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Plasmons in aperiodic structures

Sankar Das Sarma, Akiko Kobayashi, and Richard E. Prange
Department ofPhysics and Astronomy, Uniuersity ofMaryland, College Park, Maryland 20742

(Received 12 May 1986; revised manuscript received 16 June 1986)

%e study and compare plasmon spectra in semiconductor superlattices with periodic, quasiperiod-
ic (e.g., Fibonacci sequence), and random spacings. Novel mode structures are found in the quasi-
periodic cases, particularly for low values of level broadening that arises from inherent disorder ef-
fects. %'e discuss critically the observability of this novel mode structure via light scattering studies
in experimentally realizable superlattices. In addition, our results suggest that the finite Fibonacci-
sequence superlattice may be considered as a partially ordered-layer lattice with no long-range posi-
tional order, but with strong short-range order, since our calculated plasmon spectra exhibit very lit-

tle difference between the finite Fibonacci sequence and the periodic abaab superlattice.

Plasmons in semiconductor superlattices have attracted
great theoretical' and experimental attention recent-
ly. ' Part of the reason' for this interest is the possibility
of studying collective modes in reduced dimensionality
and comparing experimentally observed plasmon disper-
sion relation (and spa:tral weight) with many-body
theoretical linear-response calculations. ' There is also
great interest in the prediction (and, hopefully, eventual
observation) of novel collective modes in artificially struc-
tured superlattices which are not found in bulk systems.
Thus, discrete plasmons, '" surface and edge plasmons,
and localized and critical plasmon modes have been
predicted in various superlattice structures. Discrete
plasmons in a finite-layered structure have recently been
observed by two different groups in Raman scattering
measurements. It is expected that with the advance in
materials preparation and fabrication techniques, many
more such studies will appear.

In our earlier paper, we pointed out that artificially
structured random and incommensurate superlattices are
ideal candidates for studying localization effects in one-
dimensional systems via Raman scattering studies of their
collective mode spectra. %'e showed that Raman scatter-
ing directly measures the local plasmon ("one-particle" )

density of states in k space, and that the plasmon problem
in a random or an incommensurate superlattice is formal-
ly equivalent to the Anderson or the Aubry model of lo-
calization, respectively. We proposed specific experiments
to be carried out on artificial periodic structures where the
layer electron density varies in a random or quasiperiodic
fashion, and predicted that distinct localization effcx;ts
wi11 show up in such light scattering experiments. Experi-
mentally, an easier system to fabricate is a structure where
the layers themselves are placed in random or quasi-
periodic positions along the superlattice growth axis {tak-
en to be the z axis). In fact, a quasiperiodic GaAs-AlAs
superlattice in which the layers are placed in a Fibonacci
sequence has recently been constructed by Merlin et al. '

In this paper, we study the collective modes in such
aperiodic structures and discuss to what extent any of the
novel and rich physics predicted' for quasiperiodic one-
dimensional systems (e.g., Cantor set spectrum, existence

of extended, localized, and singular continuous states) will
be manifested in the actual experimental system Sinc. e
the basic mapping of the plasmon problem into the
equivalent Anderson Hamiltonian has already been ex-
plained in our earlier paper, we shall concentrate in this
paper on the question of physical resolution limitations
arising from the damping (and the consequent broaden-
ing) of the plasmons, which imposes severe restrictions on
the observability of novel "quasiperiodic physics" in such
Fibonacci-sequence superlattices. Our finding is that one
must have low values of broadening to see a distinct
difference between the plasmon spectra in a Fibonacci su-
perlattice and in a periodic superlattice via direct
frequency-scan Raman measurement. (Raman spectrum
obtained in k space is much more useful for this pur-
pose. ) Although systematic studies of plasmon modes in
a wide class of superlattices including random, periodic,
and quasiperiodic structures of different sorts will clearly
show signatures of novel quasiperiodic physics (as we dis-
cuss below), a quantitative study of the Cantor set spec-
trum and scaling behavior' seems unlikely due to finite-
size effects and the disorder-induced resolution limitations
inherent in semiconductor superlattices.

In many ways our current study of plasm ons in
aperiodic structures is complementary to our earlier
work, where the case of a continuous incommensurate or
random modulation of electron density in equally spaced
layers was considered. In the present calculation we keep
the electron density constant in all layers, whereas the
layers themselves are placed in some aperiodic fashion.
%e should emphasize that randomness or quasiperiodicity
enters into the formalism differently in these two situa-
tions: in the present case aperiodicity enters through an
exponential since the layer separation only affects the in-
terlayer Coulomb interaction, whereas in our earlier work
randomness or incommensuration entered through the
electron density which appears algebraically in the elec-
tronic polarizability function of the layered system. ' The
motivation for the current analysis stems from (i) the ac-
tual fabrication of a Fibonacci superlattice as reported in
Ref. 12 and (ii) the fact that aperiodic multilayer struc-
tures based on random or quasiperiodic positioning of in-
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dividual layers (with constant electron density) are
perhaps easier to make than structures with the artificially
predesigned electron-density modulation which we con-
sidered in Ref. 5.

Since extensive numerical studies on quasiperiodic one-
dimensional systems exist in the literature, ' we concen-
trate in this paper on the experimental observability in ac-
tual semiconductor superlattices, and consider directly the
experimentally relevant (and directly measured) Raman
scattering intensity (which is also the local plasmon densi-

ty of states in k space ). The Raman intensity is related
to the dynamical structure factor of the layered electron
gas, and is proportional to

I(q, k,co}=g Im[II ' —V] '~~'exp[ik(zj —zj')],

periods a and b (=d} with the ratio a/b =(5' + 1)/2
the golden mean, and the aperiodic sequence

abagb . .. . Also shown as an inset in Fig. 2(c) is the
plasmon-dispersion relation for the Fibonacci system. In
Fig. 3 we show our results for the incommensurate 25-
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where II is the dynamic electron polarizability and
VJJ'=(2me /eq)exp( —q ~

zi —z~'
~

) is the Coulomb in-
teraction between electrons in layers j and j' (with e as the
average background dielectric constant). We take zj to be
the position of the jth layer, and (q, k, co) is the
wavenumber-frequency difference of incident and outgo-
ing photons with q as the conserved wave vector in the
x-y plane and k as the charge in the photon's wave vector
in the z direction. We assume all the layers have the same
electron density, nJ =No, whereas their positions zJ could
be random, quasiperiodic, or periodic. (In our earlier
analysis, we took zi to be periodic and n~ as aperiodic. '

)

Given a choice for zj, one can readily calculate the Ra-
man intensity, I(q, k, ra) of Eq. (1). We take the total
number of layers to be 25 in this paper, except for the Fi-
bonacci system which has 34 layers. (This choice is
motivated by the actual systems of Refs. 6—9. ) One can,
of course, study much larger systems numerically, and we
have done so. However, these studies are of no experi-
mental relevance since light can penetrate only a finite
number of layers (usually of the order of ten layers} due to
extinction effect. For the sake of comparison, we have
also shown the infinite periodic superlattice case in Fig. l.
In Figs. 2—5 we show our calculated Roman intensity
for different models of zJ and for three different values of
the broadening (I ) in each case. In an ideal system, the
broadening arises from finite-size effects which one can
study systematically by using a finite-size scaling analysis.
In systems of our interest, 6 9'z the main contribution to
broadening is the inherent disorder effect always present
in semiconductor superlattices. Thus the spectral peaks of
Eq. (1), instead of being S-function-like, broaden out into
bands and the broadening enters the theory via the
dynamic polarizability, II in Eq. (1), which we calculate in
a Mermin-type' generalization of the two-dimensional
Stern's formula. ' The broadening parameter I sets the
hmit for the ultimate resolution with which the discrete
spectrum of Eq. (1) can be resolved. Thus I is the critical
parameter determining the resolution of the C;intor-set
spectrum. We discuss the origin of I later in the paper.
In Fig. 1 we show our calculated Raman intensity for the
periodic system, zj =jd where d is the period, for both the
infinite system' and the finite 25-layer system. In Fig. 2
we show our calculated Ram an intensity for the
Fibonacci-sequence superlattice' which has fundamental
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FIG. 1. The Raman intensity I(q, k, cg) as a function of fre-
quency u (for fixed qd =0.43 and kd =4.94) for the finite 25-
layer (solid line) and the infinite (dotted line) periodic systems
for three values of broadening paraineter I: (a) 0.02, {b) 0.2,
and (c) 0.7 meV.
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layer structure with zj =d j I+0.25[cos(j)+cos(rj)]I. In
Fig. 4 we show our results for the random superlattice
with zJ =d(1+RJ), where RJ is a random number be-
tween 0.5 and —0.5. We show results for three different
values of I: (a) 0.02, (b) 0.2, and (c) 0.7 meV. (These
values are chosen to range from far too optimistic
through reahstlc to rather pesslmlstlc situations. ) The m-

tensity in all figures is depicted on the same absolute units

so that a comparison between them is meaningful. The
length scale (or the average period) of the superlattices is
chosen to be d =890 A, and we take Xo ——7.3 X 10"cm
with qd =0.43 and kd =4.94. These parameters are fair-
ly typical for superlattice plasmon experiments and are
taken from Ref. 6. (Typically qd varies between 0.1 and
1.5 whereas kd could vary between 3 and 7.) Qualitative
features of our results are independent of any specific
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FIG. 2. The Raman intensity I(q, k, co) as a function of fre-
quency u for the 34-layer Fibonacci-sequence superlattice for
the same values of the paralgeters (q, k, and I ) as in Fig. 1.
Also shown as an inset in (c) is the plasmon dispersion relation.

FIG. 3. The Raman intensity I(q, k, cu) as a function of fre-
quency e for the 25-layer quasiperiodic cosine superlattiee sys-
tem with the same values of parameters as in Figs. 1 and 2.
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choice of these parameters, provided the parameters are in
the experimenta11y accessible range. It should be men-
tlollcd hclc that ollI' 1111111crlcal lcslllt fol thc pcrlodlc sys-
tem (Fig. 1) with I =0.7 meV is in good agreement
(within 5%) with the measurlxi Raman scattering spec-
trum.

From Figs. l —4, we conclude that even though the
plasmon spectra in the pure case (I =0) are fundamental-
ly different in the periodic and the aperiodic structures,
the presence of a finite damping effect substantially

reduces the resolution so that the Cantor-set spectrum of
plasmons in Fibonacci structures is, in general, not ob-
servable in real systems. Theoretically, the plasmon
modes in the idealized periodic case are extended, the ran-
dom situation is localized (the localization 1ength, howev-

66
J;(a)

40—

40

50—

IO—

IO— '0 i i&LL IIi
2 4 6

(u (meV)

L

IO

0
0 2 4 6

m (meV)
8 IO I2.0

(b)

IO.O— 6.0—

5.0—

5.0—

0.00 4 6
&u (meV)

IO

0.0
0

4.0
(c)

&u (meV)

IO

6.0
I

(c)
2.0—3

4.0
I.O

2.0 0.0
4 6

(u (meV)

Io

0,0
4 6

~(meV)
IO

FIG. 4. The Raman intensity I(q, k,~}as a function of fre-
quency co for the random 25-layer superlattice system with the
same values of parameters as in Figs. 1, 2, and 3.

FIG. S. The Raman intensity I(q, k, ~) as a function of fre-
quency co for the periodic abaab superlattice (see text) with the
same values of parameters as in Figs. 1—4. The number of
layers chosen for this case is 34, instead of 35, to compare the
results with those of the Fibonacci-sequence superlattice (Fig. 2).
%'e have found very little difference in spectra between the 34-
layer and 35-layer abaab superlattices.
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er, depends on which eigenstate one is looking at, and
could be larger than the system size), whereas the quasi-
periodic case is intermediate. In the ideal infinite situa-
tion, all the modes of the Fibonacci sequence are singular
continuous (neither localized nor extended), whereas our
model aperiodic system (Fig. 3) allows for point (local-
ized), continuous (extended), and singular continuous
(critical) solutions depending on the specific eigenmode
one is considering. The experimental difference, on the
other hand, is crucially dependent on the magnitude of I
and can only be resolved uniquely if one obtains the spec-
trum in k space as we have emphasized earlier. 5 We
point out the fact that the finite-damping effect and the
finite number of layers participating in the light scattering
experiments inherently limit the resolution of the plasmon
spectra. However, as is obvious from our results, in rela-
tively clean systems (small I'} one can observe fundamen-
tal differences in the plasmon sptx:tra between the periodic
system (Fig. 1) and the aperiodic systems (Figs. 2—4) on
the one hand, and, between the random (Fig. 4) and quasi-
periodic situations (Figs. 2 and 3) on the other hand. This
is particularly true at low values of level broadening.

Before concluding, we would like to provide some
understanding of the Fibonacci spectra shown in Fig. 2.
Our 34-layer Fibonacci sequence looks like

~

abaab
~

abaab
~

aab [ abaab
~

abaab
~

aab
~

abaab
~

aab ~,
0

where b =890 A ( = d) and a =rb. A close inspection of
this structure reveals that it can be considered to be a
one-dimensional periodic lattice of the unit abaab with
randomly placed substitutional defects of the form aab.
Motivated by this observation we provide in Fig. 5 the
Raman scattering spectra of a periodic abaab superlattice
with I" equal to (a) 0.02; (b) 0.2; and (c) 0.7 meV. We also
give the corresponding plasmon dispersion relation as an
inset in Fig. 5(c). Values of all the parameters are the
same as those used in Figs. 1—4. A comparison of Figs. 2
and 5 clearly shows that the short-range correlation ef-
fects arising from abaab units dominate the quasiperiodic
spectra, since Figs. 2(a), 2(b), and 2(c) look very similar
(even quantitatively) to Figs. 5(a), 5(b), and 5(c), respec-
tively. This is particularly true for higher values I ( & 0.2
meV). Thus it is suggestive to think of the Fibonacci su-
perlattice as a partially ordered layer lattice with no long-

range positional order, but with strong short-range order
which dominates the plasmon structure.

In conclusion, it is thus clear that one wants to make
structures with very small I to be able to see distinct ef-
fects on plasmons due to aperiodic structures. There are a
number of factors contributing to I=impurity scattering,
variation in the electron density, fluctuation in the layer
size, and photon-decay effects being the important ones at
low temperatures. Even if one can completely eliminate
charged-impurity scattering effects, ' variations in the
electron density and well size from layer to layer make I
greater than 0.05 meV. If, in addition, one takes into ac-
count photon-extinction effects it is unlikely to have a
situation with I less than 0.1 ineV (I —=0.2—0.7 meV is
more realistic}. Given these resolution restrictions, we
propose experiments with high Xo and d (to minimize
density and size-fluctuation effects) at high values of q to
observe aperiodic effects in superlattice plasmons. We
emphasize that a Raman scattering experiment will show
differences between the plasmon spectra in periodic and
aperiodic structures (as is clear from Figs. 1—5), but the
interpretation of such spectra in terms of the physics of
quasiperiodic systems will be difficult in view of broaden-
ing and finite-size effects. One can, of course, directly
compare our theoretical spectra with the experimental
ones, and obtain an empirical value for I . (This is partic-
ularly true for aperiodic systems where the mode structure
is very sensitive to small changes in I provided it is not
too large. ) Although it is possible to see some aspects of
the mode structure from frequency-scan experiments
(Figs. 1—5), a much better experiment is to obtain the Ra-
man spectra in k space (for fixed ro) where incommen-
suration effects show up more prominently as has been
emphasized in our earlier paper. That, however, is more
difficult from an experimental viewpoint. We hope that
our work will motivate experimentalists to look for the
specific effects predicted in this paper.
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