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Optical bistability with surface plasmons in layered structures on a nonlinear substrate is studied
using Leung’s exact results for the nonlinear p-polarized surface waves. Explicit results for the
bistable behavior of the reflected field are given for two different geometries involving excitation of
short-range and long-range surface plasmons. The excitation of long-range plasmons results in a

much lower bistability threshold.

I. INTRODUCTION

Excitation of surface plasmons at metal surfaces is
known to be important in a large class of problems'? in-
volving linear and nonlinear interactions between elec-
tromagnetic fields and the atoms or molecules adsorbed
on the metal surface. Similarly nonlinear processes in
various materials can be enhanced by using suitable
geometries involving metal films and nonlinear materials.
The efficiency or cross section for a nonlinear process is,
in general, enhanced if surface plasmons are excited. The
enhancement is due to large local fields® present near the
metal surface if surface plasmons are excited. In a very
interesting paper Wysin et al.* suggested that this local
field enhancement can be quite useful in the study of the
bistable behavior of the light reflected from a nonlinear
interface. They presented a detailed analysis of the fields
produced in the Kretschmann geometry. Martinot et al.’
suggested different geometrical arrangements and have
now observed® optical bistability with surface plasmons.
The nonlinearity in the experiment of Martinot et al. is of
thermal origin. Various approximate*>’% schemes for
calculating the reflected fields in the geometry involving a
metal film on a nonlinear substrate exist. The surface
waves in the nonlinear medium make the nonlinear medi-
um inhomogeneous since the effective dielectric function
of the nonlinear medium depends on the intensity of the
field in the medium. The intensity of the surface wave
decays as one moves away from the interface. This
electric-field-induced inhomogeneity in the medium is the
major source of difficulty in as far as an exact calculation
of the fields is concerned. In the case of weak nonlineari-
ty such that one can neglect the transverse spatial deriva-
tives of the field-dependent dielectric function, one can
use an approximate nonlinear wave equation for the mag-
netic field.® In a recent paper Leung'® showed how the
exact calculation of the p-polarized fields in the nonlinear
medium can be reduced to quadratures and he presented
exact results for the nonlinear surface polaritons. The
purpose of this paper is twofold—(a) to use the exact
analysis of Leung in the context of optical bistability with
surface plasmons and to check the validity of the earlier
theoretical calculations and (b) to present results for opti-
cal bistability with long-range surface plasmons.'! The
long-range surface plasmons (LRSP’s) are specially attrac-
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tive since the local field enhancement is much higher'?
when LRSP’s are excited. Note that this extra enhance-
ment has been extensively used'® in the study of the non-
linear optical processes such as harmonic generation.

In this paper we present the exact results for bistability
with surface plasmons in layered structures. Thus in Sec.
IT we recall some of the results of Leung which are used
subsequently in our discussion of optical bistability with
surface plasmons. In Sec. III we obtain the exact expres-
sion for the reflection coefficient from a multilayered
structure on a nonlinear Kerr substrate. In Sec. IV we
consider the Kretschmann geometry and compare the ex-
act results thus obtained with the previous approximate®’
ones. We show that the results of Ref. 4 underestimate,
whereas our previous calculations overestimate, the bista-
bility threshold. Moreover, we present the exact numeri-
cal results for bistability with LRSP’s and compare
thresholds for bistability in the two cases when short- and
long-range surface plasmons are excited.

II. EXACT SOLUTIONS FOR P-POLARIZED
SURFACE WAVES IN NONLINEAR MEDIUM

Consider a semi-infinite isotropic nonlinear Kerr medi-
um with dielectric function €;=¢€so+a | E |* having the
plane interface along z=0. Assuming the x dependence
of the fields to be ~e'k"x and with no variation along y,
we can write Maxwell’s equation for p-polarized field
components in the form

By (§)=iesEL(E), (2.1a)
nB, (€)= —€/E,(£) (2.1b)
E (§)—inE,(§)=iB,(§) , (2.1¢)
where
wz kxc
b= c’ = @

The system of equations (2.1) can be reduced to a
second-order nonlinear differential equation of the form!'°

5,

e B, , (2.2)
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which with additional relations

€f=6fo+alE '2, (2.3a)

2
+7°

2
, (2.3b)

’

|E|*=|Ec |+ | B | =+ |—

€f

can be solved for B, and its derivative By. For B, and B,
we get the following expressions:

€
B}= —-—(61 -J), (2.4a)
y 277 —¢ S
(By)*=€+I —n*B} (2.4b)
where
€r—€ (€7 —€70)?
Iz_f__.f_o’ R A L (2.4¢)
a 2a

In the next section we look at the boundary-value prob-
lem where by satisfying the relevant boundary conditions,
we obtain the expression for the reflection coefficient
from a multilayered medium on a nonlinear substrate.

III. REFLECTION FROM A MULTILAYERED
STRUCTURE ON A NONLINEAR SUBSTRATE

Consider a stratified medium consisting of N layers oc-
cupying a region —h <z <0 on a nonlinear Kerr sub-
strate spanning z >0 (see Fig. 1). Let all the layers occu-
pying z <0 be linear. Let a p-polarized plane mono-
chromatic wave be incident at an angle 0 on the interface
z = —h from the left-hand side. The magnetic and elec-
tric field amplitudes at the interface z =0 on the linear-
medium side can be calculated from a knowledge of the
characteristic matrix'* of the stratified medium:

B,

E,

B
¢ -M . 3.1)
z=0"

*lz=—n+

Here M is the characteristic matrix of the stratified medi-

um occupying —h <z <0 and is given by
M=M(d|)M,(d,) - My(dy), (3.2)

where M; is the characteristic matrix of the jth layer with
width d; (j =1,N):

FIG. 1. Schematic illustration of the layered medium on a
nonlinear substrate.
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cos(k ,d ;) —-i—sin(k-,d‘)
M;(d;)= ) p; (3.3)
—ip;sin(k ;d ;) cos(k ;,d ;)
Here
ka w
p]_ koEj ’ kO'— c

is the z component of the wave vector and ¢; is the dielec-
tric kj, constant of the jth medium. kj, is related to the
angle of incidence 6 by the following expression:

ki =ko(€; —€;sin®6)' /%,

where ¢; is the refractive index of the medium from which
the wave is incident.

The field components B, and E, at z=—h are related
to the amplitudes of the incident and reflected magnetic
fields B, and B_, respectively, as follows:

B,=B,+B_
Exzpi(B+_B—) ’

(3.4)

where subscript i refers to the medium from which the
field is incident.

Making use of the results of the preceding section, i.e.,
Eq. (2.4), we can write

B, B, n1(0)
Ee|,_or = |Exnr(0) 3.5
where
B, x1(0) O e (00 —T(0)] . (3.52)
= |——[e - , .
»,NL 21]2—€f(0) f a
21172
B, N (0)
o 2 'y, NL
B (=i [1(0)—" | =2 l , (3.5b)
4
1(0)=E¥0), J(O):@—. (3.50)

We now require continuity of the tangential field com-
ponents B, and E, at z =0:

B, B,
Exl,_o-= |Ec|,_or - (3.6)

Equations (3.1)—(3.6) yield B, as parametrically given
functions of 7(0):

By =5{[m B, Np(0)+m 1 E, n(0)]

+f[M2|B ,NL(O)+m22Ex,NL(0)]] ’ 3.7)

Here my,; (k,l =1,2) are the elements of M. Introducing
By and Eyy in place of B ,NL(0) and E, i (0) by

E, n1(0)
[royp2’

_ Ba(0)

one can rewrite (3.7) as

NL = (3.8)
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a| B |*=(5)al | (myBap+mpEny)

i’p_[i'(mZIENL +mpEny)|?, (3.9
12
(€0+al) e,0+9;i}
By = 27 —(ego+al) ’ 39
12
7 €f0+22!’
B =i (3.9b)

1—
(ef0+a1)[27]2—(ef0+a1)]

In (3.9) we have written I instead of 7(0). Henceforth
al is treated as a parameter and @ |B, |2 a|B_|% and
corresponding R = |B_/B . |?* are calculated for given
values of al. It will be shown in the next section that R
versus a | B, | % curves show hysteresis when the system
has a positive (negative) angle detuning from the surface
plasmon resonance and the nonlinearity constant « is pos-
itive (negative).

In a previous work® we had used the approximate non-
linear wave equation for the magnetic field

d’B,
dz?

gi=¢€;sin*0—¢p

=k{(g’—a’'|B, | 1B, ,
(3.10)

with the solution
2 | gexplic +izko(€so)'*sind]

’

a

B, =

, ,  B1D

coshkog(zg—2z)

where z, and c are constants. Using Eq. (3.10) with solu-
tions (3.11) we found out that the reflected and incident
intensities can be expressed as

U | ke
ri— 4 1+U, 11 =-71821 kiz
2
o 1=U ko€;
£ L m 0% 3.12
€0 1+ U, 12222 k;; 1)
where
a’ a
Ui=§§313+12, U,=?g7|3-lz,
(3.13)

_a 2
Ut" 8g2 {Bt' ‘

Here B, are the incident and reflected fields as before
and B, is the transmitted field.

IV. EXACT NUMERICAL RESULTS
ON OPTICAL BISTABILITY
WITH SHORT- AND LONG-RANGE
SURFACE PLASMONS

The general idea underlying optical bistability in
resonant systems is that the system under consideration
should possess a sharp resonance, the location of which

depends on field-dependent parameters. In a slightly de-
tuned system a rise in the intensities may affect corre-
sponding changes in these parameters thereby causing the
system to “sweep over” the resonance. For appropriate
detuning and parameter values this may result in a func-
tional relation between the reflected (or transmitted) field
and the incident field which is multivalued. This in gen-
eral leads to hysteresis. This is true for various systems
such as nonlinear vibrators'® and nonlinear Fabry Perot
resonators.'®

Keeping the aforementioned in mind we study the
linear characteristics namely the R versus 6 dependence
where 0 is the angle of incidence. Detuning the system
slightly we examine the behavior for increasing intensities.
We present results for two important geometries so that
different types of surface plasmons can be excited.

A. Optical bistability with surface plasmons
in Kretschmann geometry

We first consider the excitation of surface plasmons in
the Kretschmann geometry and the role of surface
plasmons in the bistable behavior of the reflected field.
The nonlinear medium is taken to be CS,. This is the sys-
tem previously studied by Wysin et al.* and by us using
various approximation schemes.® We use the same set of
parameters as those used by Wysin et al., i.e., we use
€=3.6, €, =—57.84i0.6 at A=1.06 um; €7,=2.25.

5.0
]64Uic
r /L
0.0
53.76° 8 53.96°
R
1.0
W I G L2
0.5
1.0 20 6o Ui

FIG. 2. Reflection coefficient as a function of the incident
field intensity in Kretschmann geometry. Curves marked W
and G are from Ref. 4 and Ref. 7, respectively. Curves marked
L1 and L2 are the exact results for different angles of in-
cidence, namely, 6=53.90° (L 1) and 6=53.94° (L 2). The inset
gives the switching intensity as a function of the angle of in-
cidence. G—from Ref. 7 and L—exact result.
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FIG. 3. (a) Reflection coefficient as a function of 0 for low
intensities in Sarid configuration (prism-index matching
liquid—Ag-CS,). The inset shows the geometry with medium
parameters f,-:é. 145; €,=€50=2.54, €,=—67.03+2.44i, and
A=10600 A. CS, parameters are taken from the work of
Hellwarth (lgef. 19). Curve marked I corresponds to LRSP with
d1=35000 A and d,=160 A, whereas II to SP with d,=100 A
and d,=500 A. (b) Reflection coefficient as a function of the
normalized intensity U; in Sarid configuration. Parameters
used are the same as in (a). Curve marked I correspond to
LRSP and II to SP: , exact results; — — —, approximate
results using (3.12).

The reflectivity as a function of the incident field intensi-
ty U;, defined by!’

alB+[2

= 8esol€;sin’0—esq)

4.1)

is shown in Fig. 2; we also show in this figure the results
obtained in previous works. The inset in the figure gives
the switching intensities as a function of the angle of in-
cidence. The results for the switching intensities are also
compared with those obtained previously using the solu-
tion (3.12). It is clear from this figure that the approxi-
mate solution of Ref. 4 underestimates and the solution of
Ref. 7 somewhat overestimates the threshold intensities.
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B. Optical bistability with long-range surface plasmons

We next consider what happens if the metal film is very
thin. We consider the geometry used by Sarid and co-
workers.!"1? It is known that in this geometry it is possi-
ble to excite both long- and short-range surface plasmons.
The long-range surface plasmons (LRSP’s) are known to
produce much higher enhancement of the local fields,!?
i.e., fields near the metal surface. Therefore the bistability
threshold is expected to be much lower due to higher ef-
fective fields in the Kerr medium. The results of our nu-
merical calculations for this geometry are presented in
Fig. 3. We choose two sets of parameter values to make
the system (a) pseudosymmetric so that LRSP’s can be ex-
cited; (b) highly symmetric where only surface plasmons
(SP’s) (short range) are excited. Before studying the bista-
bility in such cases one needs to have the detailed struc-
ture of the linear reflectivity in these two cases so that the
positions and widths of the resonances are known. Figure
3(a) exhibits these resonances in the linear case. One finds
the resonance at 6y pgp=40.1501° with a half-width at
half maximum (which is inverted) A=0.0035" for (a) and
6sp=40.985° with half-width at half maximum (which is
inverted) A=0.15° for (b). For computing the bistable
behavior, we set the initial incident angle at detuning
equal to 2A. Figure 3(b) shows the bistable character of
the reflected field in the two cases. A comparison of the
threshold intensities for the two cases clearly shows that
one can lower the threshold by at least one order of mag-
nitude if one is using geometries so that long-range sur-
face plasmons are excited. We also show in Fig. 3(b) the
results obtained using the approximate hyperbolic secant
solution [Eq. (3.12)]. The approximate solutions are strik-
ingly close to the exact solutions for the reflected field for
the case (a).

V. CONCLUSIONS

In conclusion we have presented the exact results for
optical bistability with surface plasmons in layered media.
Explict numerical results have been given for the Kretsch-
mann and Sarid geometries. Field-induced inhomo-
geneities are fully taken into account. Our analysis re-
veals that LRSP bistability occurs at a much lower inten-
sity threshold than short-range surface plasmon bistabili-
ty. We have analyzed the case when the angle of in-
cidence is fixed and the intensity is varied. It has been
pointed out that a wave-guide system on a nonlinear sub-
strate can show angular as well as frequency bistability.'®
We hope to present an analysis of this system, in terms of
the exact solutions of Leung, elsewhere.
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