by the quasiparticle bands. However, the
overall agreement is excellent. As seen in Fig. 1, the
corrections to the valence-band dispersions in Ge are
small but Fig. 10 shows that they improve the agreement
with experiment.

The calculated position of the s state in the conduction
band of I 2, symmetry so:ms to deviate from experiment
consistently through the homopolar materials. Although
the magnitude of the deviation is small, this is most obvi-
ous for Ge (I 7, ) where every other point agrees well with
experiment. As pointed out in Sec. IVB, this state has
most of its weight centered on the atomic sites in the dia-
mond lattice and thus maximally probes the approximate
treatment given here of the valence-core part of the elec-

Germanium

Present theory

0.75 0.744

Expt. '

Ge

I 6u~I sv

I 7m~I s.
12.86
0.30

12.6, 12.9+0.2b

0.297'

I s.~I 7c

I so~I 6c

r,„r
0.71
3.04
3.26

0.89'
3.006'
3.206'

X5 rs
Xs rs

I s.~&s.

9.13
3.22

1.23

9.3+0.2
3.15+0.2, 3.5+0.2

1.3+0.2

LIc
LU

L6.~I s.
1.6„~I s„
I 4,5ti~I sti

10.89
7.82
1.61
1.43

10.6+0.5
7.7+0.2

1.4+0.3 —12

r,„ I.„
I sv~L'4, 5c

I s„—+1.6,

4.33
4.43
7.61

'Reference 17 except where noted.
Reference 59.

'Reference 64.
Reference 65.

4.3+0.2,4.2+0.1'

7.8+0.6,7.8~0.1' I X

Wave vector k

FIG. 10. The theoretical valence bands along the symmetry

directions A and 5 are drawn for Ge in comparison to results

from recent angular-resolved photoemission measurements from

Ref. 59. The theory includes relativistic effects.
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TABLE IX. The results (in eV) of the present theory for LiC1
are compared to experiment for the gap Eg Cl 3p bandwidth
W'3~ and the separation between the Cl 3s and 3p bands

E3p —E3,.

LiC1

W3~

E3 —E3

'Reference 18.
bReference 66.
'Reference 67.
dReference 68.

Present
theory

9.1

3.8
11.6

Expt.

94'
4.0+0.2

11.6+0.5, 11.0~0.6'

TABLE X. The results of the present theory are compared to
the results from the electronic-polaron approach and the LDA
eigenvalues for the quasiparticle energies at three symmetry
points in the Brillouin zone. AI1 energies are in eV and are re-
ferred to the energy of the I ~~„state as zero.

LiCl LDA

0.0
6.0

11.8

Electronic
pola ron'

0.0
9.7

17.9

Present
theory

0.0
9.1

15.6

X4,
Xg„

X3,

—3.0
—1.1

7.S
8.2

—3.7
—1.0
10.2
11.3

—3.3
—1.3
10.7
11.6

I.2„

L3„
I.(,
1.3,

'Reference 69.

—2.9
—0.2

6.4
9.03

—3.3
—0.5

9.7
14.7

—3.2
0.3
9.7

12.5

tron self-energy operator as described in Eq. (38). The
atomic calculations summarized in Table II suggest the
correction produced by proper treatment of the valence-
core interaction would raise the energy of the s-like I i,
(I 7, ) state compared to the top of the valence band which
is p-like. That is, the correction has the required sign. It
is difficult to estimate the exact magnitude of the shift,
but Table II gives corrections of the right order of magni-
tude.

We have previously discussed the available data for
LiC1.' A comparison of theory to experiment' ' 6 is
summarized in Table IX for completeness. The theory
gives the direct gap as 9.1 eV as compared to 9.4 eV de-
duced from reflectivity measurements. ' The theoretical
value is slightly larger than that given before in Ref. 16
because an improved procedure for including an updated
spectrum in the calculation of the self-energy is used. The
width and structure of the Cl 3p bands previously report-
ed are unaffected. For reference, Table X gives a sum-

mary of the quasiparticle energies at symmetry points
from the present theory in comparison to the eigenvalues

in the LDA and the electron polaron approach imple-
mented by Kunz, to be discussed further in the next sec-
tion.

VII. COMPARISON TO PREVIOUS %ORK

Application of the Green's-function approach to the
present problem of quasiparticle energies in semiconduc-
tors and insulators has a long, albeit sparse, history. Phil-
lips proposed a generalized Koopman's theorem based on
Hubbard's expression for the exchange-correlation ener-

gy. The dominant term appeared to derive from a
dynamically screened-exchange operator. Phillips and
Kleinman made estimates of the matrix elements of the
operator for Si. Several calculations have been based on
the COHSEX approximation to the self-energy operator
of Hedin Brinkman and Goodman and later Kane '

for Si; Brener ~ for LiF and diamond; Lipari and Fowler i

for Ar; and Lipari and Kunz" for NaC1. These calcula-
tions have an important deficiency in common: they all
neglect the local fields in the screening. As illustrated by
our results in Table III, neglect of local fields and dynam-
ical effects can cancel to yield reasonable results fortui-
tously in some cases, although consistent, quantitatively
accurate results require both.

Another line of development has been the "electronic-
polaron" model introduced by Toyozawa s for application
to wide gap insulators. This model envisions the quasi-
particles interacting with an "exciton." The electron-hole
pairs are replaced by a flat band of localized electron-hole
pairs, essentially polarizable atoms, referred to as excitons
in the theory. It is the coupling of the electrons and holes
to these excitons which leads to the self-energy shift, the
correlation correction, in the quasiparticle band structure.
The electronic polaron can be seen as one particular ma-
nipulation of the more general second-order expressions
for the correlation contribution as discussed by Pantelides,
Mickish, and Kunz. Their general picture involves in-
teraction of the quasiparticle with virtual electron-hole
pairs. The electronic-polaron scheme posits that the im-
portant excitation in a wide gap insulator is the exciton.
%e note that the present approach using the GPP model
is quite similar to Overhauser's plasmon model ' where
the important excitations are taken to be plasmonlike with
the electron-hole pair excitations collapsed to a single ef-
fective mode.

The electronic-polaron approach has been developed ex-
tensively by Kunz for application to wide gap insulators.
Generally, the model used for the electron-exciton cou-
pling constant requires inclusion of a momentum space
cutoff. In the recent application to the alkali-halide crys-
tals, 69 Kunz further simplifies the resulting self-energy for
the conduction electrons leaving the correlation contribu-
tion as k independent. Relaxation corrections are includ-
ed based on molecular estimates. The results of Kunz
for LiCl are compared to the present work in Table X.
Although the direct gap in both the present theory and
the work of Kunz differs from experiment by about the
same amount, the other quasiparticle energies deviate sig-
nificantly.

There are three other recent calculations of quasiparti-
cle energies in semiconductors. %e summarize the results
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of the LDA eigenvalues„ the work of Horsch, Horsch, and
Fulde, the time-dependent screened Hartree-Fock
(TDSHF) method, ' the quasiparticle local-density ap-
proximation (QPLDA), ' and the present theory in com-
parison to experiment for a few features in the spectra of
Si and diamond (Table XI). For the fundamental gap and
bandwidth, all the many-body theories give results in
reasonable accord with experiment. However, it is evident
that the results differ substantially in detail, e.g., for the
direct transition at the zone edge in diamond. This sug-
gests that more experimental data, particularly for dia-
mond, is essential for sorting out the various theories. We
now briefly compare the other theories to the present
work.

The QPLDA of Wang and Pickett ' is a modification
of the original proposal of Sham and Kohn for extend-
ing the density-functional theory to excited-state proper-
ties. The self-energy operator is treated as an energy-
dependent functional of the local density thus extending
the self-energy operator for the electron gas as a function
of the density to the inhomogeneous crystal. In adapting
this approach for the case of semiconductors and insula-
tors, W'ang and Pickett introduce two gap parameters to
describe the self-energy operator of an insulating electron
gas. The self-energy operator is local but energy depen-
dent in the QPLDA. The results of this QPLDA ap-
proach clearly give systematic improvement over the
LDA potential. It has the further advantage of being
directly formulated as a correction to the LDA exchange-
correlation potential for excitation energies. However, the
detailed results show some systematic deficiencies. The
gapa with respect to the valence-band edge in Si, e.g. , the
direct gap at I and the indirect gap, are too small. The
better agreement for the zone-edge transitions can be
traced to their correction being symmetric in energy
around the chemical potential (midgap). With reference
to Fig. 1, the QPLDA does not seem to provide the sharp
jump at the gap region required to correct the LDA eigen-

values with respect to all the experimental data. These
suggest that the local-density dependence does not ade-
quately approximate the local-field contributions to the
screening and the anisotropy introduced by consideration
of the full crystalline Green's function.

The work of Strinati, Mattausch, and Hanke has the
same goal as the present theory and employs a similar for-
mal structure. The essential conceptual difference be-
tween the present theory and TDSHF theory is in the for-
mulation of the screened interaction IK They argue
based on Ward identities that 8' should include the sum
of the ladder bubble diagrams in the polarization propaga-
tor. Physically, this includes the continuum exciton effect
in the screening of the Coulomb interaction: electron-hole
pairs virtually excited interact via a screened interaction.
For the calculation of the self-energy operator, it is not
clear at present that this leads to systematic improvement
over the use of the RPA. One might, in fact, expect this
to be a small effect since the calculation of the self-energy
operator in the GW approximation averages over the fre-
quency structure in the screened interaction. Strinati,
Mattausch, and Hanke have implemented the TDSHF ap-
proach using a minimal-basis-set tight-binding ap-
proach. Therefore, there are only eight bands available
in the self-energy calculation. As noted in Sec. IVC, we
find approximately 60 bands are required to converge the
magnitude of the Coulomb-hole part of the self-energy
operator as well as the gap energies. It is unlikely that
other aspects of the local representation employed in the
TDSHF calculation will compensate for this. The numer-
ical results of the TDSHF differ substantially in detail
from the present theory for diamond. Although the direct
and indirect gaps are similar, direct transitions at the zone
edges differ by as much as 3 eV from the results of the
present theory. Based on the limited results available for
Si treated in the TDSHF, the gaps are systematically
overestimated for Si.

The variational approach of Horsch, Horsch, and

TABLE XI. Three recent calculations of quasiparticle energies in diamond and Si are compared to
the results of the present theory, LDA eigenvalues, and experiment.

Diamond

LDA Horsch eg al.' TDSHF QPLDA' Present Expt. d

Eg
II lu~I 25u

II 25u~I 15c

Xu X„

3.9
21.6

5.5
10.8

23.8
7.4

15.6

5.7
25.2

7.4
15.4

5.7
|'23.4)

7.4
13.8

5.6
23.0
7.5

12.9

5.48
24.2+1

7.3
12.5

Silicon

II 1.~125.
I 25u ~I 15c

tL3„—+L1,

0.52
11.93
2.57
2.73
4.58

1.7
12.9
3.5

0.93

3.07
3.38
5.37

1.29
12.04
3.35
3.53
5.50

1.17
12.5+0.6
3.4
3.54
5.51

'Reference 78.
bReferences 79 and 80.
'Reference 81.
dReference 17.
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Fulde is quite different conceptually than the others. A
cluster of 25 bonds is treated using a variational approach
to include correlation in the many-body wave function.
For the quasiparticle problem, this system together with
an added electron or hole is studied. Because of the long-
range correlations for this case, the cluster must be em-

bedded in a continuum with results for the finite cluster
extrapolated to the limit of full crystal. The correlation
energy has three contributions in this picture: a long-
range polarization of the surrounding bonds, a correction
to the ground-state correlation energy due to the presence
of the quasiparticle, and a local relaxation of the electrons
in the bonds. The last contribution is estimated from
molecular calculations using quantum chemistry tech-
niques. Since it is relatively large, of an order of eV, cal-
culations with a more extended basis set are required to
include relaxation effects in this approach and render the
results more numerically precise. Extension of the
method to other materials would facilitate systematic
evaluation of it.

VIII. CONCLUSION

The present theory for the quasiparticle energy in semi-
conductors and insulators is based on evaluation of the
electron self-energy operator within the GlP approxima-
tion. We have shown that this approach, implemented in
a numerically reliable fashion, yields quasiparticle ener-

gies in excellent agreement with available experimental
data for the homopolar materials diamond, Si, and Ge as
well as the ionic compound LiCl. In the evaluation of the
self-energy operator, the local fields in the screening were
shown to be crucial for an adequate description of the
screened Coulomb interaction. The effects of dynamical
screening are included using a generalized plasmon-pole
model and were also found to be essential for quantitative
results. The dynamical renormalization has been exten-
sively discussed. The calculated modest degree of renor-
malization suggests the reasonableness of stopping with

the GW term in the perturbation series for the self-energy
operator. The present results have been analyzed in com-
parison to the LDA potential and the COHSEX approxi-
mation to the self-energy operator. In particular, the
correction required to the LDA eigenvalues is found to be
dominated by a large jump at the gap region. This is con-
sistent with the remarkable result that the quasiparticle
wave function has near perfect overlap with the wave
function found using the LDA potential. Finally, we em-
phasize that the present theory has been shown to be appl-
icable to systems ranging from relatively small gap semi-
conductors (Ge) to wide gap ionic compounds (LiC1) with
the same qualitative features extending across the entire
range.
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APPENDIX A: GENERALIZED f-SUM RULE

In this appendix, we outline the derivation of the gen-
eralized sum rule used in Sec. III B, Eq. (29). The deriva-
tion generalizes the usual approach for the electron gas as
outlined in, for example, Ref. 83.

Starting from the double commutator
[[H,pz+a],pal+a] where pz+a is the density-fluctuation
operator, one can straightforwardly obtain

g «.—~0) i I &o
I pq+a I

s & &s
I pq+a I

o&+ &o IPs+a I
s & &s IPq+a I

o& I =(q+G) (q+G')pa-a (A 1)

which generalizes the usual f-sum rule. The states
I
s & are the exact excited states of the many-body system. pa a is

the Fourier component of the electron density in the crystal. One can also show that

~~Ime~ q, m = ——
U q+6 E, —Eo —, 0 pq+~ » pq+Q' O + O pq+Q' » pq+G

S

(A2}

This follows directly from the definition of the linear-
response dielectric function in terms of the ground-state
matrix element of the commutator of the density opera-
tors (e.g., Ref. 13). From Eqs. (Al} and (A2), we obtain
the set of sum rules in Eq. (29}. Note that the geometric
factors are normalized differently in Eq. (29) than in the
Johnson result. This is because the latter applies to the
symmetric dielectric function describing the response to
electric fields while the response function for a potential is

applicable in the present calculation. Otherwise the result
can also be obtained from Johnson's result by relating the
high-frequency limit of e(co) to that of e '(co). This
yields precisely the sign change on the right-hand side of
Eq. (29) compared to the Johnson sum rules.

The Johnson result applies to e(co) in the RPA. As
shown here (and discussed more generally by Taut ), the
sum rules Eq. (29) for e '(co) are quite general for the in-
teracting many-body system. They are true for the exact
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response function. In practice, they are used here with a
crystalline charge density derived from a nonlocal pseudo-
potential calculation. In principle, this requires correction
terms on the right-hand side of Eq. (29) because of the
nonlocal terms in the pseudopotential. However, in prac-
tice, the pseudo charge density gives form factors so close
to the experimental x-ray form factors that those correc-
tions should be small.

APPENDIX 8: DETAILS OF EVALUATION
OF THE SELF-ENERGY OPERATOR

In this appendix, we briefly discuss the evaluation of
the matrix elements of the self-energy operator as given in
Eq. (34). The expressions required for direct evaluation of
the self-energy operator in a plane-wave basis are given.

Consider evaluation of the diagonal matrix elements of
the self-energy operator in Eq. (34) for k along some sym-
metry direction in the Brillouin zone. The self-energy
operator has the symmetry of the crystal (acting on r and
r' together) so that degenerate states

~
nk) will yield the

same result in the matrix elements. If one averages over
the states in a degenerate complex, then the operations in
the little group of k can be used to reduce the summation

(81)

where the quasiparticle wave function has been expanded
in plane waves

„,+1(„,(G)e""+ ". (82)

The single-particle part of Eq. (1), H, includes the kinet-
ic energy operator, external potential (ionic pseudopoten-
tial in this calculation), and Hartree potential. Forrnula-
tion of the single-particle part for the nonlocal pseudopo-
tential used here is given in Ref. 41. The formulation for
the self-energy operator in the plane-wave basis is
straightforward and the result is

over q to an appropriate irreducible portion of the Bril-
louin zone. For k=O, the full reduction to the usual ir-
reducible wedge is achieved. This is a distinct computa-
tional advantage.

In Sec. IVA, results obtained by solving Eq. (1) in a
plane-eave basis are discussed. The quasiparticle equa-
tion then has the form

y [H (k)+ QX (k;E„„)]II/t„„(G')=E„~/„„(G),

OCC &o,o,(q)2

&Go(k;E)= ——g g f„, i, q(G —Gi)i/„', i, q(G' —G2) +, U(q+G2),
n) q, GI, G2 , k —q) ~o G (q)

(83a)

&o~,o,(q)
~oo"(k;E)=—g g q. .,. ,(G—G, )1t„'.. .(G -G, ) —, U(q+G2) . (83b)

n~ q, o~,o2 ciao G (q)[E —e„ i, q
—cg G G (q)]

Since only ReX is considered, the secular equation in Eq.
(81) can be diagonalized by standard techniques.

Although evaluation of Eq. (83) is as straightforward
as evaluation of Eq. (34), the latter approach is numerical-
ly more efficient for the case of n =n' in Eq. (34). It is
easier to exploit symmetry. More importantly, the plane-
wave matrix elements required in Eq. (34) need only be
evaluated once for each G, stored, and then retrieved for
both G and G' when needed in the final summation in
Eq. (34). Thus, the calculation in Eq. (34) scales roughly
as EG while evaluation of Zoo(k;E) scales roughly as
XG.

As noted in Sec. IVC, the singularity in the Coulomb
interaction for q+G'=0 is handled following Ref. 43.
Briefly, we require a Brillouin-zone summation of the
form

~fq
q Qq

(84)

f(q) is some function without singularities. Then assum-
ing f to be smooth around q =0, the region of the Bril-
louin zone represented by q =0 is taken to be spherical
and the singularity in the integrand is integrated out
analytically. Thus we get the result for a finite uniform
sampling including q =0:

F—
q

f(q =0) 1 f(q. )

q„(~0) IIcqn

where there are E points in the sampling, 0, is the
volume of the unit cell, and q =(6n2/NQ, )'~ is the ra-
dius of a subzone equal to 1//i/ of the volume of the Bril-
louin zone. ~e note that the dielectric matrix for q~O
also has a nonanalytic part. However, when treated in
the manner just described, the lowest-order contribution
from that part goes as q„. These contributions can be
made negligible by requiring q & 1. They are dropped by
symmetrizing limq Oooo(q, co=0) with respect to the
direction in which q~O.

There are two aspects to the GPP model which should
be noted. First, there is not always a real solution to Eq.
(30) for co~(q). This corresponds to the cases where
Imeoo(q, co) does not have a single well-defined peak.
Since Ime '(co) typically oscillates for these momentum
components and has small amplitude, we neglect these
momentum component contributions in the evaluation of
Eq. (34). These components affect the quasiparticle ener-
gies by approximately 0.1 eV or less in the extreme case of
the COHSEX approximation and should contribute much
less in the full dynamical calculation because of the sum
over bands. The second point is that for energies near the
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bottom of the valence bands, the unbroadened resonances
in the screened-exchange term can be encountered. These
contributions are not included since a full integration over
the Brillouin zone would sample the positive and negative
portions of the resonance approximately equally. In fact,

this problem only occurs for some off-diagonal elements
of the dielectric matrix where the resonance energy to is
small. These terms make a negligible contribution to the
quasiparticle energies near the bottom of the valence
band.
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