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Raman and electron-energy-loss spectra, and finite-size effects
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We consider a finite superlattice consisting of unit cells with quantum wells filled with different

types of carriers. The density-density correlation function is calculated with use of the random-

phase approximation. The theory of resonant Raman scattering and inelastic electron scattering is

formulated, The general theory is applied to a type-II superlattice. Raman and electron-energy-loss

spectra due to bulk and surface plasmons are predicted for various system sizes.

I. INTRODUCTION

With the advancement of the molecular beam epitaxy, a
variety of semiconductor superlattices can now be grown. '

The best known examples are the type-I GaAs-
Ga~ „Al„Asand the type-II GaSb-InAs superlattice.
Quasi-two-dimensional layers of free carriers can be gen-
erated either by modulation doping, charge transfer, or
optical pumping. Collective charge-density excitations in
type-I superlattices recently received considerable atten-
tion. ' The density-density correlation function for a
bulk, semi-infinite, and finite superlattice have been calcu-
lated. The theory of resonant Raman scattering ' and
electron energy loss (EEL) has been formulated. Bulk
plasmons have been observed experimentally in light
scattering experiments while surface plasmons still await
detection.

The goal of this paper is to extend these calculations to
polytype superlattices, where a rich spectrum of collective
charge excitations is expected. The article is organized as
follows: In Sec. II the model system is described, and in
Sec. III the density-density correlation function for this
system is calculated using linear density response theory.
Calculations are exact and carried out analytically as long
as possible. They include intersubband scattering which
has been neglected previously. In Secs. IV and V the
theory of Raman scattering and inelastic electron scatter-
ing (EEL) is given. The theory is illustrated in Sec. VI on
the simplest example of a polytype superlattice, i.e., a
type-II superlattice. Plasma modes are predicted as a
function of the size of the system, and in-plane wave vec-
tor q. Special attention is paid to surface plasmons. Both
Raman intensities and EEL spectra are calculated, and
their evolution with the size of the system is shown. This
paragraph also contains the summary of our results.

II. THE MODEL

The system consists of N unit cells, each containing M
quantum wells filled with different kinds of carriers. The
quantum wells are embedded in a medium with dielectric
constant e, occupying the space z ~ —5. The other half-
space is filled by an insulator with a constant eo. The
wells are centered at z =la +d, and contain N~ subband

III. DENSITY-DENSITY CORRELATION FUNCTION

The density-density correlation function li(q, co,z,z') for
a semi-infinite type-I superlattice has been calculated by
us, ' and by Jain and Allen for a layered electron gas. It
is the central quantity for calculations of Raman intensi-
ties and electron-energy-loss spectra. Our approach here
is a natural extension of previous calculations to polytype
superlattices. For type-I superlattices it includes intersub-
band scattering.

Following Ref. 4 we expand the density-density correla-
tion function in the single-particle states. If we assume
that only the lowest subband is occupied, then

li(q, to,z,z') = g II"" (l, l')%„(z—la)%„(z'—l'a),

~here

n, n'

(3.1)

%„(z)=g „(z—d )g o(z —d ) . (3.2)

We will now write II"" (I,I') as a matrix
II&y(l, l'}=II(l,l'), where p=l+n+Xz(m —1). In the
random-phase approximation (RPA), II satisfies the in-
tegral equation

(3.3)

where II.O is the polarizability of the noninteracting sys-

each, where I =0, 1, . . . ,N —1 is the unit-cell index,
m =1,2, . . . ,M is the carrier-type index. The single-
particle states are assumed to be of the form

~
qlmn ) = 'eqg„( z la —d~ ),—

where n =0, 1, . . . , Nq —1 is the subband index, and q is
the momentum in the plane perpendicular to the z axis.
In this paper we assume that only the lowest subband is
filled at T =0, and carriers are localized in the wells. The
assumption of the uniform background dielectric constant
is a reasonable one if the dielectric constants of the consti-
tutive layers are quite similar.
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&&0" (z' —1'a), (3.4)

where a=[(e eo)—/(e+eo)]e ~ and Vq 2——qre /eq F.ol-
lowing Refs. 4 and 5, we now Fourier transform all quan-
tities, e.g.,

N —1

Il(k, k') =—g e '""Il(l,l'}e'"",
l, l'=0

1
II(l, l') =—g e'k"II(k, k')

k, k'

(3.5)

(3.6)

where k =2qrn/aN, n =1,2, . . . , N. The Fourier
transform of Eq. (3.3) is then

II(k,k ) =Do5„,.+ g LI'g(k, k") II(k",k ) .
k"

(3.7)

We now decompose G and II into a part diagonal in k, k',
called the bulk part, and the rest, called the surface part:

G(k, k') =Ga(k)5kk +Gs(k, k'),

Il(k, k') =lip(k)5kk +lls(k, k') .

(3.8)

(3.9)

The explicit forms of Gs(k) and Gs(k, k') are given in the
Appendix. Substitution of (3.8) and (3.9) into (3.7} gives
two coupled equations for LI& and LIs..

tern: II =II~5 5„„,where II is the polarizability of
noninteracting carriers in a well "rn" due to zeroth to nth
subband transitions. G(l, l') is the Coulomb interaction
between the layers, including the effect of image charges
and subband structure:

Gqq(l, l')=Vq f dz f dz'%~(z la—)

—q ~

z —z'
~ +&e —q(z+z'))

Poles of the density-density correlation function
II(k, k'} define collective excitations of the superlattice.
When the number of layers N is very large (N ~ 00), bulk
plasmons are given by the poles of the bulk part while
surface plasmons are given by the poles of the surface
part. For finite number of layers full solution must be
used. An advantage of the Fourier transform method
developed here is that the amount of numerical work in-
creases only linearly with the number of layers, and that
in certain special cases [layered electron gas (I.EG), type-I
superlattice without intersubband scattering] it permits
exact and analytical solutions. q s The success of the
method lies in the fact that the Coulomb interaction ma-
trix G(k, k') can be factorized. This point is well ex-
plained in Ref. 10.

IV. RAMAN INTENSITIES

The Raman intensity is proportional ' to the function
I'(co,g) in Eq. (4.1}. This function contains the imagi-
nary part of the density-density correlation function,
which has been calculated in the previous section. We as-
sume that the energy of the incoming light is close to the
band gap for one kind of carriers as in a previous analysis
for type-I superlattice. q This means that the light will

couple essentially to that type of carrier. In our calcula-
tions we assume that the light only couples to one kind of
carrier "m," so only Im[ g„„.II"" (1,1'}I is included in

the expression for F(u, g}. If the incoming and scattered
light have frequencies and wave vectors (co;,q;, kz'} and

(ru„q„—k,'), then at T =0:

F(ai,g)= f dz f dz'e * e *

II (k)=IIO+Ilo g (k) II (k),

II (k, k')=IIO Q (k) II (k, k')
w~ere

N=N; —N

)&ImI —[Il(z,z', q, ei}]~~I, (4.1}

+IIO Gs(k, k') Ils(k')

+ g LI'G, (k, k-} LI,(k",k ) .

Equation (3.10) can readily be solved to give

11,(k)= [1—II'g, (k)]-'Il'
We now make the ansatz for Ils(k, k'):

—AN

+Cei(k — )uk). Il

(3.11)

(3.12)

(3.13)

and

Q=(q, kz) =(q; q„k,'+k,') . —

%e now make the approximation

k,'=k,'=k+
2

vvhere

k= 'Re&a,
e

2'
e

where P(k) =cosh(qa) —cos(ka). Equations (3.11), (3.12),
and (3.13) give four matrix equations for the coefficients
A, 8&„82,and C, and the details are given in the Appen-
dlX.

2k is thus the momentum transfer to the plasmon from a
photon along the superlattice axis, and A, is the photon de-
cay length inside the material.

The function F(co,Q) then becomes

I'(co Q)= —g pe f dz f dz'e '"' ''e "+'' ImIII"" (l, l')I+„(z—laW (z' —1'a)
I,l' n, n'

—5 —5

= —g g Imj 11"" (1,1')
I
g""' (l, l'),

1,l' n, n'
(4.2)
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where

gill! (I Il)
—25/i. f dz f dz~ e

—2ik(z —z')e —(s+z')/k

X %„(z—1a)%„(z'—I'& )

tions. The background dielectric has been given the
values e=13.1 and eo= 1, and the distance from the first
layer to the interface is 5=0. We have furthermore used
the long wavelength form of II~(q, cv):

is the structure factor.

(4.3) ~p ehCpg
2

eh= 2
/lie g(co +$ 1'co)

V. ELECTRON ENERGY LOSS

Electron-energy-loss spectroscopy can be used to probe
surface collective modes of a superlattice. The theory of
the inelastic electron scattering from the surface of type-I
superlattice has been given by us recently. Here we ex-
tend this calculation to a polytype superlattice.

As in the case of Raman scattering, the response func-
tion for electron scattering R is proportional to the imagi-
nary part of the density-density correlation function. In
contrast to light scattering, the incoming electrons couple
to all carriers.

The response function R (q, cv) of the system is derived
using a semiclassical approach of Schaich" and Camley
and Mills. ' The probability P(q, co)dcod q that the elec-
tron is inelastically scattered into the range of energy loss
(ii(co+dc0) and in-plane momentum loss A'(q+dq) is

22
p( )

zq Iin[ —R (qyc0)]

fnr [q v,'+(co —q.v(() ]
where v=(v(~, v, ) is the velocity of the incoming electrons.
The response function R (q, cv) is calculated by matching
the boundary conditions for the electric potential from the
incoming electrons, and the potential due to induced den-
sity fiuctuations in the material. A straightforward exten-
sion of the derivation in Ref. 6 to a polytype superlattice
gives us

N —1

R (q, co) = g S.II(l, l') Se «"e
+~ I l'=0

where y is the phenomenological broadening. The ratio
of the plasma frequencies for the electron layers, and the
hole layers, is r =co, /coi, .

First we consider the dispersion of the collective modes.
The plasmons correspond to poles in the density-density
correlation function II. For a system of N cells and M
types of carriers, there are N)&M intersubband modes.
Figure 1 shows cv versus qa for a system with ten unit
cells, where co is in units of

' 1/2
2''P2I e

and r =2. The shaded areas are the two bulk modes, and
S, and Sz are the surface modes for a semi-infinite sys-
tem. The surface modes of the finite system are indistin-
guishable from the semi-infinite system. The distribution
of the 20 modes is nine in each bulk region, and two sur-
face modes. The modes in the upper bulk region are

2.5

20

l —1
6'+ 1

where the structure factor is

S = f dze «'g „(z—d )g 0(z —d~) .

(5.2)

(5.3)
[.0

VI. RESULTS AND CONCLUSIONS

As an illustration of the formalism, we have chosen the
simplest example of a polytype superlattice, i.e., type-II
superlattice. The type-II superlattice consists of alternat-
ing layers of electrons and holes. %'e have taken the first
layer to be a hole layer, and set d( —0 for holes, and
dz ——0.5a for electrons. The surface modes of this system
in the electric quantum limit have been studied by Qin,
Giuliani, and Quinn. ' An interesting possibility of an
acoustical intrasubband surface plasmon has been predict-
ed. To study this effect in greater detail, we will only
consider intrasubband modes here, and neglect subband
structure. This is a good approximation for these modes.
The densities in the z direction are thus taken as 5 func-

0.5 '

0.5 I.Q 20

FIG. 1. Dispersion relation m vs qa for a type-II superlattice
with ten unit cells, the first layer containing holes. The shaded
areas are the bulk modes for an infinite system. The solid lines
in the upper bulk regions are the modes of the finite system. Sl
and S2 are the two surface modes. The parameters are a=13.1,
6p= 1 0 5=0 p =2 0 d& =0 and dp =0 50.
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drawn in the figure. In between the bulk regions is an
acoustical surface mode, discovered by gin et a!.' This
mode ollly exists for r ) 1. Figure 2 sliows liow tile distri-
bution of modes changes with X, at qa =1. (Note the
change in energy scale. } The surface modes converge very
rapidly to their large N limit. From this analysis we con-
clude that the system can be well approximated by a
semi-infinite one for the surface mode for almost all X
and wave vector q. The predictions for a high-frequency
surface mode are valid for qa & l.

%e now turn to Raman intensities. The light is as-
sumed to couple only to the holes, and the parameters
used are 5=0, y =0.05cas, ka =5.5, and A, =6.0a. Figure
3 shows the logarithm of the Raman intensity versus co,

the energy loss of the scattered light, for three different
system sizes: X =4, 10, and 40. The in-plane momentum
transfer is qa =1.0. The peaks in the spectrum corre-
spond to the poles of the polarizability matrix II. For
N =4 (top curve) there are six peaks visible. The highest
peak corresponds to three holelike modes with frequencies
closely spaced (see Fig. 2) and lying within a bulk holehke
plasmon band. The next peak corresponds to the mode
with frequency between holelike and electronhke plasmon
bands which evolves to an acoustical surface mode as the
system size N increases. The next three modes are within
an electronlike plasmon band. Their energy difference is
much larger than that of holelike modes hence they are
clearly visible. The last mode with highest frequency is
outside the electronlike plasmon band spectrum and
evolves into a high-fequency surface mode as the system
size increases. This process is illustrated by Raman inten-
sities for the system sizes N =10 and X =40. For N =40
only four peaks are well resolved. The first and the third

qa= I

2.0

I

I.O 1.5
t'ai/GJ

h

2.0 3.0

FIG. 3. Logarithm of the Raman intensity versus the energy
transfer u, for three system sizes, N =4, 10, and 40. The in-

plane momentum transfer qa =1.0. The parameters are the
same as in Fig. 1. Other parameters are ka =5.5, A, =6.0a, and

y =0.05m~.

(counting from the left) correspond to the modes of the
bulk (infinite) spectrum with momentum along the super-
lattice axis equal to the change of the photon momentum.
The second and the fourth are an acoustical and optical
surface mode. The oscillating behavior in the bulk, high-
frequency, electronlike spectrum is due to the discrete na-
ture of the spectrum. The quantization of the plasmon
spectra for a type-I superlattice has btmn recently observed
experimentally by Pinczuk et al. and discussed theoreti-
cally by Jain and Allen. Note from Fig. 3 that the hole-
like bulk surface plasmons show higher intensities than
the electronlike plasmons. This is because we have as-
sumed that the incoming photon excites directly only
plasmons on hole layers.

Finally we calculate EEL spectrum. Figure 4 shows the
logarithm of the intensity versus the energy loss ro, for the

I.O

jnI
2—

0.6

Q. 5 1 I

iQ l2
I,O

I j

2.0 2.5 5.0

FIG. 2. Energies of modes as a function of the number of
unit cells. The solid lines are the band edges of the bulk modes.
The parameters used are the same as in Fig. 1.

FIG. 4. Logarithm of I=1m[ —R(q, co)] versus the energy
loss ~ for inelastic electron scattering on the same systems as in
Fig. 3. The in-plane momentum loss is kept at qa =1.0, and

y =0.1~I,.
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system sizes X =4, 10, and 40. For better comparison
with Raman spectrum we plot the spectral function
I(q, co) =Im[ —R (q, co)] as a function of co for a constant

q, and not the scattering probability P(q, ro} which in-

volves a kinematic, frequency-dependent factor intrinsic
to the scattering process itself. The broadening is

y =0.1'~. In contrast to Raman scattering which couples
strongly to bulk modes, electron scattering couples strong-

ly to surface modes. For large X (X=40 in Fig. 4) only
peaks due to surface modes are well resolved. These peaks
are accompanied by continuous shoulders due to excita-
tion of bulk modes. Note that while acoustical surface
mode had higher intensity than the high-frequency sur-
face mode in the Raman spectrum, the situation is re-
versed in the EEL spectrum. %'e must keep in mind that
the EEL spectrum excites all modes of the system on
equal footing while the light scattering excited only hole-
like modes directly.

In summary, we have extended previous theories of col-
lective charge excitations to polytype semiconductor su-

perlattices. The density-density correlation function has
been calculated and plasmon modes predicted. Our for-
malism allows for finite-size effects and intersubband
scattering. The theory of Raman scattering and inelastic
electron scattering has been formulated. As an example
of the formalism, intrasubband plasma modes of a type-II
superlattice have been studied and their Raman and EEL
spectra predicted.

ACKNO%'LEDGMENTS

g+» (q)=e f dz f dz'4" (z)

—q(z+z )qin ( i)

and

V~&(q)= f dz f dz'qt" (z)e

Xq" (z'), (A3)

—qaN

4'(k)P(k')Gs k, k' =

X(a b&e—tke bie tk'e+Ce&~k k')a)— (A4)
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bz g(q)——e '+g( q)e—q'+ag+ (q)e ',
c =g (q)+g ( —q)+ag+ (q),

a =(1-e-q'")a .

(A5}

(A6)

(A7)

(AS)

(A9)

A
M B

T

Q Bi
and M

—jb

C (A 10)

where

The ansatz (3.13} in Eq. (3.11) gives, after some algebra,
two coupled equations for A, 8~, Bz, and C:
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APPENDIX

The bulk surface parts of G(k, k') are, respectively,

G~(k)=[g (q)(e ' —e «')

1 aG b2—g—aH+ bi G—
cH —b 6

V, ( 1 -e-q'")
Lie k

4& „P(k)'—

1 —c.G+b) 8

V (1—e q'~) -+ k

11,(k} .
4&

(A 1 1)

(A12)

(A13)

where

+g ( —q)(e' —e q')j „+V(q), (Al)
The matrix M is then inverted numerically to evaluate A,
B), 82, and C.
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