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Illustration of the linear-muffin-tin-orbital tight-binding representation:
Compact orbitals and charge density in Si
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Plots of the tight-binding {TB)orbitals recently derived by exact transformation of the conven-
tional set of linear muffin-tin orbitals {LMTOs) are presented for crystalline silicon. The TB-
LMTO's are found to be extremely compact. As a simple application we show how non-

spherically-averaged charge densities may be obtained from standard LMTO calculations. For sil-

icon this charge density is found to be in excellent agreement with the one obtained from a linear
augmented plane-wave full-potential calculation. This is true even when the LMTO calculation em-

ploys the atomic-sphere approximation for the one-electron potential. A self-contained account of
the TB-MTO formalism is presented and a simple way of including the quadratic energy dependence
of the MTO's is derived.

I. INTRODUCTION

Muffin-tin orbitals' (MTO's} constitute a popular
and efficient basis set for first-principles electronic-
structure calculations in solids. ' Its advantages are the
following: (i) It is applicable to materials composed of
atoms from any part of the Periodic Table. (ii) It is
minimal in the sense that, per site, only one s orbital,
three p orbitals, possibly five d orbitals and, for f-band
materials, seven f orbitals are needed. (iii) Its energy
dependence may be retained in Green's-function calcula-
tions and neglected in band-structure calculations. The
energy-independent set, the linear MTO's (LMTO's),
is correct to first order in energy [i.e., ~

X(s) )
=

~
X(e,)) +

~
X(e„))(s—e„)i/2+,with no first-order

term, with
~

X(e) ) being the MTO and
~
X(s„)) being the

LMTO]. (iv) The set is complete for the muffin-tin po-
tential used for its generation but is not restricted to treat-
ing muffin-tin potentials. (v) The MTO's may be expand-
ed about other sites in terms of numerical, radial func-
tions, spherical harmonics and canonical structure con-
stants. This, together with the atomic-sphere approxima-
tion (ASA) according to which the MT spheres or the
Wigner-Seitz (WS) cells are substituted by overlapping
"space-filling" WS spheres, leads to a factorization of the
matrix elements of nearly any operator into products of
structure constants and radial integrals. The ASA has
proved a convenient starting point for simplified, analyti-
cal theories of the electronic structure, magnetism, total-
energy differences, etc.

The basic disadvantage of the conventional solid-state
MTO s is their infinite range This has lim. ited their ap-
plications to those cases where the structure constants can
be summed by the Ewald procedure, that is, where the
sites form a periodic lattice (this includes the cases of im-
purities and compositional disorder). Moreover, with or-
bitals of infinite range, the electronic wave function in a
given ceil has contributions from orbitals throughout the
solid, and the only two ways of representation are through
a plane-wave expansion and through a partial-wave, one-

center expansion with Bloch-summed structure constants
as mentioned in (v) above. Whereas the latter expansion
converges rapidly only in the interior of the MT's the
former expansion merely represents the envelope of the
MTO, the so-called pseudo-MTO, valid in the interstitial
region. Thus, despite the smooth nature of the MTO its
atomic wiggles and infinite range often requires a com-
posite partial-wave —plane-wave representation. For the
one-electron Hamiltonian and overlap matrices the
partial-wave representation together with integrals over
the WS spheres yield the so-called ASA contributions and
the remainder, for which only the plane-wave representa-
tion is needed, are the so-called combined-correction
terms which are rather small.

For the charge density it has proved highly convenient
and surprisingly accurate to use merely the spherically
symmetric part obtained from the partial-wave expansion
in the WS sphere. This approximation is commonly used
in self-consistent calculations and we refer to it as the ASH
for the charge density. Since the wave functions and the
full, non-spherically-averaged charge density were so far
difficult to represent throughout the cell, and since they
are not needed during a self-consistent calculation in the
ASA, wave-function and charge-density plots are not
features of standard LMTO computer programs. Exist-
ing plots" merely use the pseudo-LMTO's. ' The total-
energy functional which is being minimized in standard
self-consistent LMTO-ASA calculations is not the proper
one but a functional of merely the ASA density for fixed
atomic-sphere radii; its Hartree term is the Coulomb self-
energy of spherical charge densities inside WS spheres
whose overlaps are neglected. ' Vixen the spheres can be
closely packed like in fcc and bcc arrangements (the dia-
mond structure is, for instance, packed like bcc with two
atomic spheres and two empty spheres per cell}, the ASA
total energy normally deviates from the proper total ener-

gy by only hundredths of a rydberg, but the choice of
sphere radii can be critical. If the combined correction
terms are included in the calculation of the one-electron
energies, and the charge density is approximated by a uni-
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form background plus spherical contributions, calculated
total-energy differences between high-symmetry structures
usually have millirydberg accuracy or better. Even so, it
is unlikely, that the minimization of a MT total-energy
functional' can yield accurate results for symmetry-
lowering displacements of the atoms. For such purposes
the proper functional without shape approximations for the
charge density is needed and it is an aim of the present pa-
per to demonstrate how this charge density may be con-
veniently generated within the MTO framework.

The infinite-range problem for the solid-state MTO's
was recently solved. ' lt originated from the requirement
that the MTO set be minimal, because this forces the tail
of each orbital to be an approximate solution of
Schrodinger s equation in the interstitial region. Here, the
one-electron kinetic energy, e —V(r), for the occupied
valence states is numerically small, typically between
—0.2 and +0.8 Ry„and the convenient choice made for
solid-state MTO's is that they satisfy Laplace's equation
M =0 in the interstitial region, i.e., their "wave number"
(x) is zero. ' The conventional s-MTO thus falls off like
1/r, the p orbitals like 1/r, the d orbitals like 1/r, etc.
Now, the recently proposed set of tight-binding (TB)
MTO's are simply short-ranged linear combinations of the
conventional set.

In the present paper we first show how the TB-MTO's
may be represented in real space and, by the example of
crystalline Si, we demonstrate that they have extremely
short range. Secondly, we show how to use this TB repre-
sentation to obtain charge-density plots from LMTO cal-
culations. For Si we demonstrate that the charge density
obtained from a standard, self-consistent LMTO-ASA
calculation is in excellent agreement with the one obtained
from a self-consistent, full-potential linear augmented
plane-wave (LAPW) calculation. '

The eigenvalues and eigenvectors resulting from LMTO
band calculations are correct to third and second order,
respectively, in the deviation of the eigenvalue from the
chosen energy, s of the LMTO. The LMTO itself is
however only correct to first order. In standard calcula-
tions the ASA charge density is therefore made correct to
second order by use of the so-called tail-cancellation con-
dition valid in the ASA, the one-center expansions of the
wave functions, and the Taylor series to second order in
energy of the radial wave functions QRi(e, r) We now.
devise a similar technique, which however does not rely
on the ASA, for obtaining the full charge density correct
to second order.

It is obvious that a next step will be to insert the MTO
density in the proper, rather than the ASA or MT, total-
energy functional. This, as well as other applications of
the MTO-TB representation, will be published elsewhere.

Since this paper is the first of a planned series it is or-
ganized as follows. In Sec. II we give a self-contained ac-
count of the recent MTO formalism, ' but we focus on
the orbitals rather than on the Hamiltonian and overlap,
or Green's-function matrices. As a demonstration we plot
two sets of TB LMTO's for Si using structure constants
screened, respectively, on bcc and diamond lattices. In
Sec. III we show how the charge density may be obtained
from various starting points, the simplest being a calcula-

tion using the ASA for the potential and the orthogonal
LMTO representation given in Sec. IIIF. The Si charge
density presented in Sec. III H was calculated in this way.
In Sec. III E we explain how to obtain ASA Green's func-
tions in the TB representation, and in Sec. III G we give
the second-order correction to the charge density. Section
IV is the summary.

II. CONVENTIONAL AND SCREENED LMTO's

0 0 0

I.'

in terms of the regular Laplace-equation solutions

J&L(r& ) =(rx /w)'[2(2l + 1)] 'FL(ra ) .

(2)

Their form is independent of the orbital (RL) and the site
(R') of the expansion. The expansion (2) converges for r
inside the sphere centered at R' passing through R. The
expansion matrix, Sz I zl, is the conventional canonical
structure matrix which, due to the particular normaliza-
tions chosen in (1) and (3) for the functions E and J, is
Hermitian and only depends on R and R' in the combina-
tion

(
/
R—R'

/
/w) ' ' 'Fr*+i (k),

where 9t =R—R'. Explicit expressions may be found in
Refs. 1, 2, 4, and 5.

For a genera/ LMTO representation, which is charac-
terized by the "screening numbers" aa&, (ax& is usually
independent of R, and ai =0 for i & l~ &2), the envelope
functions are defined to be those Laplace-equation solu-
tions, EgL(rx ), which are ProPortional to KaL(ra ) for r
in the neighborhood of R and whose tail expansions

+RL( ii ) g R'L'( R')~R'L', RL (4)

involve the functions

JRL(rR )=~RL(rR ) +Rl+RL(rR )

Here, again, the form of J is independent of the orbital

A. Envelope functions and structure constants

As mentioned in the Introduction, for an LMTO,
gxL(r —R), belonging to the conventional set' (denoted
by the superscript ) the envelope function is simply the
Laplace-equation solution

&a'L(ra)= (&R/—w) ' 'I'L(ra»

apart from a normalization constant. Here and in the fol-
lowing the sites of the orbitals are denoted by R,

ra =-r-R rR -=I
and F~ is a spherical or cubic harmonic. m is the aver-
age WS radius and thus a measure of the site density; it is
introduced in order to make the envelope functions in-

dependent of the scale of the structure. The envelope (1)
has the form of the electrostatic potential from a single 2'

pole at R. It is regular, except at R, and it may be ex-
panded about any other site, R',
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~E &"= ~E'&-
~

J &S

and, if we now insert the definition (5) of J, we obtain

(7)

iE &"= iE &(I+tzS ) —i
J &S (8)

which is a superposition of
~
E &" as given by (6) if and

only if the "screened" structure matrix satisfies the
"Dyson equation"

S =S (1+aS )=S +S aS

or, equivalently,

S =S (1—o'.S ) '=a '[(o, ' —S )
' —a]a

The superposition is

iE & = iE & "(1+aS )

or, explicitly,

(9)

(10)

and its site. It is obvious that Eg L (rtt ) must be a super-
position of conventional envelope functions (1) placed at
all sites where the corresponding matrix elements of aS
do not vanish and, hence, Egl (rx ) has the same form as
the electrostatic potential from a 2' pole at R screened by
multipoles at ail sites. The explicit expressions for this
superposition and for the screened, canonical structure
matrix, S, in terms of S and a, may be obtained by in-
sertion of (5) in (4) and subsequent comparison with (2).

For this and further purposes it is convenient to use the
following combined matrix and ket-bra notation. Firstly,
the functions Ettt. (rtt ) and Eg L, (re ) are denoted as

~ EttL &" and
~ Egr, &", respectively. The superscript oo

indicates that these functions extend in all space. Second-
ly, we divide space into %S cells around the sites in such
a way that each expansion (2) holds throughout its WS
cell. Omission of the superscript oo, like in

~
EttJ &,

~ JitL, &, and
~
JgL & now indicates that these

functions are truncated outside the WS cell around R.
Thirdly, the functions

~
EgL &" are considered elements

of the row vector,
~

E &", while the functions Egt, (rq )'
are considered elements of the column vector, "(,E
This vector notation is used for all functions. Fourthly,
Sg t. itL, are the elements of a matrix, S, and an't are the
elements of a diagonal matrix, o., whose elements are in-
dependent of m.

With this notation we may use (1}and (2) to express the
conventional set of LMTO envelopes as

(

E'&"=
[
Eo& —

(
Jo&SO, (6)

provided that the an-site elements SxL, itL are taken to be
zero. Analogously, from (4),

ad =0.0107—:p~ (12)

The range of the corresponding, so-called TB structure
matrix, S~, is essentially limited to the first- and second-
nearest neighbors and it behaves approximately as exp
( —4d/w). It is given for the fcc, bcc, and sc structures in
Table I of Ref. 8 and for further structures, including dia-
mond, in Ref. 15. The TB structure matrix for the dia-
mond structure differs from the one of the bcc structure
by having md;, =2' wb and aEt ——0, where E refers to
the tetrahedral interstitial sites. The screening numbers
for the atomic sites, i.e., the diamond lattice, are still
given by (12). For this more open structure S~ extends to
the third-nearest neighbors. The TB structure matrix for
an arbitrary structure may be obtained by solution of (10)
for a small cluster containing at the order of 30, sites or
by iteration of the "Dysons equation" (9} in real space us-

ing as a starting point the approximate S~ given in Table
I. This will be demonstrated in detail in Ref. 15. With
the structure matrix limited to first-, sex:ond-, and possibly
third-nearest-neighbor hopping the corresponding en-
velope functions

~

E &" can easily be represented by the
direct superposition (11) and, in the bcc structure, each

~
EIL &" is the sum of (8+6)X9=126 terms. The en-

velope of the TB s orbital of the bcc structure is shown in
Fig. 6 of Ref. 8.

TABLE I. Interpolation formula for the TB structure matrix:
S(~ —We-~' .

where the i' sum is infinite. Like in (11) the screened I.
orbital, X~L, (rx ), will be a superposition of conventional s,
p, and possibly d (plus f, if i=3) orbitals only. The
problem is now to find a set of a values such that S is so
localized that not only the L,

' sum but also the R' sum in
(11) is manageable.

The construction of localized envelope functions is
according to (10) possible for any set of a's for which
det(a ' —S )+0. For the o, s independent of R and suf-
ficiently small and positive such sets exist because S (k),
the conventional canonical bands, are upwards bound.
The screened canonical structure matrix for such a set
thus decreases exponentially with the relative, interatomic
distance, d/ui —=

~
R—R'

~

/m. The set found by trial and
error ' to yield the best localization of S for a number
of closely packed lattices, and for i =—2, is

a, =0.3485=P, , tzq ——0.05303=Pp,

EgL(rz)=(rz/w) ' '&~(&g)

+ g g(re /~)

& gI'L, (rz )SgL, iit.
PFE

In the electrostatic analogue o;S is seen to be the screen-
ing charge (note that S~ usually has on-site terms). Since
aii t =0 for i'& l~ the i' sum in the superposition (11}is
finite. This is in contrast to the one-center expansion (4)

$$0'

Spg

ppo
sda
pdo
dd t7

ppK
pd'7T

dd&
dd5

—184.7
371.7
791.0

—575.0
—1422.0
—3685.0
—359.9

837.0
1997.0

—844.0

3.293
3.301
3.331
3.440
3.535
3.905
3.935
3.965
3.998
4.708
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In order to construct the set of TB LMTO's
~

X~)" we
now merely need to define the conventional set of
LMTO's ~X ) by augmentation of the envelope set

~

K )" inside the MT (or WS) spheres and then use the
superposition (11). For reasons of notation, ' and in view
of applications in the following section and coming publi-
cations, we shall, however, follow the development
sketched in Ref. 9 and define the LMTO's in general, that
is, for a general a and, furthermore, define them as the
linear approximation to the energy dep-endent MTO's
which we now introduce.

(18)

W[ a, b ] =s [a(s)b'(s) a'—(s)b (s)]

is the %ronskian,

W[K,J I =w/2,

and

(19)

(20}

& (c)= ' =[(w/2)P (c)]' '
WIJ,P"(c)I

for the so-called normalization function. In these equa-
tions we have dropped the subscripts R1. Moreover

B. Muffm-tin orbitals and potential functions P (c)=2(21+1)
s

' 2l+1
D(c)+1+1

D(c)—1
(21)

I Fl' f 1=1 (13)

they are given the superscript y for reasons which will be
clear later. The partial waves are

/tRL, (c rR) =%I(c Rr)I'/. (r )R (14)

and the functions ~pRL, (c)) are truncated outside their
MT sphere.

From the envelope function one now forms the
energy-dependent muffin-tin orbital (MTO) by substitut-
ing each radial function ~~J I ) inside its MT sphere by
some regular function,

~
JR I ), which matches continu-

ously and differentiably onto it at sR, i.e.,

Whereas the envelope set is canonical (that is, scale, po-
tential, and energy independent) the MTO set is uniquely
designed for the one-electron potential, V(r), to be treated
as follows.

Inside each WS cell the potential is spherically averaged
into uR(rR) and the corresponding radial Schrodinger
equations are solved as functions of the one-electron ener-

gy c yielding the regular, radial functions $RI(c,rR}. If
these are normalized to unity in the MT sphere of radius

sg, 1.e.,

with D(c)=sf,'(c,s)IP(c,s), is the conventional potential
function. In (18) the overdot denotes an energy derivative,

' 1/2

P (c)1/2 P (c)

and a particular sign has been chosen for the square root.
Throughout this paper we use atomic rydberg units. The
last equation (18) follows from the Wronskian relation

W[p (c),pr(c)} =(p"(c)
~

b+u c~p—(c))—
=(y (.)') =1, (22)

which, itself, follows from Green's second theorem, the
Schrodinger equations in the sphere,

( —5+u —c) ~P(c))=0 (23a)

and

( —5+u —c)
~
P(c)) =

~
P(c)), (23b)

plus the normalization (13). In the language of scattering
theory P (c) is proportional to the cotangent of the phase
shift gl, the constant of proportionality being negative so
that the potential function is a never decreasing function
of energy. Explicitly,

[Pl'(c)] '=a/+[Pi(c)] '
a (15a) = ——,

'
lim/~w[n/(/tw)] tan(rl/) .
K-+0

and by substituting the radial function
~

KRL ) inside its
MT sphere by the proper linear combination of

~
p]//(c) )

and
~
JR/), i.e.,

KRI(rR ) =(rR /w) 4]//(c "R )+g i(c)+JRI(rR )Pg/(c)

=0'R I ( c "R )+RI ( c ) +JR/ ( rR }Pg / ( c} ~ (15b

Again, for reasons to become clear later, we have defjned

~y (c)&—= ~y'(c)&& (c)/N (c„)
in the last equation, and c is an arbitrary energy near the
center of interest. Continuous and differentiable match-
ing leads to the expressions

p~( )
WIP( )yKc} P (c)

(17)
WIP(c},J ) 1 —aP (c)

for the potential function and

=&2/w WIPr(c), K I

=(P (c)
i
(c—u) iK ), (24a}

which is representation invariant, is essentially —cos(r/),
and the function

[P (c)] ' =v'2/w W[pr(c), J I

=(Pr(c)
~

(c.—u)
~

J ) (24b)

is essentially sin(rl). Here, again, a particular sign has
been chosen for the square roots.

We see that a change of representation (a) merely corre-
sponds to a shift of the scattering "background. " The
function

—1/2

=P (c)[P (c)]
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It is customary to parametrize the potential function in

terms of the three potential parameters C, b., and y by
the usual resonance form for tan(ri)

[P (e)] '= +y —a .
g —C

The parametrization of —cos(ri) in (24a) is
' —I /2

(25)

, [P()] ' =v'2/w WI(I)"(s),K J
=

The latter form corresponds to
e lP (s)= +

y —u

which is equivalent with (25) because the representation-
dependent potential parameters in (261) are defined by

V =—C— (28)
P —Q (y-a)'

The zero C of the potential function is the energy where
~(I)(s)) joins onto

~
E ) and the pole V of the potential

function is the energy where
~
(}I((s)) joins onto

~

J }.
Expression (25) or (27) solved for e gives the energy,

corresponding to a given potential function (i.e., boundary
condition), correct to order (s —s„) where e,

„

is an arbi-
trary energy, and the values of the potential parameters
may be obtained by expanding

~

(}("(e)) in a Taylor series

~

(I)r(s)) =
)
p"}+

~
p")(s—e„)+

~ p "}(e—e,)'/2+

and I

and the parametrization of sin(ri) in (241) is

[P (e.)) '~2=v'w/2[% (s)]
ya

=&2/ wW'Igr(s), J I=, 2
. (26b)

~X (s)}"=—~pr(s)}& (s)+
~

I }[P (s)—S ]+ ~It

= /(}( (e) }N (s„)+
/

J }[P (s)—S ]+
/

K )' .

Here, N (e) and P (e) are regarded as diagonal matrices,

~
} denotes a function truncated outside its MT sphere

and
~

)' denotes a function truncated outside the intersti-
tial region, that is, inside all MT spheres.

The energy-dependent MTO's, for any a, are a complete
set for the MT potential used for their construction, i.e.,
for the potential

~
U}+

~

e. )'. This is so because if, for
given s, the column vector with components agL (s) satis-
fies the homogeneous, linear equations

[P (s)—S ]a (a) =0

with the normalization

(33a)

(291) for the Wronskians in (17), because this would have
required the inclusion of third-order terms in (29a) and
(291). The energy derivative of [P(e)) ' given by (2S)
and (31), and the energy derivative of P(s) given by (27)
and (31) are, however, consistent with, respectively, the
sum of (26a) and (29a) and the sum of (261) and (29b).

From (25) and (31) one may realize that there exists a
particular, potential-dependent representation in which
P ai(s„ai)=0 for all Rl. This is the representation where
aai=yni for all Rl. We shall return to this so-called
orthonormal representation in Sec. III F.

Having introduced the potential functions and their pa-
rameters we now return to the main theme of this section,
the definition of the energy-dependent MTO. This is
given through the substitution of (15) in the one-center ex-
pansion (7) for the envelope function by'7

and inserting merely the first-order expression in (26a)
and (26b). If instead one inserts the expansion to second
order, the additional terms

g(w/2)P itL (s)
~
agL (s)

~

=1,
R,L

then the linear combination

(331)

——,(s,—C)(s —s„)P/v b, (29a) ( X (s))™a(e)=
~

yr(e) )N (e)a (e)+
~

I: }'a (s),
(34)

——', (e —I' )(s—s„)'p/(I )'~' (291)

occur in (26a) and (261), respectively. Here we have made
use of'

~ 1

p—= ((j&) )=— and WI jr,yj=o,
3$r(s)

(30)

where p is the fourth potential parameter. A correspond-
ing third-order expression for the potential function is ob-
tained by performing the substitution

e~e+(e —s„)3p (31)

in (25) or (27). The fact that there are no so:ond-order
terms in (31) proves that (25) is correct to second order.
[Note that (31) cannot be derived by insertion of the
second-order expressions (26a) plus (29a) and (26b) plus

21+1 2w

(2m'l)i'2 R(~0( (
R R'

~

(35)

This limit will be reached because, for sufficiently high I's
the radial Schrodinger equations are dominated by the
centrifugal term and therefore nearly equal the Laplace
equations. As a consequence, the higher partial waves are
nearly independent of energy and proportional to Ji (r),
V1Z.,

by construction, is a solution of Schrodinger s equation
for the MT potential.

The so-called Korringa-Kohn-Rostoker (KKR) or tail-
cancellation conditions (33) become converged for
( I, l') & 1~ if l~ & l& and l& is defined by the condition that
all potential functions with l & 1~ satisfy

~
P,'(s)

~
~~[(S,', )']'"

' 2{2l+)} 1/2
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pri(e, ,r) =r'(r '& '/ =Ji (r)[(2/1J)I 1]'/ (36) with

Vi =(r'~ U(r)
~

r'&/(r2'&=u(s) . (38)

As a result, one may for a given maximum value of
~
s —V

~
estimate l~ by using (35) with

Pi (e) & I 1 /max
I
s —V'

I
~

Since the high-1 components of the MTO tails,

g I ~R'L, ' »R'L, ', Rl. ,
R' I'(&I~) rn'

are solutions of the corresponding radial Schrodinger
equations, the MTO expansion

That the constant of proportionality is related to the po-
tential parameter I in the way indicated can be checked
by insertion of (36) in (24a), using (20) and comparing
with (27), or one can use (24b) and (26b). The value of I
obtained by evaluation of the normalization integral in
(36}is

I i=2(2I+ 1) (21+3)(io/s)' '+ "s

and for the values of the potential parameters V one
finds

(42)

o =—X /N (43)

Here, and in the following, omission of the energy vari-
able means that s—=s„.The values P, (P ) '/, and o
are thus three potential parameters (diagonal matrices)
which are related to the conventional ones by (27)—(31)
with e=s„.A.ccording to (16),

~ P & is independent of a,
and for

~
P& we have therefore dropped the superscript.

Since, according to (13),
~ p & and

~ p r
& are orthogonal in

the sphere we have

(44)

In terms of the conventional potential parameters the def-
inition (41) may be reexpressed as

~
J &—= [ ~y&+ i/&(V —„)][(2/ )I ] ' (45)

This definition of
~

J & is conveniently used also for the
energy-dependent MTO (32).

The basic expression for the LMTO, analogous to (7)
and (32), is thus seen to be

m. ~~ra azl. =
R L

(39a)

g'I|]iL(e rR )+Rl(s)'uRL(s) (39b)

on the left-hand side of (34) is converged when l & l~, and
the higher partial waves in the (slowly converging) one-
center expansion on the right-hand side of (34)

~X &"=—~X (e„}&"&(e„)
=

~ P &+ i P &h + i
K &'/N

where we have defined the Hermitian matrix

pa (pa) —1/2(pa ga)(pa) —1/2

pa(P a) —1+(Pa) —1/2ga(P a) —1/2

(46)

are provided by the tails of the lower MTO's.

C. Linear m.uffin-tin orbitals

It is now possible to define the radial functions
~
JR1 &

in such a way that the energy dependence of ~X (s)&"
vanishes to first order in s —s where s„is an arbitrary,
possibly R and I dependent, energy chosen at the center of
interest. The energy-independent, so-caBed linear MTO's
(LMTO's) obtained by neglecting the second- and higher-
order terms in (32) therefore yield one-electron energies
with errors of order [(e—s„)] =(s—e„)and higher, that
is, one-electron energies correct to order (e—s„),when
used as basis functions in connection with the variational
principle for the one-electron Hamiltonian.

From (32) it is obvious that XR&(e,rR) depends on s
only inside the MT sphere at R. The first energy deriva-
tive is

iX (s) &"=
i
ttr(s) &N (e)+

i
pr(e) &N (e)+

i
J &P (s)

= ~P (e}&N (e )+
~

J &P (E) .

It has pure RI. character and vanishes continuously and
with a continuous first derivative at the sphere. JR&(rR)
is now defined by the condition that X Ri(c, rR) vanishes
throughout, that is

&{io/2)/N

&[(2/io) —
i p &[(2/w)p ] '/ (4l)

=Ca+(da)1/2@a(da)1/2 S (47)

In this expression S is the only nondiagona1 matrix be-

cause Pa and P a are diagonal. h thus has the form of a
two-center tight-binding Hamiltonian and, in fact, it turns
out to be the Hamiltonian in the ASA and to first order in
s —s„(seeSec. III A). Expression (46) for the LMTO may
thus be regarded as the linear term of a Taylor series.
Hence the name linear MTO.

From (45) one may realize that if s,= V for a particu-
lar Rl then that partial wave is only described to zeroth
rather than to first order by the LMTO set. The corre-
sponding LMTO vanishes and may be deleted from the
set. This is a useful way of contracting the basis set for
those partia1 waves which hardly depend on energy and
which are therefore described sufficiently well by merely
the tails of the remaining LMTO's. This was described
for the case of the higher partial waves in the previous
section.

The transformation from one LMTO set (46) to anoth-
er, say from ~X & to ~X &, of course follows the
transformations (10) and (17) for, respectively, the struc-
ture matrix and the potential functions. Since, however,
for any a the set

~
X & is obtained from the set

i
K

by substitution of each two-dimensional [ i KR1 &,
~

JR1 & I
Hilbert space by the two-dimensional I i QR1 &, ~ $]11&I
Hilbert space, both of which are independent of a, it is
obvious that the LMTO's (33) transform like the envelope
functions, that is, according to (11). Taking the normali-
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zation constants N into account this linear transforma-
tion is

involve no summations because N~(c) and P~(c) are diag-
onal.

For the TB-LMTO X~KL(rK ) we obtain
~X &"= ~X'& "N'((+as. )yN. . (48)

LMTO sets of different a thus span the same Hilbert
space (provided that c~V ). This is not true for dif-
ferent sets of energy-dependent MTO's.

~ri')" =(
~ y) —

~j li)pliyi li)

+(
~

J') —
I J') }S'rNf'

+(
~

Z'&" —
~

rC'&)(I+PS') iN'. (52)

J
&
(r) =Ji (r) when 1 & l~ & l~ .

The MTO expression, useful for real-space evaluation, is
thus

~X~(c})"=
~

pr(c))N~(c}+
~

J~)P~(c)

+(
~

J') —
~

J'))S'
+( )&')"—~&'})(1+PSi') . (51)

Here the last two, energy-independent terms were dis-
cussed above and the first two, energy-dependent terms

D. Evaluation of the TS-MTO's and LMTO's in real space

The basic expressions (32) and (46) are not useful for
evaluation of the TB-MTO's or TB-LMTO's in real space
because they are one-center expansions like (7). Specifi-
cally, the products

~

J~}S~and
~ P ~)h~ (remember that

P is the a value (12) for the TB representation) involve in-
finite L' sums which converge slowly for rK in the outer
part of the MT sphere. We shall now rewrite the MTO
and LMTO expressions in such a way that we need not
sum over the higher partial waves, i.e., in such a way that
the L' convergence is reached for 1'&1~=2—3, where 1~
was defined in connection with (35).

With the notation that
~

) now denotes a function trun-
cated outside the MT sphere, rather than outside the WS
cell, we may use (7) to express the envelope function in the
interstitial region as the difference between the envelope
function in all space and the one-center expansions in the
spheres, i.e.,

~E.»'= ~xli&- ~rC'&+
~

Ji')S~.

We now separate the irregular part of
~

J~) like in (8}and
express ~E )"by the superposition (11)obtaining

[
I('~&'=(

~

K'&"
~

EC'&)(1+PS'')+
(
J'&S!'. (49)

Here, the first term is simply

[(I~'&- l~o&}(1+-~S')]KL

YL(rK }

lp

+Q g (rK'IN)& pK P gYL'(rK')Sg'L', KL ' (50)
R' l'=0

The subscript & indicates that the radial function is
nonzero only for r outside the MT sphere in question, i.e.,
for rK &sK . Like in (11) the 1' sum is finite, and so is the
R' sum. The second term in (49) is regular but contains
an infinite L' sum which, however, when

~
J )S~is com-

bined with the term —
~
J~)S~ in (32) terminates because

we can take

for r inside any MT sphere (R') for which SK L KL does
not vanish, and zero in the interstitial region. J~ is given
by (45) and the!' summation terminates at l~( & lp).

The first line in (52) is simply

[Ar(rK ) 4'KI«K )—I'4~1' Ki] YL «K )

for r in the MT sphere at which the TB-LMTO is cen-
tered, and zero outside.

If the first-order accuracy offered by the TB-LMTO is
not sufficient it is a simple task to use

~X(c))"r =~X &"+~X &(.—.' (53)

because the second energy-derivative function has pure
RI. character and vanishes outside its own sphere. It may
be obtained by differentiation of (40} and the result is sim-
ply

~X~) =—~X~(c„))"fN~=
~
P)3@+

~

Pr), (54)

where we have used Eq. (30). This orbital is seen to be in-
dependent of the representation.

E. TB-LMTO's for Si using bcc screening

We now plot some of the TB-LMTO's for crystalline
silicon using (52). The Si s orbital is shown in the (110)
plane in Fig. 1. The black dots indicate the Si positions
and the crosses indicate the tetrahedral interstitial sites.
In Fig. 2 we show it along the [001] direction through the
second-nearest interstitial site and along the [111]direc-
tion through the first-nearest Si site. This TB-LMTO be-
longs to the "standard basis set"' with s, p, and d orbi-
tals on the Si, as well as on the tetrahedral interstitial
sites, i.e., with nine Si orbitals on the (000) and (111)posi-
tions and nine E (empty-site) orbitals on the (111) and
(002) positions. The structure matrix is thus the one for

Here, the third term is the canonical rnulticenter expan-
sion (50) times the potential parameter (N ) '. It is
nonzero for r in the interstitial region as well as in the
MT spheres. As discussed in connection with (lib) this
multicenter expansion has typically about 150 terms,
namely the tails of the conventional s, p, and d envelopes
centered at the site of the TB-LMTO and at the first-,
second-, and possibly third-nearest-neighbor sites. The
functions involved are rapidly evaluated because they are
powers of the relative, Cartesian coordinates, xK, yK, and
zK, and inverse powers of (xK +yK +zK ) . The scale

0 2 2 2 ] /2

constant ic is the average WS radius for the sites having
PKI&0.

The second term in expression (52) for XKL (rK ) is

/[Jr (rK') J I (rK'}]y YL'(rK'}SK'L'KL ~NKI
0 P I3 P
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merely follows the symmetry of the crystal. In the fig-
ures, one sees how the orbitals are confined by the neigh-
boring Si sites and bulge out between them. (This might
seem slightly surprising because the en//elope functions for
bcc screwing make no difference between Si and E sites. )
The Si s orbital along the two extreme directions [111]
and [001] is shown in Fig. 2. Even inside its own sphere
(r/w & 1) this orbital is not spherical. In the language of
Eq. (46) this is due to the higher partial waves. This fact
that the LMTO does not factorize into a single product,
valid in ail space, of a radial function and a spherical or
cubic harmonic is what necessitates a representation in
terms of many one-center expansions like (46), or in terms
of mixed one- and multicenter expansions like (52). (Note
that in general the conuentional LMTO does not have pure
I. character either, it is only its envelope function and the
pseudo-LMTO, used for Fourier sums, which have this
property. )

f(r)N~ =E(r) J~(r)SO~„—
=(1+PS~„)x ' ' —[2(2l+1)] 'S~ (57)

with x=r/w. We have dropped the subscripts R/ and
denoted the on-site element of the structure matrix S~„.
The logarithmic derivative at the sphere is thus given by

F. Approximate TS-LMTO's

For certain purposes, such as crude charge-density and
wave-function plots, the above-mentioned anisotropy may
be neglected and the computationally fast approximation

&//L. (r// ) =fR/(rx )~r. «// ) (55}

having pure L character may be used. For the radial
function f(r) one would use the proper form inside the
sphere, from (46}, that is

f///( r) t/Rl( r) +0 R/(r +/tL, RL (56)

and outside the sphere one would take a convenient, rap-
idly decaying, positive definite function such as an ex-
ponential or a Gaussian with parameters determined pri-
marily by the conditions of continuity and differentiabili-
ty at the sphere. With the amplitude and slope fixed at s//

the detailed form of the tail is not crucial considering the
limited accuracy of (55).

For r =s// we obtain from (7), (46), and (5)

bcc structure and with s =w the on-site terms are

3.093 (s),
// 2.787 (p),S»= '1.299 (es), '

2.710 (t2s)

and one finds the following logarithmic derivatives

—3.910 (s},
—4.039 (p),{fI = ' —3 735 (e )

.

—4.788 (t2s)

If we approximate the tail by a plain exponential,

f(r) =a exp( —A,r/w),

we must have

(63)

and, hence, with s =w and bcc screening —A, must equal
the values (61). As a check on the consistency of our ap-
proach we may compare these A, values with those given
in Table I for the decay of the sso-, spo-, and sdo-
structure constants. The latter were found by least-
squares fitting of A exp( —A,d/w) to structure constants
computed for a variety of crystal structures. Within the
accuracy of the pure-L approximation the agreement is
satisfactory.

For the pure-L approximate orbital shown by the dot-
ted line in Fig. 2 and by the contour plot in Fig. 5 we
used, for r & s, the slightly more sophisticated form

f(r) =a(r lw)'exp[ —(ar/w)2 —(rr/w)~], (64)

where the third parameter was determined such that not
only the amplitude and slope but also the curvature at the
sphere was matched. This curvature is given by the La-
place equation, i.e., by

(rf)"=[1(1+1)/r ](rf)

or, equivalently, by

D{fI+1+1=(dlnf/d lnr), +1+1
21+1

1 —2(2i+1)(0+1/S~„)(~/w) " (58)

0.005 0.015 0125

(59)

and the amplitude by

(s /w)'Sg„f(s)=—
2(D IfI+i +1)N~

The logarithmic derivative only depends on the sphere ra-
dius and on the relevant on-site term of the TB structure
matrix. The values of these on-site terms may be found in
Refs. 8 and 9, and 15, or they may be evaluated from the
approximate off-site terms given in Table I using the
"Dyson equation" (9) plus the fact that S,„=O.For the

FIG. 5. The pure-s approximation to the TB-LMTO shown
ln Fig. 1.
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(d lnD tf J /d lnr ), = (—D (f I +1+1)(DIf )
—1) . (65)

Matching of slope and curvature thus gives, respectively,

D If I =1 2—(aslw ) 4—(~s lw) (66)

and

(DIfI+1+1)(DIf I 1)=—4(crslw) +16(~s/w)4 . (67)

Together with (58) this determines 0 and ~. For 1 =2 and
bcc screening it was not possible with the signs chosen in
(64) to fit both slope and curvature [Eqs. (66) and (67)
gave a negative (rs/w) ] so in this case we took ~=0 and
neglected (67).

G. TB-LMTO's for Si using diamond screening

In some cases it is preferable to have screening mul-
tipoles exclusiuely on the atomic sites and not on intersti-
tial sites, even though the structure is open and the TB-
LMTO's thereby become less well localized. An example
could be an investigation of silicon in which one wishes to
go continuously from the diamond to a more closely
packed structure. In that case one would let the radius of
the interstitial spheres go continuously to zero and at
some stage delete the LMTO's at the interstitial sites.
This is only possible when the envelope functions do not
diverge at these sites, that is, when az ——0. For the dia-
mond structure one would thus use that TB-LMTO repre-
sentation for which the screening constants for the
diamond-lattice sites are those given by (12) and
w =wd;, ——2'~ wb„. This representation was mentioned in
Sec. II A. As long as the empty-sphere orbitals are kept in
the basis set this "diamond LMTO set" spans the same
Hilbert space as the bcc set considered in Sec. IIE.

The Si s orbital is shown in Fig. 6. It is, of course,
more diffuse and anisotropic than the Si bcc s orbital in
Fig. 1. Nevertheless, the "rule" that the effective radius
of a TB LMTO is about 2w still holds. The spillover into
the interstitial region is considerable. In this region the
potential is fairly fiat and close to s„and this means that
the empty-sphere potential parameters approximately
satisfy Vz~ =e„and Eq. (37) for I EI. The tails of the Si

.015

.005

.'l25

.015

.005

t I t al~

FIG. 6. Si s TB-LMTO in the same plane as Fig. 1. The
sphere sizes are as in Fig. 1, but the screening is for the diamond
lattice, i.e., aA ——Pand aE ——0. Moreover, w=wq;, ——2 wb

.0005-

.0185:
0.0015:

.0005~'

SE
9 1

FIG. 7. Interstitial-site s orbital belonging to the same TB-
LMTO set as the orbital shown in Fig. 6.

LMTO's are therefore nearly solutions of Schrodinger's
equation in the interstitial region at the energy e„.

If the energy dependence of the empty-sphere partial
waves can be neglected over the energy range of interest,
then they are effectively higher partial waves and the
LMTO's centered at the interstitial sites can be deleted
from the basis set. It turns out that the empty-sphere p
and d LMTO's may indeed be deleted but that the
empty-sphere s I.MTO must be retained. ' This is be-
cause for sz ——w/2' =2.53 Eq. (37) gives only 1.2 Ry for
the width parameter I z„but28 and 174 Ry for I ER and
I'~~, respectively. I z, is, however, proportional to sz so
that for more closely packed structures the empty-sphere
s LMTO can be deleted as well.

[For the bcc LMTO set the tails of the Si-centered
LMTO's approximately satisfy the radial Schrodinger
equations for the empty spheres at energies V~ which, ac-
cording to (28), lie lower than V by the amounts
I (P ' —y ') ', which are of order rydbergs. The ener-
gies V~ are thus too far away from the energies of interest
that the empty-sphere s and p LMTO's can be deleted
from the bcc set. '

)
In conclusion, the spillover of the Si orbital in Fig. 6

may be viewed as a natural consequence of the orbitals
enhanced capability for describing the wave function in
the intersitia1 region.

The interstitial-site s orbital for the diamond set is
shown in Fig. 7. It has the same degree of localization
and type of anisotropy as the Si-centered orbital. The am-
plitude of the E orbital is, however, very small because s„
is close to V .

III. CHARGE DENSITY

The charge density may be computed from

g+R'L'(rR')~R'L', RL+RL (rR )
P P

R', L'R, L

using the TB-LMTO's and the corresponding density ma-
trix

n~= I dsD~(E)= I degb~~6(c sj)(b~~)—
Here, D (c,) are the projected density-of-states functions
[not to be confused with the logarithmic derivative func-
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tion used in (21)], b&~ the coefficient vector of the LMTO
expansion of the wave function, and sJ the energy. For a
given r, R and R' only run over those few sites which are
within the orbital radius of approximately 2io from r.
For each such site, R, the values of the TB LMTO's are
obtained from expression (52} whose most involved
(third) term requires summation over the 15—30 sites
closest to R (not to r). This last summation is not needed
if the TB LMTO's can be substituted by their pure-L ap-
proxirnations described in Sec. II F.

Expression (68) is of course only correct to first order in
e —e„(forthe MT part of the potential) because so are the
LMTO's. If the appropriate projected density-of-states
functions,

——Im[g~(s)] =—go~(e)5(e —e )[a~(s)]2 I
LU

J J J
J

(70)

are known then it is more accurate, and just slightly more
involved, to evaluate the charge density from

n(r)= J de IX~(e))"——Im[g~(e)]" (X~(&)
I

Ep 2 1

W
(71)

using the energy-dependent TB MTO's. The reason why
it is only slightly more involved to use X~I (e,rz) is that
its energy dependence is confined to the sphere R and the
angular momentum I.. This was explained in Secs. II C
and IID. Within the second-order expansion (54) of the
MTO, the energy integral in (71) may even be performed
explicitly, and in Sect. II6 we shall devise a most simple
way of including the second-order terms in (68) too.

In Secs. IIIB—IIIG we will explain how the density
matrix may be obtained in various cases, and in Sec. H we
shall apply the simplest procedure to silicon. However,
before doing so, we need to write down the LMTO Hamil-
tonian and overlap matrices.

such that R runs only over the sites in the primitive cell.
The I dimension of 5 and h is l~. The remaining con-
tribution to the overlap matrix from the higher partial
waves, and from the integral over the interstitial region, is
the so-called combined correction term. This term may
be obtained from analytical expressions for "(K

I
l%: )"

A. Overlap and Hamiltonian matrices
in a general LMTO representation

The contribution to the overlap matrix from the sum
over the integrals in the spheres and the lower partial
waves is easily obtained from (46), (44), (42), and (22) as

OMg=—"(X IX }Mr——(1+h o )(o h +1)+h ph

(72)

Here the elements of the diagonal matrix p are the fourth
potential parameters (30). If u refers to the TB represen-
tation the matrix products may be evaluated by direct
summations in R space, otherwise not. For a crystal with
Bloch vectors k and lattice translations T one would use
hg L, iiL, (k) as obtained from (47) with

'aL. (k)= ge'" . ~p7L, (R+riL, (73)

and is given in Refs. 1, 4, and 5 for the crystalline case
and in Refs. 8 and 15 for the general case.

The contribution to the Hamiltonian matrix from the
sum over the integrals in the spheres and the lower partia1
waves, and for the MT potential used to define the
I.MTO's, is

HMr —= "&&
I

—~+U I & &Mr

=h (1+o h )+(1+h o )s„(oh +1)+h e~h

as obtained from (22), (23), (44), and (46}. In (74) only the
first term is important because if s„is independent of R
and I this value may be taken as the zero of energy where-

by the last two terms drop out.
The atomic spheres approximation (ASA) for the poten

tial now consists of using only (72) and (74) for the over-
lap and Hamiltonian matrices but substituting the MT
spheres by overlapping WS spheres. This is the same ap-
proximation as the one used in deriving the simple KKR
or tail-cancellation condition (33)—(34). We now return to
the question of how to determine the density matrix.

B. TB-LMTO band calculation

This is the trivial case. Let Og I, aL, (k) and
Hg L, tit. (k) be the overlap and Hamiltonian matrices in-

cluding non-MT contributions (in the ASA there is a
simpler procedure described in Secs. III E and III F) and
in the TB-I.MTO representation. The one-electron ener-
gies sj(k) and eigenvectors bgt J(k) obtained from the
band calculation satisfy

[b~~, (k)]tO~(k)b~~(k) 5J J= (75a)

[b, ~( k)] Ht~( k)b, ~(k)=5, ,e, (k) '.

The orbital projected density of states in (69}are then

Dg't. ', (a+ r)t, (& }=—g
(2m )

d ke '" bgL J(k)'

X5(s ei(—k))bgt', (k) .

(76)

Using (75a) and (76) we can check that the total density of
states is

TrO~D~(e)= g I d k5(e —e (k)) .
J (2~)'

C. General LMTO band calculation

In this case the band calculation was performed in a
general LMTO representation a and it yielded the eigen-
vectors bj (k).

The transformation from the P to the a LMTO's is

I
ya }ao

I
gati} ao(p p)1/2[1+(& p)ga](p a) —i/2

This is analogous to (48) and is easily proved using (5) and
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S =S'[1+(a—P)S ]. (78)

(7): According to (9), a+(S )
' is representation invari-

ant and the structure matrix therefore transforms accord-
ing to

also highly convenient for Green's-function calculations
on perturbed crystals ' because the matrix entering the
Dysons equations is the one derived from the KKR equa-
tions(33), i.e.,

The transformations of the potential functions (17} and
(18) are similarly

g~(e)= P (z}—i0+ —S (87)

P (e) N (e) =1+(a—P)P (s) .
P'(e) N'(e)

The transformation to the eigenvectors bj'(k} to be used
in (76} is therefore

which has the canonical, two-center (and TB, if a=p),
form.

The imaginary part of this Greens-function matrix
may, in principle, be obtained by transforming (87} into
the usual, Hamiltonian form,

bj'(k)=(P')' [1+(~—p)S (k)](P )
' &J'(k). (80) (P )

' [s—i0+ —(s+h )] '(P )

Here the only matrix (with dimension equal to the number
of orbitals per primitive cell) is the structure matrix
S'(k). The latter is usually known because it has been
used to construct the Hamiltonian and overlap matrices
(see Sec. IIIA). If it is not known one may first construct
the TB structure matrix (73) using the R-space tables in
Refs. 8 or 15, and then, through inversion of the Hermi-
tian matrix(a —p) ' —S'(k) ~ find

I+(~—P)S =[(~—P) ' —S'] '(~ —P) '

for use in(80). Equation(81) follows from(78).

D. Conventional LMTO band calculation

(81)

C=e„+co(—I —1),
=—(s/w) +'(w/2)' 4( —I —l,s),

(82)

(s/w) +' 4( —l —l,s)
2(21+ 1) 4(l,s)

(84)

In terms of these, the potential parameters that we use
may be obtained by setting s=s, in(25) —(27).

Whereas the conventional LMTO ~X'}" is normalized
to have the value p( —l —l,s) at its own sphere ~XO}"
has the value K (s)N. Therefore,

Here a is equal to zero and complications merely arise
because conventional computer programs'* use potential
parameters and LMTO normalizations which may differ
from the ones used in the present paper.

With conventional notation the three basic potential pa-
rameters used in(25) are

—Im[g (e)]=[P (s)] '/ guj (e)5(s —ej(s)}
J

X[uj (z)]"[P (z)]

QJ E E, —EJE QJ E (88)

In the third equation we have expressed the imaginary
part of the Green's-function matrix in terms of the KKR
eigenvectors and energies defined in (33} noting that
Ngr(s)agi J(z) =ugly J(z) is unitary for each s. Since aj(e)
is the coefficient vector in the MTO expansion of the
wave function PJ(r}, as seen in (34) or (39a),
2w 'm 'Im[g (z)] are the projected density of states de-
fined in (70}. Similarly, since the coefficients in the ex-
pansion of the wave function in terms of the
representation-independent partial waves on the right-
hand side of (34) or in (39b) are N (e)aj(s), one realizes
that the one-center expansion of the charge density is

n(r)= f 'ds~y (.)&u(s)(y (.)
~

(89)

N(e) = guj (e)ge —e~(e))[uj (e)]
J

through linearization of the potential function, and by
subsequent diagonalization of the first-order Hamiltonian,
e„+h, into zj with the unitary matrix ugL~. This
should be done at each energy, i.e., s„=e,and as a result

~X'}"=~X }"[(w/2)P ]' (s/w)'+'P( —I —l,s) (85) =[P (e)]'/ Im[g—(e)][P (s)]'/2

and, since ~X'} '= ~X }"b, the transformation (80)
from the conventional to the TB eigenvector is =N (e)——Im[g-(e)]N-(s) .

bP(k) (P p)1/2[1 pSo(k)]pl/2be(k) (86)

E. Green'8-function calculations in the ASA

The case of the ASA is extremely simple because, as we
shall show, transformation between different representa-
tions requires no matrix multiplication as in (80} but
merely energy-dependent scalings. The ASA techmque is

The projected density-of-states functions, 9'(e), are repre-
sentation invariant, and so is N (e)aj(e) This m. eans
that the MTO eigenvectors aj(e) transform simply by
scaling.

More generally, the transformation of the Green's-
function matrix (87) may be obtained from (78} and (79)
as
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g~(.}=(Pt'-St'}-'=IP'-S [1+(a-P}S]-'I-'
=(IPt'[1+(a—p)S ]—S ][1+(a—p)S ] ')

=[1+(a—p)S ]IP~—[1 (a—p—)P~]S J

=[1+(a P)S—][P S]—'P /P~

=[1+(a P)P—+(a P)(—S P—)]g P /P

=[P /Pt' —(a —P)(P —S )]g P /Pt'

P (z) P (z) P (a)
P~(e) P~(e) P~(e)

(91)

During these manipulations we have dropped the a. In
(91) the poles, V, of P (z) merely cancels the zeros of
g (e); they do not propagate into g~(z}. For comparison
with the result (90), i.e., that &(e) is transformation in-
variant, one should remember that, according to (79},
N (e)/N~(e) =P (e)/P~(e). In this connection we point
out that if one uses the parametrization (25) or (27) plus
(31), the latter form is correct to third order but the form-
er merely to second order.

and the LMTO's are orthonorrnal, apart from the com-
bined correction term and the small term hrphr in (72).

In the ASA the KKR equations with

Pr(e) =(e—C)/&

F. Band calculation using
the orthogonal LMTO representation

In order to calculate the unperturbed, crystalline
Green's function to start off with, it is convenient to have
the energy bands and eigenvectors obtained by diagonali-
zations rather than through the solution of a secular prob-
lem like (33). This is also the way in which the general
band-structure problem was solved in Secs. IIIB—IIID.
The first-order approach used in deriving (88), for just one
value of z„though, usually gives reasonable energy bands
in a range of half a rydberg around s„.A wider range
may be covered by the same approach provided that one
chooses the representation given by an't

—
yiit for all Rl,

because then, according to (25), all potential functions are
linear to second order in c—c In other words, I' ~=0, all
radial overlaps (44) vanish,

(92)

be obtained from the TB structure matrix, or from the
conventional, unscreened structure matrix, through inver-
sion in each k point using, respectively, (81}or (10) with
a=@. The band structure is now obtained by diagonaliza-
tion of (94), i.e.,

[uP'(k)] [C+~Mr(k)v A]uj}'(k) =5/'/ej(k) (95a)

[ui}'(k)]tuJ(k) =5i'i . (95b)

The projected density of states D (e) calculated by in-
serting these eigenvectors and eigenvalues in (76) or (69)
are seen to equal &(e) in (90) within the approxiinations
(25)—(27). These approximations are of second order for
the potential functions and of first order for their deriva-
tives. The real part of the Green's-function matrix may
now be calculated from the imaginary part by Hilbert
transformation and in this way one obtains

6 "(e)= gu J[a—i0+ e, ] '—[uJ']t

[=. i—0+ (C+ Mb,Sr~b, )—]i-
g —1/2g y ( & )g —i /2

as obtained from (25) and (28). Consequently,

p() e —V r() e —V e —VP P P

(Sri')'/2 ' (Sl.i'}'/' ~l.t'
c.—V —

z c —V c.—VP P P
G r(e)

(I P)i/2 (I P)1/2 I P
(98a)

This can be used in Dyson's equation to treat extended
perturbations. The densities of states D t'( )zneeded in
(69) to calculate the charge density equals

N~2io 'm. 'Im[g ~(e)]N~,

as seen by substituting ~X~}"N~ for ~X~(e))" in (71).
Using now (88) and (98a), plus the facts that

Here, j is short hand for jk, and g "(e) is g "(E) as defined
in (87), but with the second-order expression (93) for the
potential functions.

In order to transform to the TB representation using
(91) one needs

Pr(e)/P~(e) =(e—V~)(y —P)/b,

Nr(e) = P r(s)
2

(93)
Nt'=(I t')'"(.„Vt') '(~/2)'"—-

and that o~=( V~—e„) ', one finds

reduce to pure eigenvalue equations with the overlap and
Hamiltonian matrices

0 "(k)=1,
I r(k) =C+~Mr(k)i/b, =E„+h"(k) .

(94a)

These are identical with the MT expressions (72) and (74),
apart fmm the terms proportional to p. The structure
matrix, which depends on the potential through y, has ex-
ponentially damped oscillations in real space and it may

D ~(e)=[1—(e —e„)o~]Dr(e)[1—(c—s„)o~j. (98b)

The density matrix in (68),

n~=n" fo~nr(10)—+H c ]+o~n "(.11.)o~, (99)

is thus expressed in terms of zeroth, n", first, n r(10), and
second, nr(11), energy moments of the projected densities
of states for the orthogonal representation. This is the
simplest possible way of computing the charge density
and it was used for the silicon calculation to be described
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in Sec. III H.
Expression (98b) could also have been obtained without

excursion to the KKR Green's functions directly from the
LMTO transformation (77) putting a=@. This transfor-
mation may be written in the form

~Xr&"= ~X'& "(1—.~~ }=~X» "(1+o~~~)-' (100}

as seen by manipulations with the potential parameters or,
more directly, by insertion of (42) in (46). Since u" diago-
nalizes s„+h,one immediately obtains expression (98b).
Another point worth noting is that the transformation
(100) is, in fact, a Lowdin orthogonalization. This is seen

by comparison of the second form (100) with expression
(72} for the overlap matrix.

Although the y representation is strictly orthonormal
only in the ASA and to second order, the general formu-
las given in Secs. III A—III C of course remain valid for
a=y. This representation in which the potential parame-
ters 0 vanish is normally the most convenient one to use
for band calculations and the remaining non-
orthogonality terms may usually be treated by first-order
perturbation theory.

G. Second-order expressions for the charge density
and the KKR-ASA Green's function

+3p[l+o h ]

=2p+[&Jr
~ P &+2po ]h =2p, (101)

which only have contributions from inside the spheres. In
deriving (101}we have used that

&(j»'&+&&~ jr&=0, (102)

as follows from the normalization &pr(s) & =1 (13). The
last approximation in (101}consists of keeping only terms
of leading (zeroth) order in h . The change in the overlap
matrix upon going from the LMTO to the second-order
MTG is thus a simple MT contribution, and the total MT
part is

&X +(e—e„)X/2 iX +(e—s„)X/2&"

=(Ii o +1)(1+0 h )+Ii ph +2(s e„)p-
=[(e—e,)'@+1]"&X ~X & "[1+(e—s„)p], (103)

It is somewhat unsatisfactory to have energies correct
to third (Secs. 111 B—IIID) or second (Sec. IIIF) order
and then obtain a charge density (68) whose radial part is
correct to only first order because the LMTO's are no
better. The cure is simply to substitute the I.MTO's by
the second-order MTO's given in (53) Sec. IID. This
operation conserves continuity and differentiability of the
wave functions because

~
X &", which is representation in-

dependent, goes smoothly to zero at and outside its own
sphere. The normalization of each orbital is, however, af-
fected and renormalization is therefore necessary.

In order to calculate the new overlap matrix we need
the integrals

-&X ~X.&-=&jr ~X.&-+3p&q ~X-&-

= &i"
i C&+[&i'i ~ "&+&~'I e&

.(r)= ~X~& "n "&XI'~

+ ~ [I I
4&3S'+

l 0 & Jn (20}&4'I +H.c.] (106)

to second order and in terms of the zeroth and second mo-

ments of D@(e). Often it suffices to take the spherical
average of the second-order term in (106}so that only the
diagonal elements of the second moments n ~(20) are re-
quired.

In a second-order, orthogonal calculation employing the
ASA as described in Sec. III F, also the term h "ph" in the
overlap matrix must be corrected for. This is most easily
done like in (104) by substitution of uQ J by

~RL,j«}=[1+T(s —evRI} PRI] ukl. ,)«} ~

Here the prefactor is however nothing but P "(e) '~i to
second order, divided by (p r) 1/2. This can be seen by
performing the substitution (31): s~s+(e —e„)'pin the
second-order expression P"(s)= (e—C)/b„and differen-
tiating. As a result, from the projected density of states,
D (e), calculated using the orthonormal eigenve:tors uj}',

one may obtain

D (e)=[1+—,'(e —s„)p] 'D (e)[1+—,'(e —s„)'p]

=~-'"—Im[g'(. }]~-'", (108)

which is correct to second order, for the energies as well
as for the eigenvectors. A Hilbert transform will give a
Green's function Gr(e), which is better than G (s) in
(96}. The former may be transformed to the TB represen-

tation using (98a), plainly with G (s) replacing Gr(s)
and g i (e) replacing g~(E), because the substitution (31) in
(97) is irrelevant to second order. Similarly, in (98b} and
(99) the tildes can be replaced by carets, and the charge
density is obtained from (106) with n ~ given by the caret-
ed version of (99}and with n ~ (20) given by n ~(20).

This approach is simpler than the one described in
(104)—(106) because it uses plain diagonalizations, without
treating an overlap matrix, and it uses energy-dependent
scalings of matrix elements instead of matrix multiplica-
tions in the LMTO transformations. On the other hand,
it needs the ASA and the energies are only correct to
second, rather than to third order. Third-order energies
and the coinbined correction term may of course be calcu-

to second order. The last approximation holds when, as is
usually the case, the combined correction term is consider-
ably less than unity.

The renormalization may now be performed as follows.
In (76}each eigenvector is substituted by

biiL„,«}=[1+(s—e.w}'Piii] 'be, «},
and since the prefactor only depends on the state jk
through the energy the corresponding modification of the
projected density of states simply consists of the energy-
dependent scalings

D (s)=[1+(s—e„}p] 'D~(s)[1+(s—s„)p] ' . (105)

The charge density is then
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FIG. 8. Self-consistent valence-charge density of Si calculat-
ed without shape approximations for the potential and using the
LAP%' method {Ref. 14). The plane is the same as in Fig. 1.

FIG. 10. Same as Fig. 9, but using, instead of the TB-
LMTO's for bcc screening, the approximate, pure-Im orbitals
{see Figs. 1, 2, and 5).

lated via first-order perturbation theory as was mentioned
at the end of Sec. IIIF. The second-order energies must,
however, be kept as the intermediate argument of all func-
tions, otherwise the basis-set transformation cannot be
performed plainly through energy scalings.

H. Charge density in Si

In Fig. 8 we show the Si valence charge density calcu-
lated by Hamann' using the LAPW method and no
shape approximations for the potential. Among the estab-
lished charge densities for Si obtained from density-
functional theory this is presumably the most accurate.
Our valence charge density obtained from the self-
consistent LMTO-ASA calculation described in Sec. IIE
is shown in Fig. 9. This calculation simply used the
orthonormal representation (94), the second-order expres-
sion (99) for the density matrix and the first-order TB-
LMTO's described in Sec. II E.

The surprising, almost perfect agreement suggests that
the atomic-sphere approximation for the self-consistent
potential is a very good one. We suspect that the ASA
would suffice also for calculations involving symmetry-
lowering deformations, the only important point being

that the total-energy functional or force is evaluated using
the full charge density. In view of the ease and speed with
which self-consistent LMTO-ASA band- and Green's-
function calculations can be performed, this is a most im-

portant observation.
The only notable difference between Figs. 8 and 9 is

that the charge density obtained from the AS potential is
slightly higher in the backbond. Such an effect of the
ASA is conceivable although it is not clear whether this
small discrepancy does not result from differences in the
exchange-correlation potentials, the k-space samplings,
the treatment of the core etc (En. passant, we mention
that outside the core region our charge density looks ex-
actly like the one obtained by Hamann for a local, hard-
core pseudopotential. ~') It should be noted that the slight
discrepancy between our ASA result and Hamanns full-
potential result cannot be due to the neglected energy
dependence of the basis functions, i.e., to the fact that we
did not use the technique in Sec. IIIG, because also
Hamann used a straightly linear method, without involv-
ing P "(r) etc.

The most speedy way of obtaining a charge density is to
use the pure-lm approximation for the TB-LMTO's. This
was explained in Sec. II F and at the beginning of Sec. III.
The corresponding result for Si, using bcc screening, is
shown in Fig. 10, and in Fig. 11 it is compared with the
proper LMTO density of Fig. 9 along a nearest-neighbor

0
~ 0.08-

OQ-

FIG. 9. Same as Fig. 8, but calculated using the LMTO
method with s, p, and d orbitals on the atomic and interstitial
sites, as explained in the text, and using the ASA for the poten-
tial.

(Q0.0I
0

FIG. 11. Comparison of the charge densities shown in Figs. 9
and 10 along the Si-Si nearest-neighbor direction. Solid curve:
TB-LMTO. Dotted curve: pure-Im approximation.
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Si-Si direction. The effect of the pure-Im approximation
is seen to be rather large in the bond region, although it is
smaller than the effect seen in Hamanns paper of using a
soft-core pseudopotential. It is certainly also smaller
than the effect of spheridizing the charge density as done
in conventional LMTO-ASA calculations. Another mea-
sure of accuracy is provided by the fact that the "experi-
mental" valence charge density synthesized from x-ray
data resembles Fig. 10 more closely than Figs. 9 and 8.

IV. SUMMARY

In this paper we have demonstrated that solid-state
LMTO's constitute a highly accurate, minimal basis set
which is not restricted by shape approximations for the
one-electron potential. By the example of crytalline sil-
icon we have furthermore demonstrated that even the
charge density obtained from the simplest self-consistent
LMTO-ASA calculation is as accurate as those obtained
from the best state-of-the-art full-potential or first-
principles pseudopotential calculations.

The new technique that has allowed us to make full use
of the LMTO's is a recently developed formalism for
linear transformations in the Hilbert space spanned by the
LMTO's. This gives access to short-ranged, so-called
TB-LMTO's and to nearly orthonormal LMTO's. In
Secs. II A, II B, and II C, and in Sec. IIIF we have given a
self-contained account of this formalism. A useful way of
evaluating the TB-LMTO's has been given in Sec. IID,
and extremely simple, approximate orbitals, the so-called

pure I-rn orbitals, were introduced in Sec. IIF. Two dif-
ferent sets of silicon TB-LMTO's (both spanning the same
Hilbert space, of course) were presented in Secs. II E and
II G. It was mentioned, that for the purpose of describing
the valence band, the latter set could be truncated so that
merely five orbitals per atom remain. This is demonstrat-
ed in Ref. 19. The evaluation of the (non-spherically-
averaged) charge density from the LMTO-TB representa-
tions has been discussed in Sec. III, and the transforma-
tions to the TB representation from the various other rep-
resentations used in LMTO band- or Green's-function cal-
culations have been given in Secs. III 8—III F. For high-
ly accurate calculations we have, in Sec. IIIG, shown
how to go beyond the linear approximation for the MTO's
and the charge density.

This paper has been dealing with the LMTO transfor-
mation theory, the TB-LMTO's, and the charge density.
These techniques have recently been usedi4 in a first-
principles study of the bonding in a large number of semi-
conductors, not only by plotting charge densities, but also
by calculating quantities such as bond-orders, metallici-
ties, etc. A silicon Wannier function has been obtained as
well. Other papers discuss the real-space construction of
the TB structure matrix, ' i.e., of the canonical hopping
integrals, the contraction to minimal LMTO basis sets, ' a
Green's-function TB-LMTO method for extended defects
like surfaces and interfaces, and the a lication of the
recursion method to amorphous systems. The evaluation
of interatomic forces and the total energy using the full,
non-spherically-averaged charge density will be the subject
of a future paper.
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