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A theoretical investigation has been made of the damping constant and frequency shift of the Ra-
man mode in silicon due to cubic anharmonic interactions between nearest-neighbor atoms. The
normal-mode frequencies and eigenvectors for the harmonic crystal were calculated using a model
containing short-range forces out to fourth neighbors and long-range nonlocal dipole interactions.
The Raman-mode hnewidth and frequency shift were calculated as functions of both temperature
and frequency, and the results are compared with experimental data on the temperature depen-
dences of these quantities.

I. INTRODUCTION

In recent years, a wealth of experimental information
has been obtained on the optical modes of vibration of a
wide variety of crystals using the inelastic scattering of
light. Particularly important in pure materials are the op-
tical modes at the center of the Brillouin zone. For these
modes the line center and the linewidth of the scattered
radiation are found to vary with temperature. Such a
temperature dependence can be understood in terms of the
anharmonic character of the lattice vibrations. '

A number of experimental investigations have been
made of the temperature dependence of the light scatter-
ing spectrum of pure silicon. Hart, Aggarwal, and Lax
measured the frequency shift of the line center and the
linewidth over the temperature range from 20 to 770 K.
At temperatures above 300 K, both the frequency shift
and linewidth were found to vary linearly with the abso-
lute temperature T, a result consistent with theoretical
predictions' based on cubic anharrnonicity carried to
second order in perturbation theory. Quantitatively, the
results of Hart et al. for the frequency shift a ree fairly
well with the theoretical calculations of Cowley based on
cubic anharmonicity to second order, but their results for
the linewidth are in significant disagreement with those of
Cowley. However, the data of Hart et al. for the
linewidth can be fitted satisfactorily by the cubic anhar-
monic model of Klemens, if the zero-temperature value
of the linewidth is chosen to agree with experiment.

A more extensive experimental investigation of the tem-
perature dependence of the light scattering spectrum of
optical phonons in silicon has been carried out by Balkan-
ski, %'allis, and Haro who reported measurements over
the range 5 to 1400 K. As in the case of Hart et al. , the

data for the linewidth do not agree well with the calcula-
tions of Cowley, but can be fit by the cubic anharmonic
Klemens model at temperatures below 400 K. Above 400
K, both the frequency shift and linewidth increase more
strongly with temperature than linearly, indicating that
quartic anharmonic processes as well as higher order cu-
bic anharmonic processes must be considered. Indeed, by
extending the Klemens model to include the latter pro-
cesses, a satisfactory fit to both the frequency shift and
linewidth was achieved up to 1200 K. However, the fit
was obtained by suitably choosing certain empirical con-
stants and is therefore not the result of a proper lattice
dynamical calculation. It is the purpose of the present pa-
per to provide the latter.

Recently, Menendez and Cardona have reported addi. -

tional measurements of the linewidth and line shift in sil-
icon at temperatures up to -800 K. Their results appear
to be in substantial agreement with those of Balkanski
et al. Menendez and Cardona infer that the principal de-
cay channel at not overly high temperatures involves the
creation of LA-LO phonon pairs rather than two phonons
in the same branch as in the Klemens model. They also
infer that the discrepancies between the experimental data
and Cowley's calculations are largely due to the inadequa-
cies of the shell model used by Cowley.

As is evident from the foregoing discussion, the princi-
pal theoretical calculation that has been made to date of
the linewidth and line shift in silicon is that of Cowley. '
For the harmonic part of the lattice dynamical model,
Cowley used a shell model with parameters determined by
fitting the experimental phonon dispersion curves. For
the anharrnonic part he used a nearest-neighbor cubic
anharmonic term with two parameters that were deter-
mined by fitting thermal expansion data. The results ob-
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tained by Cowley agree reasonably well with experiment
for the line shift, but are an order of magnitude too large
for the linewidth. The source of this discrepancy may lie
in inadequacies in the harmonic model, the anharmonic
model, or other aspects of the calculation.

In the present paper we report the results of lattice
dynamical calculations of the width and shift of the opti-
cal phonon line in the light scattering spectrum of intrin-
sic silicon as functions of temperature. The harmonic
part of the lattice dynamical model includes central in-
teractions out to and including fourth neighbors, angle-
bending interactions involving pairs of nearest neighbors,
and long-range nonlocal dipole interactions of the type
discussed by Lax. The anharmonic part of the model is
restricted to cubic terms and consists of nearest-neighbor
centra1 interactions. The necessary sums over wave vector
are evaluated using 770 points in the irreducible one-
forty-eighth portion of the Brilloun zone. The results are
compared with the experimental data of Balkanski et al.
and with the theoretical results of Cowley.
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and (1',~') of a given term must be consistent with the in-
dex i .The force constant matrices for first- through
fourth-neighbor interactions have the forms

II. HARMONIC MODEL

The harmonic part of the lattice dynamical model is the
same as that employed by Wanser and Wallis in their in-
vestigation of the thermal expansion of silicon. Included
in the model are first- through fourth-neighbor central in-
teractions, angle-bending interactions, and nonlocal dipole
interactions. There are eleven parameters characterizing
these interactions. One of the parameters was eliminated
using the condition of static equilibrium. The remaining
parameters were determined by optimizing the fit to the
three elastic constants, the Raman frequency, seven nor-
mal mode frequencies at high-symmetry points on the
zone boundary and the X3 mode near the E point. De-
tails may be found in Ref. 9.

For central potential interactions of a given range, the
contribution to the harmonic potential energy can be writ-
ten as

43' ———,
' g g g(t)~p(l, a;I', ~')u~{l.,a ,1',~')up(1", 1r;1',)('),

I,]e 1',a' a, P

1 „1
2

p
y

(3)

5I

v' 5'

1 „10
14 ((3 ("3)+ 03("3)

11 r3

1 - 1
43( 3 } (('3( 3)

11 r3

5'=3v', k'=(u, '+8v',

0 0

y
(4) ()

0
p" 0
0 p"

x"=y4(r4), 1J"= y'(»4), —
r4

(2.8b)

(2.9)

(2.10a)

(2.10b)

(2.10c)

(2.11)

(2.12)

where

()I('p(l, x-, I',x') =

(2.1) where r; is the ith-neighbor distance. %e note that r& is
the fundamental cube edge.

The contribution of the angle-bending interactions to
the potential energy can be written in the form
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(t);(r) is the potential function for ith-neighbor interac-
tions, ( l,x) designates the ath atom in the 1th unit cell,

u(l, x-, 1',a') =u(l, a.) —u(1', a'),
R(l, )(';1',a') =R(l, a ) —R(l', a.'),

(2.3)

(2.4)

u{l,x.) is the displacement of atom (l,a. ) from its equilibri-
um position at R(l, a.), a and p denote Cartesian com-
ponents, and the primes denote derivatives with respect to
argument. It should be emphasized that the indices (l,a.)

l, ]c I', x' I",x"

where 6(9(l,)(;1',a';1",a") is the change in angle between
the atoms (l,a), (1',~'), and (1",~"), with (l,a) at the vertex
and (l,v), (1',v') and (1,)(),(l",~"} nearest-neighbor pairs.
The equilibrium value of the angle 8 is the tetrahedral
angle —i.e., 109.47'—and o. is the angle-bending force
constant.

It was pointed out many years ago by Lax' that long-
range interactions are necessary to give a satisfactory
description of the phonon dispersion curves of silicon. In
particular, the flat TA branch is difficult to describe
without 1ong-range forces. Of the various ways that one
can introduce long-range interactions, we have chosen
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that involving nonlocal dipole moments induced on atoms

by the displacements of neighboring atoms. ' To terms
linear in the displacements, the dipo1e moment component
induced on atom Ia can be written as

teractions were determined in the manner described in the
first paragraph of this section. The elastic constants and
Raman frequency co~ are related to the force constants by
the expressions

p (&~)= g gp p(l, a;I', ~')[up(l', ~') up—(l,~) t (2.14)

where p p(l, x-, l', a'} is an element of the nonlocal dipole
moment tensor. %e restrict ourselves to nearest-neighbor
nonlocality, and under this condition, we can write
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where p& and pq are parameters to be determined and
have the dimension of charge.

The interaction energy for a pair of dipoles can be writ-
ten as
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and certain short-range terms have been neglected. The
total dipole-dipole interaction energy is obtained by sum-
ming W(l~;I V) over all pairs of dipoles:

(2.18)

The total potential energy associated with the vibrations
of the atoms is obtained by summing the contributions
from the short-range interactions, the angle-bending in-
teractions, and the dipole-dipole interactions. From the
result,

(2.19)

we calculate the second derivatives of 4 with respect to
displacement components and obtain the elements of the
dynamical matrix from the relation

D~p(z, x';q) = g 4~p(l, x ,0,~')e"
Q & 9 ~ + l j (2.20}

where M is the atomic mass, R(l) is the position vector of
the origin of unit ce11 I, and

(2.21)

By diagonalizing the dynamical matrix, we obtain the
normal-mode frequencies co(q,j) and normal-mode eigen-
vectors e(a.;q,j}.

The force constants which characterize the various in-
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where ez is the static dielectric constant,
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TABLE I. Force constants and nonlocal dipole parameters
for the harmonic model.

a =4.7008 X 10 dyne/cm
P=3.0364X10~
p =5.4455 X 10
v=4. 7303 X 10
A, ={@—v)=7. 1520X10
0 =4.3265 X 10
p' = —2.2679 X 10
v' = —8.0545 X 10
A, '= {p'+ Sv') = —2.9122X 10
5'=3v'= —2.4164X 10
A,
"=9.9978X 10

p"= —
s (a —P+Sp —8v+11p' —11v')=2. 1190X102

Z) ——0.804905, Z2 ———0.201 226, I Z2/Zl )= —0.25
with p) ——Zle and p2 ——Z2e
e is the electron charge in CGS units

t)})'{ro)={a+2P}=1.0774X 10' dyne/cm
OI{ro} ={a—p) =1.6644X10

f'p

P2'{r2)={p+v)=1.0176X 10~

=~=7.1520X 10
r2

4 3 {r3)={@'+10v')= —3.073 X 10'
$3{r3) =(p' —v') = —2. 1873X 10'

r3

p, {a)=A,"=9.9978x 10
$4{a) =JM" =2.1190X102

It is interesting to note that the nonlocal dipole parame-
ters pi and pi do not enter into the expressions for the
elastic constants and the Raman frequency. This is in
contrast to the local quadrupole-quadrupole interactions
used by I.ax, ' where the quadrupole parameter enters
into the elastic constants and co~. The longitudinal and
transverse acoustical frequencies at the X and L points,
the longitudinal and transverse optical frequencies at the
L point, and the transverse optical frequency at the X
point were also employed in the force constant determina-
tion. The expressions for these frequencies are rather
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complicated because of the nonlocal dipole contribution
and will not be given here. They can be found in Ref. 9.
The results for the force constants and nonlocal dipole pa-
rameters taken from Ref. 9 are listed in Table I, and the
calculated phonon dispersion curves based on these values
are given in Fig. 1 together with the experimental data.
We see that the agreement between the experimental and
theoretical curves is very good. The nonlocal dipole in-
teractions play a key role in obtaining a satisfactory fit for
the transverse acoustic branches.

III. ANHARMONIC MODEL

The harmonic model employed in this work can be gen-
eralized in a straightforward fashion to include cubic
anharmonic terms. One introduces thereby a number of
cubic anharmonic force constants which must be deter-
mined by fitting experimental values of third-order elastic
constants, mode Griineisen parameters, thermal expan-
sion, and other appropriate experimental data. This pro-
cedure is complicated by the possibility of inner displace-
ments in crystals with the diamond structure. In the
present report we do not consider the entire set of cubic
anharmonic force constants associated with the first-
through fourth-neighbor central interactions, the angle-
bending interactions, and the dipole-dipole interactions.
Instead, we restrict our attention to nearest-neighbor cen-

FIG. 1. Phonon dispersion curves for silicon obtained experi-
mentally (circles) and theoretically (solid curves). The experi-
mental points are from G. Dolling, in Inelastic Scattering of
neutrons in Solids and Liquids (IAEA, Vienna, 1963), Vol. II, p.
37; G. Dolling, in Inelastic Scattering of ¹utrons, Vol. I
(IAEA, Vienna, 1965), p. 249; G. Nilsson and G. Nelin, Phys.
Rev. 8 6, 3777 (1972). The theoretical curves are calculated us-

ing the model described in the text.

tral interactions. This enables us to provide a rather
direct comparison with the work of Cowley and also, it
turns out, leads to a reasonably good value for the
linewidth.

By considering various types of elastic deformations,
one can establish relations between the third-order elastic
constants and the cubic anharrnonic force constants.
%ith nearest-neighbor central interactions, we have only
one parameter to determine, namely, P;"(ri). We have
employed an isotropic deformation in which the finite
strain tensor element ri p is specified by

iap isa—p (3.1)

The elements rl p are related to the elements e p of the
linear strain tensor by

1
'9ap= Y(eap+ep )+T g e'warp (3.2)

where

(3.3)

where we have used the Voigt notation for the elastic con-
stants. To the best of our knowledge, this relation for
(()i"(ri ) has not been previously given in the literature. It
provides a convenient way of determining P'i"(ri) from
the experimental elastic constants, since (()'i'(r i ) and Pi(r i ),
which appear in the latter, have cancelled out. Using the
experimental values of the second- and third-order elastic
constants given by McSkimm and Andreatch, "we obtain

((t'i"(r, )= —6.416X 10' dyn/cm (3.5)

This value is in reasonable agreement with that calculated
independently from mode Gruneisen parameters.

IV. FOURIER- TRANSFORMED ANHARMONIC
COEFFICIENTS

An essential ingredient of the calculation of the Raman
spectrum is the set of Fourier-transformed anharmonic
coefficients that enter into the expressions for the phonon
proper self-energy. The contribution of cubic anharmonic
terms to the potential energy of the crystal can be written
in the following form if we restrict ourselves to two-body
central interactions,

The relation of Pi"(r i ) to the second and third-order elas-
tic constants is given by

(( l (ri )=(4/~3)«111+6CI12+2C123+ 11+6C12) ~

(3.4)

g Pap&(l, tc;1', tc'')ua(l, tc;1',a')up(l, tc;1',tc')uz(l, tc;1',tt'), (4.1)

where i specifies the interaction between ith neighbors and

r'~r pry
P,'"(r) P,"(r)+ , P,'(r) —+——

r=R(1,K;1',K')

(4.2)
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As in the case of the harmonic potential energy, the indices (t,a) and (I',v') must be consistent with the index i
The Fourier-transformed anharmonic coefficients are obtained by taking the normal coordinate transformation

u~(lv) = g [fi/2NM„co(qI)]' e~(~; qj)e'q '''A~,
q~J

(4.3)

where N is the number of unit cells and A~ is the normal coordinate, and substituting it into Eq. (4.1). The result can be
written in the form

@i=X X X V(q»'q «J «q «J }~qj~q'J'~q"J"
qiJ q~J q ~J

(4.4)

V(q,j;q',j',q",j")=—„gg g g (A/2NM„)'"P'& (I,~;I', ir')
i l, rc 1',]c' a, P, y

X[(q J)~(q,j )~(q,j")] [e ( xq,j)e' q"'" 'e—(~',q,j)e'q ""'']

X [ep(~;q', j')e''i''"'" —ep(~';q', j')e''i' ""']

X [ei,(~;q",j")e'q '" e„'(ii',—q",j")e'q '""'] . (4.5)

It can be shown' that V(q, j;q',j';q",j") is proportional
to the quantity b,(q+q'+q" } where h(q) is unity if q is
zero or a vector of the reciprocal lattice and is zero other-
wise. .

In many calculations of the properties of anharmonic
crystals, it is necessary to evaluate sums over wave vector
of the Fourier transformed anharmonic coefficient (or its
magnitude squared} multiplied by various functions of
wave vector. These computations are rather complex and
are frequently simplified by approximating the quantities
V(q, j;q',j',q",j") by simpler expressions. For example,
in the Peierls approximation, ' one writes

V(q j'q' j'q" j")
=C[a)(q,jko(q', j')a)(q",j")]+'~ h(q+ q'+ q"),

(4.6}
where C is a constant. This is clearly a drastic simplifica-
tion of Eq. (4.5},and unfortunately does not give an accu-
rate picture of the dependence of the V coefficient on the
wave vector. We have avoided such approximations and
have calculated the V coefficients in accordance with Eq.
(4.5).

To illustrate the situation, we present the results for
V(O,j;q,j'; —q,j") for several cases. When the index j
refers to an optical branch (j =4,5,6), these anharmonic
coefficients are those that appear in the damping constant
and frequency shift for the Raman mode. In the first
case, we plot in Fig. 2(a) the coefficients
V(0,4;q, 3; —q, 3) and V(0, 5;q, 3;—q, 3)
= V(0, 6;q, 3;—q3) as functions of wave vectors

q=(0.5,(,g)2m/a for 0.0&(&0.5. The branch indices
j=3, 4, 5, and 6 refer to the longitudinal acoustical
branch, the two transverse optical branches, and the longi-
tudinal optical branch, respectively. We see that the Y
coefficients start from zero at (=0.0, increase until they
reach maximum values of -0.40 at (-0.375, and then
decrease rapidly. The second case concerns wave vectors
specified by q =(0.5,$,0.0)2m /a, and the results for
V(0,6;q, 3; —q, 3) are presented in Fig. 2(b). This coeffi-
cient starts from zero at /=0. 0, increases monotonically
and reaches its maximum value at /=0. 5. The coeffi-
cients V(0,4;q, 3; —q, 3) and V(0, 5;q, 3;—q, 3) are both
zero for 0.0&(&0.5 in this case. The last case corre-
sponds to q=(0.5,0.5,()2ir/a and is presented in Fig.
2(c). The coefficient V(0,6;q, 3;—q, 3) starts at its max-
imum value at (=0.0 and decreases monotonically to its
minimum value at (=0.5. The value of
V(0,4;q, 3;—q, 3)= V(0, 5;q, 3;—q, 3) starts at zero,
reaches a maximum at (-0.25 and decreases thereafter.

%hen the Peierls approximation is used to calculate the
V coefficients in the above cases, the coefficients are
found to increase monotonically with increasing g in all
three cases. The percentage increases in the coefficients
from /=0. 0 to (=0.50 are 25%, 17%, and 15%, respec-
tively. The qualitative behavior of the coefficients is
therefore rather different from that found using the exact
expressions. Furthermore, we have established that in the
case of 2LA[$00] decay, the V coefficient including terms
out to fourth-neighbor central interactions is zero for all

g, so the Peierls approximation is drastically in error in
this case.
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V. SCATTERING EFFICIENCY

In the present work, we focus on Stokes scattering by
zone-center LQ phonons in silicon. The differential
scattering efficiency for incident frequency col and scat-
tered frequency sos is given by

4 V EOg

[n (cu)+ 1]
2trIi m a MNc co{0,j)

V (arb. units)
(a)

&( I8(j,IS)
I 2

[co—Q(0,j;co)] +I (0,j;co)

(5.1)

.1 25 .250 375 5

(5.2)

where R(j,IS) is the Raman tensor, the branch index j
refers to the longitudinal optical branch, a is the lattice
constant, I. and V are the crystal thickness and volume,
respectively, co(O,j) is the zone-center I.O-phonon fre-
quency, n (co) is the thermal occupation factor given by

1

a/k T

and m is the free-electron mass.
The resonant frequency Q(0j,co) in Eq. (5.1) specifies

the line position of the scattered radiation and is given to
first approximation by

Q(0,j;co)=ru{Oj)+b(O,j;~) . (5.3)

The quantities h(0,j;co) and I (0,j;co) are proportional to
the real and imaginary parts, respectively, of the phonon
proper self-energy, P(0,i;co), as expressed by the relation'

lim P(0j;a)+i@)= —pirt[b(0 j;co)—il {0j;co)],
a~0+

V(arb. units)

.1 25 .250 .375

& (arb. units)

(b)

.5

(c)
(5.4)

where P= 1/ksT. In general, the proper self-energy at
q=O is a matrix PJJ'; however, it can be shown for silicon
that P&~' is diagonal. We shall refer to 5(O,j;co) as the
frequency shift and I (0,j;to) as the damping constant of
the mode (0,j). These quantities can be expressed as sums
of contributions arising from cubic, quartic and higher-
order terms in the anharmonic Hamiltonian. In the
present paper we restrict our attention to second-order cu-
bic anharmonic terms arising from nearest-neighbor cen-
tral interactions and corresponding to the diagram in Fig.
3(a). Second-neighbor, fourth-neighbor, and all higher-
even-neighbor central interactions do not contribute to
h(O, j;co) and I {O,j;to) for the Raman mode of silicon,
because they involve interactions between pairs of atoms
on the same sublattice. The expressions for 6(O,j;co) and
I {O,j;co) are

125 . 250 .375 .5

FIG. 2. (a) Anharmonic coefficients V(0,4;q, 3;—q, 3) and
V{0,5;q, 3; —q, 3)= V(0, 6;q, 3;—q, 3) as functions of
q={0.5,g, g)2m/a for 0.0&/&0. 5. {b) Anharmonic coefficient
V(0,6;q, 3; —q, 3) as a function of q={0.5,(,0.0)2n/a. {c)
Anharmonic coefficients V(0,4;q, 3; —q, 3)= V(0, 5;q, 3;—q, 3)
and V{0,6;q, 3; —q, 3) as functions of q={0.5,0.5,$)2n/a The.
quantity a is the edge of the fundamental cube.

g g I
v(0 j qii; —q,i» I'+ Pf ) + Pl 2 + 1

+
tf ) +Pf 2 + 1

co —~& —~2

EE )
—ll2

(5.5)

g g IV{oJ qJ' qJ )I'

X I (n i +ni+ 1)[5(co cot cop) 5(—co+c—et+co—i)]+(n i n2)[&(ai+ ~i——CO2) —&(ai —toi+to2)] I



5364 E. HARO, M. BALKANSKI, R. F. &ALLIS, AND K. H. %'ANSER 34

I (0,j;ro) as functions of frequency co and temperature T.
We first calculated 1(O,j;co) using Eq. (5.6). The sum
over q was evaluated by using 770 points in the irreduci-
ble one-forty-eighth portion of the Brillouin zone. The
necessary representation for the 5 function was chosen to
have the Gaussian form

5(ro) = lim e
0 e

L

(6.1)

FIG. 3. Feynman diagrams for second-order cubic anhar-

monic contributions to the phonon proper self-energy.

where H denotes the principal value and

ro;=ro(q, j;), i =1,2, 3,4, 5,6

ni ~ ~ / 1~2~ 3~4& 5~ 6
1

PAau,

(5.7a)

(5.7b)

There are additional contributions in principle to
b, (O,j;cu) and I'(O, j;ro) that arise from the diagram in
Fig. 3(b) and which involve the product of anharmonic
coefficients

In actual practice, e must have a finite value that is suffi-
ciently large to give a reasonable number of q points a
nontrivial weight and yet sufficiently small that the func-
tion is sharply peaked. %hen these conditions are satis-
fied, the calculated damping constant is sensibly indepen-
dent of e over a range of values of e. We found that
e=1.0 Trad/s lies in the center of such a range of values
and have accordingly used this value of e.

Of particular importance to the Raman spectrum is the
damping constant evaluated at ~=co~ where co~ is the
Raman frequency. We have carried out a calculation of
1(O,j;c0R) as a function of temperature using the pro-
cedure outlined above. Since the quantity 21 (0,j;roit) is a
first approximation to the full width at half maximum
(FWHM) of the Raman line, we have plotted the calculat-
ed values of 2I (Oj;co) versus temperature in Fig. 4 togeth-
er with the experimental values of the FWHM. We see
that the theoretical values lie roughly 30% below the ex-
perimental points at temperatures up to 500 K, but are
otherwise in good qualitative agreement with the data. At
temperatures above 500 K, the experimental values in-
crease more rapidly with increasing temperature than do
the theoretical values, which increase linearly with tem-
perature at high temperatures. Possible reasons for this
discrepancy will be discussed in the next section.

Also plotted in Fig. 4 are the calculated values of Cow-
ley. They are seen to be much too large compared to the
experimental data. It is difficult to pin down just what
the problem is with Cowley's calculations. Although the
adequacy of his harmonic model (shell model) has been

For a crystal with every atom at a center of inversion,
both factors in the above product are zero. ' Silicon has a
center of inversion midway between the two atoms of the
unit cell, but not at an atomic site itself; consequently,
neither of the two factors need be zero. One can show,
however, that the left-hand factor is zero unless the
branch indices j and ji both refer to optical branches. We
have calculated the value of this factor using our model
for all possible combinations of j and ji corresponding to
optical branches and find that it is zero even in this case.
The coefficient V(O,j;O,j, ;O,ji) is different from zero
only when j, j&, and j2 refer to three different optical
branches.

2g (cm-')

20-

15

0 p0
0
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VI. NUMERICAL CALCULATION
OF THE FREQUENCY SHIFT
AND DAMPING CONSTANT

Using our harmonic and anharmonic lattice-dynamical
model for silicon, we have made numerical calculations of
the frequency shift 6(O,j;co) and the damping constant

et~~
I I I I t I

200 400 600 800 1000 '|200 4400 T(K)

FIG. 4. Quantity 2I"(0,j;&os) versus absolute temperature as
calculated by Co~ley (solid squares) and by the present authors
(crosses). The experimental data for the full width at half-
height of the Rarnan line (Ref. 5) are represented by the open
and solid circles.
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questioned, Cowley claims that it gives "excellent" agree-
ment with the phonon dispersion curves determined by in-

elastic n.eutron scattering. His nearest-neighbor anhar-
monic model is similar to ours, but he uses the anharmon-
ic parameters of Dolling and Cowley, "determined by fit-
ting the thermal expansion. Now one can show rigorously
that the 8 parameter of Dolling and Cowley is zero for a
nearest-neighbor central potential model, in contradiction
to their result that 8 is different from zero. Furthermore,
the value of p'I'(ri) can be calculated from their A param-
eter and is found to be +3.09 X 10' dyn/cm . This result
differs in sign from our value given by Eq. (3.5). For a
typical interatomic potential, the quantity P"(r) decreases

as r increases and becomes negative as r becomes very
large. Consequently, P"'(r) is expected to be negative, in
agreement with our result. In addition, Pi" must be nega-
tive to give the correct signs to the mode Gruneisen pa-
rameters and third order elastic constants. We therefore
feel that our result is physically the more reasonable one.

The frequency dependence of the damping constant has
been calculated at various temperatures. In Fig. 5(a) we

plot the results for 10 K when the V coefficient is taken
to have the form of a constant times b,(q+qi+q2), so
that the damping constant is determined by an effective
two-phonon density of states. The peaks can be associated
with various two-phonon combinations. Thus, the broad
peak around 60 Trad/s is due to 2TA, while the highest-
frequency peak is due to LO-TA and TO-TA combina-
tions.

6(0,j;con ) =—f de'1 ",1"(O,j;cu')
Ng —N

(6.2)

When one uses the exact expression for the V coeffi-
cient, Eq. (4.5), one obtains the result shown in Fig. 5(b).
It is evident that the damping constant in the low-
frequency range is much reduced relative to its value in
the high-frequency range. This behavior can be under-
stood in terms of the factors in square brackets in Eq.
(4.5) that involve the eigenvector components. In the
low-frequency range, j' and j" refer to acoustical modes,
the eigenvector components tend to cancel in the square
bracketed factors involving j' and j", and the V-

coefficient is small. In the high-frequency range, on the
other hand, j' and j"refer to optical modes, the eigenvec-
tor components tend to reinforce each other, and the V
coefficient is large.

As the temperature is increased, the damping constant
increases at all frequencies in the two-phonon frequency
range, but the increase is more rapid in the low-frequency
region than in the high-frequency region. This behavior is
a consequence of the occupation factors ni and n2 reach-
ing their classical limits more rapidly for low frequencies
than for high frequencies.

The other quantity of interest is the frequency shift
b(0j,con}. It may be calculated in principle from the ex-
pression given by Eq. (5.5). However, we have chosen to
calculate it from the damping constant I'(0,j,co) by means
of the Kramers-Kronig relation
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The integral in Eq. (6.2) was evaluated numerically using
the calculated values of the damping constant.

There are two additional contributions to 5(o,j;~x)
that are proportional to T in the high-temperature limit.
One arises from thermal expansion and is given by'

T
b, = —3a)(0,j)y(0,j) f a(T')dT' (6.3}

where y(o,j) is the Gruneisen constant for the Raman
mode and a(T) is the coefficient of thermal expansion.
The other arises from quartic anharmonicity in first order
and is given by

~"'(O,J;~, )= g V(O,j;O,J;q„JI;—q„ji)(ni+ —')
I)l

(6.4)

T=10K
(b)

25-

50 400 150 200
ANGULAR FREQUENCY (Trad(sec)

FIG. 5 Frequency dependence at 10 K of the damping con-
stant I {0,j;co) using (a) two-phonon density of states and (b) ex-
act results for the anharmonic coefficients V(0,j;q,j&, —q, jz).

where V(o,j;O,j;qi,j, ; —qi,j, ) is a quartic anharmonic
coefficient specified by a generalization of Eq. (4.5).

We have used tabulated values of the thermal expan-
sion coefficient as a function of temperature to evaluate

for silicon. The results have been incorporated into
the calculation of the total frequency shift b, (o,j;co). We
have neglected the quartic anharmonic contribution to 6
given by Eq. (6.4). The results for the temperature depen-
dence of the frequency shift 6(o,j;co+) are presented in
Fig. 6 together with the experimental data of Balkanski
et al. We see that the decrease in b,(T)—b(O) with in-
creasing temperature as given by the theory is less than
that found experimentally, particularly at temperatures
above 500 K. %'e note that the inclusion of the thermal
expansion contribution to 6 leads to improved agreement
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6(T)-h, (O) (cm ') I (O,j;Qg )I', (Qii ) =
1

(6.5)

.II8, .0 8
Q

~ go

where Qii is the conventional center of the Raman peak
specified by

Q~ ——ro(O, j)+b, (0,j;Q„) (6.6)

and

dh(Oj;Q)
~

1 gg ( Q=Q~ (6.7)
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From our calculated values of b, (O,j;Q) we find that
6& ——0.01 at the Raman frequency, so the correction to
the linewidth specified by Eq. (6.5) is on the order of 1%.

FIG. 6. Difference of the frequency shift at temperature T
and at zero temperature versus temperature as calculated by
Cowley (solid squares) and by the present authors; both includ-

ing the thermal expansion contribution (solid triangles) and not

including this contribution (open squares). The experimental
data (Ref. 5) are represented by open and solid circles.

with experiment. However, Cowley has stated that the
quartic anharmonic contribution given by Eq. (6.4) tends
to cancel the thermal expansion contribution given by Eq.
(6.3), so the inclusion of the former would tend to reduce
the agreement of theory with experiment. It remains to be
seen whether this is in fact the case.

We have used the Kramers-Kronig relation, Eq. (6.2),
to calculate the frequency dependence of the frequency
shift at several temperatures. The results for 10 K are
plotted in Fig. 7 and show typical dispersive behavior sup-
plemented by fine structure. The frequency shift is nega-
tive at frequencies below -185 Tradls and is positive at
frequencies above this value. At higher temperatures, the
magnitude of 5(O,j;co) is larger, but the qualitative
behavior is little changed.

The frequency dependence of 5(0,j;co) leads to an addi-
tional contribution to the linewidth. To first approxima-
tion, the corrected half-width I,(Q+ ) is given by

40

20-
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40 I l l l l I l

50 100 150 200
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FIG. 7. Frequency dependence of the frequency shift
h(O, j;m) at 10 K.

VII. DISCUSSION

The temperature dependences of the damping constant
and linewidth that have been calculated and reported in
this paper are in reasonably good agreement with the ex-
perimental data and represent a significant advance over
the early results of Cowley. However, there are ways in
which our calculations can be improved. For example,
the harmonic model which we used can be improved by
the addition of quadrupole-quadrupole and quadrupole-
nonlocal dipole interactions. Alternatively, one could use
the bond-charge model' which gives a very good fit to
the experimental phonon-dispersion curves. However, the
use of the bond-charge model to investigate anharmonic
properties of silicon has not been entirely successful. '6

Our anharmonic model can be improved by including
further-neighbor central interactions, angle-bending in-
teractions, and nonlocal dipole interactions. For the case
of cubic anharmonicity, the required parameters can be
determined by fitting available values of third-order elas-
tic constants, mode Gruneisen parameters, and the
thermal expansion coefficient. Such a modification of the
anharmonic model should lead to significantly improved
agreement between theory and experiment for the tem-
perature dependence of the linewidth and line shift at
temperatures up to 500 K. For the line shift, it is also
necessary to include the quartic anharmonic term given by
Eq. (6.4).

In the temperature region above 500 K, it seems clear
that the fourth-order cubic anharmonic terms and
second-order quartic anharmonic terms must be included
in the calculation of the linewidth and line shift. Since
the cubic anharmonic coefficients can be regarded as
known, the evaluation of the fourth-order cubic contribu-
tions is straightforward, but laborious. The evaluation of
the quartic anharmonic coupling constants is complicated
by the incomplete availability of values for fourth-order
elastic constants and higher-order mode Gruneisen pa-
rameters. Recourse can be made to quantities such as the
heat of sublimation, but more experimental information is
needed to pin down all the fourth-order force constants.
Another possibility is to use ab initio calculated values of
the fourth-order coupling constants similar to those which
have been calculated for diamond. '

Another mechanism which can contribute to the
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linewidth and line shift, particularly in the high-

temperature region, are the interactions of electrons and
holes with optical phonons. The thermal production of
electron-hole pairs increases rapidly with increasing tem-
perature and may lead to significant contributions to the
linewidth and line shift.
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