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New technique in the calculation of defects in solids by molecular methods:
Pure and Cu-doped Zns
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%e present a modification in the molecular-cluster methods for the calculation of defects in

solids. The modification introduces a common energy reference for the perfect-cluster and defect-

cluster calculations. Thus it is possible to compare the eigenvalues coming from the two calcula-

tions. Once this possibility is open, we discuss the applicability of the Koopmans theorem or of the

transition state in the interpretation of the calculated results. %e use one or the other, depending on

the bandwidth, the self-energy, and the cluster size. The whole procedure is applied to pure ZnS and

ZnS:Cu with very satisfactory results.

I. INTRODUCTION

The calculation of the electronic structure of a defect in
a semiconductor is frequently made by the many versions
of the Green-function method. ' One obtains precise
determinations of the density of states, transition energies,
charge state as a function of the Fermi energy, etc A.
simpler method of calculation, also much used because of
its greater speed and conceptual simplicity, consists of cal-
culating the defect and its crystal environment as a big
isolated molecule. Though these molecular methods
are arbitrary in the definition of the boundary conditions
at the most external atoms of the cluster, one can mini-
mize their bad effrets with some art and increasing cluster
size. Aside from these intrinsic errors, the molecular
methods have also suffered from two shortcomings: a
doubtful use of the Koopmans theorem giving the mean-
ing of the molecular one-electron energy eigenvalues, and
the lack of a common energy reference for the molecular
pure crystal and defect calculations. Lacking this com-
mon energy reference, it is impossible in these calculations
to choose among the many possible charge states of the
defect. For instance, the substitutional Cu atom in ZnS
might be Cu+ or Cu +, and in the molecular calculations
one would be unable to decide.

It is the purpose of this paper to present a modification
of the molecular method which might overcome the latter
two shortcomings. We start from the "crystalline cluster"
method of Brescansin and Ferreira (BF) used to calculate
the energy bands of pure NaC1 by molecular methods. A
self-consistent calculation consists of the solution of the
Schrodinger equation for the many eigenstates and the
Poisson equation for the potential. In the Brescansin and
Ferreira paper, while the Schrodinger equation is solved in
the molecular cluster of atoms, the Poisson equation is
solved in the infinite periodic crystal. In a molecule,
atoms of the same species are not equivalent if they are

differently placed with respect to the molecular center.
Thus consider the case of ZnS and the cluster ZnS4Zn, 2 of
one central Zn, a tetrahedral shell of four S atoms and the
12 nearest Zn atoms of a face-centered-cubic lattice. If
the Poisson equation were solved in the molecule, the po-
tential of the central Zn atom would turn out to be very
different from the potential of the external Zn atoms.
Thus one would obtain two sets of Zn energy bands, com-
plicating any possible interpretation. The BF scheme
overcomes this difficulty.

Our calculations on the Cu substitutional in ZnS used
the cellular method. In an ionic crystal such as ZnS or
NaCl, the use of the cellular method, instead of the
multiple-scattering method, is expected to be of no conse-
quence because the electronic charge stays mostly in the
inscribed spheres, and muffr'n-tin errors are small. In
what follows, we review the BF scheme, adapt it to de-
fects, discuss the Koopmans theorem as applied to solids
and defects, and present and discuss our calculated re-
sults.

OCCUP
av

II. THE BF SCHEME

The Brescansin and Ferreira scheme, to calculate the
pure crystal bands through a calculation in a molecule,
consists of solving the Poisson equation in an infinite
periodic crystal. One elects, in the molecule, representa-
tives of the atoms of the infinite crystal For insta. nce, in
the molecule ZnS&Znl2 the central Zn is elected represen-
tative of the Zn atoms of the crystal, while one of the four
S is elected representative of the S atoms. After solving
the Schrodinger equation in the molecule, one finds the
spherically averaged (denoted by subscript "av") number
density

n(r}= g g;(r)*g;(r)
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inside the representative Zn and S atoms, and repeats
these number densities in the whole infinite crystal. In
the intersphere region of the crystal the number density is
made constant, with a value that neutralizes the charge of
the spheres. Then the Poisson equation is solved in the
crystal, using standard Ewald methods. The crystal po-
tential is then put in the muffin-tin format. After these
procedures, one uses the crystal potential in the molecule,
but shifts so that the intersphere potential becomes a con-
stant of values 1—2 Ry. The potential in the outer region
of the molecule, that is the region outside a sphere cir-
cumscribing the molecule, is made equal to

V(r) =C"Ro/r,

where C" is the intersphere potential and Ro is the cir-
cumscribed sphere radius.

After completing the calculation for the pure crystal
one begins the self-consistent calculation for the defect.
At each iteration, the potential is calculated as

n (r)n (r')
S.= Jd'r jd'r (6)

/r —r'/

may be named as the self-energy of electron tx, due to the
special form of its first term. The second term in Eq. (6)
comes from the exchange-correlation functional E„, and
has the expression

r r'n r', n r . 7
5n r5n r'

It has been a long-established fact by all workers in

atomic and molecular calculations that the eigenvalue e

is a very linear function of the occupation f . Thus the

self-energy S does not depend much on f and we are
permitted to write

E(f.) =E(O)+e.(0)f.+S+.'
and

V(r) = VDM —VPM+ V.~.t.t (2)
E(1)—E(0)=e (0)+S (9a)

where V,~„» is the self-consistent potential of the crystal
calculation; VPM (PM is pure molecule) is the potential
one obtains solving the Poisson equation in the molecule,
and not in the crystal; and VDM (DM is defect molecule)
is a molecular potential for the molecule containing the
defect and its environment. To exemplify, V«st» is the
potential of the infinite ZnS crystal, but modified accord-
ing to the BF scheme. VPM is the potential of the mole-
cule ZnS4Zn, 2. VDM is the potential of the molecule

CuS&Zn& &.

Equation (2) is easy to interpret as expressing the per-
turbation of the def'ect by a difference of molecular poten-
tials, defect minus pure, being applied to the crystal po-
tential. V,~„» is taken as the muffin-tin. During the
self-consistent calculation of the defect, the potential

t(r) V ry t i VpM (3)

III. KOOPMANS THEOREM VERSUS
TRANSITION STATE

For a bound state n, ihe energy eigenvalue c. is inter-
preted by means of the equation

relating the derivative of the total energy E with respect
to the occupation number f~. From first-order perturba-
tion theory, it is a simple matter to prove that

is maintained fixed as an added external potential, while

VDM varies from one iteration to the following.
The advantage of the present procedure is obvious. One

maintains in V,~„» the reference for the energy eigen-
values of the defect calculation. Thus the eigenvalues of
the defect and the "perfect" crystal can be directly com-
pared.

=s (-,')
= —,[e (0)+e (1)] .

(9b)

(9c)

Equations (9b) and (9c) are to be used in the comparison
of the calculated energy eigenvalues with the results of op-
tical absorption or emission experiments when the occupa-
tion of some states change by one unit.

The first important case to be considered is that of a
Bloch state that spreads through the whole volume. Then
the number density tends to zero, the self-energy is null,
and, according to Eq. (9a), the eigenvalue coincides with
the total energy difference. In this case we are in the full
Koopmans regime, which is expected whenever we deal
with Bloch states of broad bands such as the conduction
band and highest valence bands. On the other hand, when
we are dealing with localized defect eigenstates or deep
and narrow valence bands, the electron that is added or re-
moved does not spread in the whole bulk but remains con-
fined to a few atoms. In this case, comparison with ex-
periment has to be made by means of Eq. (9b) or (9c).

The distinction between the two cases (Koopmans vs
transition state) is not straightforward. First consider a
pure crystal, where we prepare a hole with a localized
wave function, by combination of Bloch states of a single
band. If the hole self-energy is large and the bandwidth
small, the energy of the hole excitation will be outside the
energy band. Thus this hole will not be scattered into the
band continuum, and it is a truly measurable excitation of
the crystal, provided its energy has been minimized. ' On
the other hand, if the self-energy is small and the band-
width large, the localized excitation is meaningless be-
cause its energy falls within the band continuum, where it
is scattered. Thus the use of the Koopmans theorem (no
self-energy) or the transition state in interpreting the cal-
culated results depends on the relative values of the self-
energy and the bandwidth. To complicate matters fur-
ther, we add that, from a cluster calculation, one cannot
know the bandwidths, unless one uses very large clusters.
Barring these enormous clusters, one must decide on the
use of Koopmans or of the transition state, by recurring
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to the complementary information of an infinite crystal
band-structure calculation. Thus the infinite crystal and
the cluster calculations are complementary, in that froin
the former we determine the bandwidths and in the latter
we define the localized excitations.

Consider now the case of an impurity creating a local-
ized state in the band gap. Though localized, it is possible
that the impurity wave function extends through many
atoms' well beyond the cluster size. Due to its large ex-
tent, one knows that the self-energy is small [see Eqs. (6)
and (7)]. In a small cluster calculation, it is possible that
this self-energy turns out to be large, because one is artifi-
cially concentrating the wave function in the small space.
Thus one must recognize that small clusters are inade-
quate to calculate small self-energies, therefore to calcu-
late the stability limits of the many charge states of such
impurity. In this circumstance, the best we can do with a
small cluster is to interpret the impurity eigenvalue as the
center of gravity of the energies for the addition and the
removal of one electron,

ijE Zn 4s ////////

FIG. 1. Schematic representation of ZnS band structure.
Hybridization of the Zn 3d and S 3p states controls the relative
position of the S and Zn bands.

E(1)+E ( —1 ) —2E (0)=2e (0), (10)

in accordance with Eq. (8).

IV. RESULTS AND DISCUSSION

The band structure of ZnS is represented in Fig. 1. The
conduction band is mainly a Zn 4s band, while the
valence bands are S 3s, Zn 3d, and S 3p bands. The rela-
tive position of the Zn bands with respect to the S bands
is controlled by a feedback mechanism. If the Zn 3d
bands are raised, the mixing with the S 3p states increases
and the Zn atoms lose electronic charge. This makes the
potential in the Zn spheres more negative, which brings
the Zn 3d bands down.

We made calculations on molecular clusters of 17
atoms, ZnS4Zn&z and CuSqZni2, and on clusters of five
atoms, SZn4. The five-atom cluster SZn& has eight
valence electrons in S and ten d electrons at each Zn, a to-
tal of 48 valence electrons. The 17-atom cluster ZnS4Zniz
has eight valence electrons at each S and ten at each Zn,
totaling 162 valence electrons. In the small five-atom
cluster SZn&, each Zn has just one S neighbor. In this case
the hybridization mechanism of controlling the position
of the Zn bands is inefficient. Thus we had to populate
the Zn 3d states with only 9.4 electrons, instead of 10, to
maintain these bands between S 3s and S 3p. Thus the
position of the Zn 3d bands in this case is quite arbitrary

and non-self-consistent. The geometric parameters of the
cellular calculation are in Table I.

The clusters that were calculated are described in Table
II. Clusters 1 and 4 are representations of pure ZnS.
Cluster 2 is a modification of cluster 1 by removing a half
electron from the central Zn 3d state. As said before, this
removal has to be treated as a defect of the crystal and
Eq. (2) used accordingly. Cluster 3 refers to a Cu accep-
tor. Cluster 5 is similar to the "pure" cluster 4 but has a
half electron removed from the S 3s bands.

Our results for the many possible optical transitions
(OT) are in Table III. The first OT is the band gap,
which corresponds to a configuration change where the
highest valence state loses one electron and the lowest
conduction state gains one. According to the band-
structure calculations, ' these bands have large band-
widths, and we must use the Koopmans theorem. This
OT is then calculated as the difference

E '((u, c )~(u ',c'))=s, (1)—s„(1)

between the eigenvalues for the conduction state (3a
& ) and

the highest valence state (3t2) in cluster 1. The calculated
result 4.46 eV is somewhat larger than experiment (3.91
eV). It had to be so because the conduction band is broad,
and its cluster sampling by a single energy must be above
the band minimum.

OT2 refers to the position of the Zn 3d band with

TABLE I. Cell parameters of the calculations. Point r belongs to cell i, centered at a;, if y;(r —a; } —y;8; =minimum. Cubic lat-
tice parameter=10. 21644 a.u. Exchange-correlation of Gunnarsson and Lundqvist (Ref. 11) without spin polarization.

R; (a.u. ) 1.9878

SZn4

Zn

2.43604

Outer

6.85988

Zn or Cu

2.43604 1.9878 2.43604

ZnS4Zn~2 and CuS4Zn~2
Zn

S ext Outer

9.6602

—0.5
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TABLE II. Clusters that were calculated and their configuration.

Configuration

Cluster Formula

S 3s
Valence Band

3d
Valence Band

S 3p
Valence Band

Zn4s

Conduction Band

ZnS4Zn&2

ZnS4Zn12

CuS4Zn~2

SZn4

SZn4

la 1 lt2
la 1 lt2

la11t2
la1

1.5a1

10 120d intdext
9.5 120d intdext
120 10

dZn deu

d 37.6

d 37.6

2a 1t12t2e 3t2

2a 1t12t2e 3t2

2a 1t12t2e 3t2
t6

t6

3a',

2a',

respect to the highest valence state. In this case, the cal-
culated bandwidth of the d bands, ' less than 1.0 eV, is
smaller than the self-energy, which is equal to the eigen-
value difference between cluster 1 and 2,

ed (1)—sq (2)=1.90 eV . (12)

Thus we must use the transition state for the d band, and
calculate this OT as

Eo 2((d „„u ')~(d;„„u ))=s„(1)—sd, (2) . (13)

OT3 refers to the substitutional Cu. In order to com-
pare calculated results with experiment, one must decide
whether to use Koopmans or the transition state for the
impurity states. As said in the preceding section, a de-
cision in favor of the transition state can only be made if
the impurity wave function can be wholly contained in
our 17 atoms cluster. Since we have no information on
the spread of these wave functions, we decided to try the
transition state. Thus we also made calculations on clus-
ters like 3, but with plus and minus 0.5 electrons in the
state 3tz. From these calculations we obtained self-
energies that were much too large to permit the Cu im-
purity having different stable charge states. Thus we con-
cluded that our 17-atom cluster was too small to contain

E ((e,3ti)~(e', 3t2))=e3,,(3)—e, (3) . (14)

Our interpretation of the 0.77 eV line coincides with
that of Refs. 4 and 19, in that these states are mostly
reconstructions of the top S 3p valence states, instead of
the much lower Cu 3d states. The latter interpretation
follows from the calculation of Gemma, which presents a
poorer fit to experiment.

OT5 is the creation of a hole in the S 3s band. Band-
structure calculations give a S 3s bandwidth of about 1.2
eV, much smaller than our calculated self-energy

et, , (4)—si, , (5)=3.1 eV . (15)

Thus we must calculate the energy of this OT using the
transition state for the lower band, as explained in Table
III. %e may note in passing that, though the transition-
state energy can be calculated in the central-8 cluster 4, it
cannot be calculated in the central-Zn cluster 1. On the

the impurity wave functions, and had to be satisfied with
tabulating just the Koopmans result as the center of gravi-
ty of the stability limits.

OT4 is the excitation of the Cu impurity by promoting
an electron from e to 3tz,

TABLE III. Calculated results for the energies of optical transitions.

Optical Transition (OT)

2.
3.

Band gap
Position of Zn d band
Occupation or depletion
of Cu acceptor

Excitation of Cu
acceptor

S. Position of S 3s band

Change in Configuration

(3t2, U )~(3t2, U ')

( e, 3t 2 )~(e,3t 2 )

(1a l, u ')~(1a l, u )

Energy

c,(1)—c„(1)
~.(1)—~d;.{2)
~3t, (3)—&,(1)

~3,,(3)—,(3)

z„(4)—cl, (5)

Calculated (eU)

4.46
7.55
2.28

center of gravity
0.71

Experiment (eV)

3.91'

1.25' —1.44

threshold
0.77'

13.5

'Reference 12.
Reference 13.

'Reference 14.
Reference 15.

'Reference 16.
Reference 17.
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other hand, the Koopmans eigenvalue differences of the
two clusters can be compared

e,,(4)—e&, , (4)=11.00 eV=es, (1)—ei, , (1)

and do not differ by more than 0.01 eV. Thus, despite the
fact that cluster 4 is very small, it seems to give reliable
results for the S bands.

V. SUMMARY

Despite the fact that the Green-function methods for
the calculation of impurity states in solids are more pre-
cise, the molecular methods are very attractive because of
superior computational speed and conceptual simplicity.
The molecular methods suffer from a built-in error com-
ing from the arbitrariness of the boundary conditions at
the cluster surface. Aside from this handicap, which can
be minimized by art and larger clusters, these methods
have suffered from the lack of a common energy reference
for the perfect crystal and defect cluster calculations.
Lacking this energy reference, the defect cluster eigen-
values, and their location with respect to the crystal
bands, become largely a matter of free interpretation. In
particular, one is never sure on what to use, the Koop-
mans theorem or the transition state, in the interpretation
of the calculated energies.

» this paper we present an improvement of the molec-

ular method by introducing a single energy reference to
the pure and defect cluster calculations. This is attained
by solving the Poisson equation in the perfect infinite
crystal (not in the cluster), and by dealing with the defect
as a perturbation on the crystal potential. The procedure
requires a muffin-tin definition of the infinitely extended
crystal potential, which is an extra source of error, but is
small when one deals with ionic crystals. Having a com-
mon energy reference, one is now able to discuss the appli-
cability of the Koopmans theorem or of the transition
state. %e show that one should use one or the other de-
pending on the bandwidth, the self-energy, and the cluster
size. In some cases, a decision on the Koopmans theorem
or the transition state, may depend on the information ob-
tained from an infinite crystal band-structure calculation.

The procedure was applied to ZnS and ZnS:Cu, using
small clusters of five and 17 atoms. The calculated results
present a very good consistency with known experimental
facts, but we were unable to determine the stability limits
of the many charge states of Cu, probably due to an insuf-
ficient cluster size.
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