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The effects of disorder on the formation of the coherent state in heavy-fermion systems are stud-

ied. The renormalized heavy band, characterized by an effective hybridization parameter, is desta-

bilized by a critical strength of impurity scattering leading to self-energy corrections of order T&.
For a higher degree of disorder the heavy-fermion system will behave much like a collection of in-

dependent Kondo impurities, lacking the characteristic signatures of coherence in resistivity, specific
heat, etc. The substitution of impurities on the conduction-electron side has a little influence on

coherence; most of the effect comes from the strength of impurity scattering on the f-electron sites.

The results are discussed in connection with experimental data.

The discovery of superconductivity' and other
anomalous properties of heavy-fermion compounds has
led to intense theoretical and experimental' activity in an
effort to understand the physics of this new class of met-
als. It has become increasingly clear that there is a need
to understand precisely the normal state of these materi-
als, frequently referred to as a Kondo lattice state, before
more exotic problems concerning superconductivity can
be successfully resolved.

One of the most intriguing characteristics of heavy-
fermion materials is the development of "coherence" in
their low-temperature properties. In the standard dilute-

impurity systems as the temperature decreases below T»
( Ttt is the Kondo temperature which determines the ener-

gy scale for a single magnetic impurity in metal} the
quantities like resistivity and the specific-heat coefficient
show a monotonic rise, saturating to a maximum at zero
temperature. This behavior is now well understood
theoretically both from the numerical calculation using
the renormalization group and from the analytical ap-
proaches using Bethe ansatz results. In heavy-fermion
systems, however„ the resisitivity reaches a maximum at
some finite temperature To, which is generally lower than
T~ and then decreases sharply to a relatively low value at
T=O. Similar manifestations of coherence have been
observed in other quantities and there seems to be plenty
of evidence that at T ggTo the behavior of most of the
heavy-fermion compounds is consistent with that of the
strongly renormalized Fermi liquid, with itinerant heavy
electrons having the effective mass of order 10 coherently
propagating through a lattice. The question of the forma-
tion of this coherent state in the Kondo lattice, and the
nature of the residual interactions of the heavy electrons
constitute a major challenge in this field.

~ile at present there is no complete answer to ihe
above questions there is a reasonably uniform picture
emerging from various approximate treatments of the
periodic Anderson Hamiltonian, which is a usual starting
point in studies of the Kondo lattice problem. Despite
differences in details, most of these approaches, which in
the end employ some form of variational or mean-field

approximations, predict that at T =0, or at T «» To, the
heavy-fermion behavior arises through the coherent hy-
bridization of the c- and f-electron derived bands, result-
ing in the enhancement of density of states at the Fermi
level. This enhancement is described by an effective hy-
bridization parameter strongly renormalized from its bare
value due to interactions.

In this paper I study the effects of random disorder on
the self-consistent solution to the Anderson lattice Hamil-
tonian. I will be working within the framework of the
T=0 Kondo boson field theory (KBFl'} (Ref. 9) but
qualitatively similar results could be reached using other
approaches listed in Ref. 8. In KBFl' the intrasite
Coulomb repulsion U is set to infinity which restricts the
occupancy of the f level to zero or one. This restriction is
accomplished by introducing additional Bose fields b; for
each site and writing the Anderson Hamiltonian as

H~a ——gggctHi, —g g Eyf; f;

+ g Vb;f; c; &+H.c. ,
1

Eg;

where c; ~ projects out the mth aximuthal angular-
momentum state around the site i out of the conduction-
band state, —E~ &0 is the bare energy of the f level, V is
the hybridization matrix element, and N~ is the degenera-
cy of the f level. With this Hamiltonian the operator
Q;=b; +n~ is conserved. By restricting to the subspace

in which Q; = 1 the double occupancy of the f sites is
eliminated.

The mean-field approximation for HK& consists of re-
placing the operator b; by a c number. In the "clean"
case the lattice periodicity requires that b; is the same at
every site. The theory now has two parameters, 6 and the
Lagrange multiplier A, introduced to assure that Q;=1;
the values of these parameters which minimize the total
free energy are determined from the set of self-consistent

equations
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(3)

Hz;, ——W/ f; f;.+W, .c;+Wj, b;f; c;+.H.c. (4)

Potentials 8f, 8', ., and 8'~, are taken to be Gaussian

random variables satisfying the following relations:

(5)

2( Wj(c,fc};Wf(c,fc) ) = Wf(c,fc)6ij

where ( ) denotes the average over randomness. Hz;, de-
scribes the most general effect of random impurities; in
heavy-fermion systems these effects can involve lattice
stresses and imperfections, the substitution of La for Ce
and Lu for U, the substitution of impurities on the con-
duction electron side, etc.

In the presence of disorder, lattice periodicity is lost
and A,; and b; will generally vary from site to site. If the
disorder is weak, however, i.e., if the self-energy correc-
tions arising from W are small compared to

V b (T =0)/D=Tx,

we can average over the disorder using a perturbation ex-
pansion. This will lead to a theory in which A, ; and c
number b; are replaced by their averages; these averages
are then self-consistently determined from Eqs. (2) and (3)
appropriately modified to reflect the presence of disorder.

This modification involves finding the self-energy
corrections arising from the random impurity scattering
and inserting the disorder averaged G& (k, co) in Eq. (2).
To find the self-energy we employ the self-consistent Born
approximation (SCBA). For simplicity, and to make the
notation more compact, we now set N~ ——2 and drop the
spin indices in the rest of the paper; we also choose to
write equations in a more convenient matrix form defined
by the following representation for the Green's function in
the absence of disorder,

The b&0 solution to Eqs. (2) and (3) becomes possible for
temperatures less than

TMF ——1.14D exp[ E//—N(0)V ]=Tx,
where D is the width and N(0) is the density of states in
the conduction electron band. Below TMF there is a
coherent hybridization of the c- and f-electron states with
bV playing the role of the effective hybridization matrix
element. The mean-field solution is shown to be exact in
the N/~ ~ limit. ' For finite N/ the fluctuations are ex-
pected to alter the mean-field result; still, as long as Nj is
large and T «TMF we can assume that the mean-field
solution is qualitatively correct. At T =0, in particular, it
is equivalent to a number of other models.

The disorder is simulated by the extra piece
Hz;, ——g,.Hz, which we add to the the Anderson Hamil-

tonian,

GI(k, co) Gj;(k,co)

G,g(k, ~) G, (k, co)

In the SCBA the self-consistent equation for the self-
energy matrix X(co) can be written as follows:

X(co)=g WG( k,co)W,

where

G '(k, co) =Go '(k, co) —X(co),

and form of the matrix W is obvious from Eqs. (4) and
(6). Equation (8), together with (2) and (3), now forms a
set of coupled equations from which b, A, , and X(ro) are to
be found.

This set has, in general, quite a complicated structure
and one has to look for a numerical solution. Some of the
overall qualitative features are, however, evident. Firstly,
there is a decrease in the value of the effective hybridiza-
tion matrix element bV as the disorder is turned on. The
presence of impurities and imperfections therefore does
affect the formation of the coherent band of heavy quasi-
particles. For some critical degree of disorder b V=0, and
for stronger disorder there will be no self-consistent solu-
tion for the renormalized band. If, in order to make the
equations more tractable, we set 8~, ——0 and also assume
8f—IY —$V the critical value is

W'"'=1.9V b (T0=0)/D Tk,

where bo is solution in the absence of disorder. Figure 1

shows b/bo as a function of W. Another parameter of
the theory, the "chemical potential" A, , is only slightly
changed in the presence of disorder.

Secondly, there is a large disparity in the effects on
coherence arising from disorder on the f- and c-electron
sites. To produce a considerable depression of b, Wj has
to be of order Tx, while W, has to be of order D. Conse-
quently, a significant disorder of the conduction band is

b(T~0)
bo(T 0)

0.5

l

0.5
'g l Vlfcrit

FIG. 1. Effective hybridization matrix element as a function
of the degree of disorder.
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necessary to affect the coherent band formation. This can
be illustrated by evaluating the reduction in TMF pro-
duced by disorder. While the mean-field approximation
may not be entirely reliable at T= TMF the advantage is

that the calculations can be performed analytically. The
same conclusions can be reached by a numerical calcula-
tion of b ( T =0). For simplicity we again set Wf, ——0 and
proceed by writing down a form of Eq. (2) linearized in b,

6—,=1+W, Wf g I
b' '

i, [ico+Ef A, —Xf(i—co)][ice g~ —X,(i—m)]
(10)

and Xf(iso) and X,(iso) are determined self-consistently
from Eq. (8). g„denotes the sum over the Matsubara
frequencies. Assuming that Wf «T~ and W, &&D, Eq.
(9) can be rewritten in the following compact form:

TMF
ln

TMF

8'J

2(2m) T

2X(0)W, D
ln

D TMF

N(0)Wf W,

2TMF

where TMF is the solution for zero disorder.
From (11) it is clear that if Wf and W, are of the same

order the contribution from the first term dominates,
those from the second and third term being a factor of or-
der ( Tx/D) and ( Tx/D )ln(D/Tx ) smaller, respectively
The contribution of the last two terms becomes compar-
able to that of the first term only if
W, /Wf=D/Tx-O(10 ). Thus, unless the conduction
band is substantially disordered (i.e., W, =D), the depres-
sion of TMF and, of course b(T =0), are determined by
the size of random potential on the f sites. This result is
less surprising when one realizes that the spectral weight
of the f electrons at the Fermi level is a factor of -D/Tx
larger than that of c electrons. "

Most of the low-temperature properties of heavy-
fermion compounds are dominated by the large peak in
the electronic density of states arising from heavy band
formation. To calculate the density of states for finite
disorder it is necessary, for the most general case, to solve
three coupled integral equations. This is exceedingly com-
plicated and we again simplify the problem by setting
Wf, ——0. The dynamical density of states is defined as

N(co) = ——Im g TrG (k,co),
1

(12)

(a) (b)
Wcrit

W
Wui~ =0&

5.0-

0.0

10.0-
(c) N

crt~=0.8
W

W

Wcrit"
'

5.0- 2Tp

For zero disorder we obtain a familiar structure result-
ing from the hybridization of the two bands. s If the Fer-
mi level is placed in the region of the enhanced density of
states right below the gap the low-frequently quasiparticle
excitations will be "heavy fermions" with effective mass
of order D /b Vz=D/Tx. As the disorder is turned on,
the sharp features are gradually smeared and the peak is
significantly reducixl. Finally, for W=W'"' the initial
structure is completely washed out. It is tempting to asso-
ciate the typical structure in Fig. 2(c) with the shape of
density of states inferred from the specific-heat experi-
ments of Bredl et al 'and. , in particular, to identify the
halfwidth of a "pseudogap" with the "coherence" tem-
perature To Howeve. r, a word of caution is necessary
here since To is probably dependent on the residual in-
teractions between heavy fermions, which are ignored in
the mean-field approximation. At any rate, it appears

where G(k, co) is the full Green's function determined by
solution to Eq. (8). The results for N(co) are presented in
Fig. 2. In real heavy-fermion systems D/Tx-O(10 ):
As a result it is quite difficult to draw a figure clearly ex-
hibiting all the structure in the density of states. To make
the figure legible I have chosen to plot the results for
D/Tz ——10 which illustrate the same qualitative behavior.

OO I I

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5
ap/0

FIG. 2. Dynamical quasiparticle density of states for various
degrees of disorder. As explained in the text we choose
(D/Tg )= 10.
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that the coherence temperature To is a quantity critically
dependent on the purity, structural defects, and other ma-
terial characteristics of a given sample.

%e interpret these results as indicating that, above a
certain concentration, the impurities prevent formation of
the heavy band. Heavy-fermion materials in which the
disorder exceeds the critical value are expected to show a
smooth crossover to the concentrated Kondo impurity
behavior lacking the characteristic signatures of coherence
in low-temperature resistivity, specific heat, etc. To fur-
ther clarify this note that b; is a local field, the similar
mean-field solution exists for the single impurity prob-
lem. Our approximate treatment of the random scatter-
ing was based on the assumption that the average value of
the b field is much larger than its rms fluctuations. For a
disorder approaching the critical value this will no longer
be the case and one will have to consider the spatial varia-
tions of b; and A,;. These variations will tend to adjust to
the local impurity configuration, leading to behavior in-

creasingly similar to that of independent Kondo moments.
This would tend to increase our mean-field estimate of
IV'"'. The upper bound for 8""' seems to be given by
V /D, so we can conclude, in general,
Tk & 8'f'"' ~ V /D. ' W'"' sets the overall scale at which
the crossover from the Kondo lattice to the concentrated
Kondo impurity system. One should note at this point
that, while the disorder strongly affects the coherent
behavior, the thermodynamics is expected to change very
little. This is the consequence of the Kondo temperature
T~ still setting the overall energy scale, as one can see
from Fig. 1(d).

The above conclusions seem to be supported by experi-
ment. ' Very low concentrations of impurities in UBe»
lead to depression of the coherence peak in resistivity to
lower temperatures and to an increase in its residual value.
Ultimately, resistivity shows a monotonic, sharp rise as
the temperature is reduced, indicative of a loss of carriers.
This is dearly in accord with our conclusions concerning
the breakdown of the heavy band. Similar features have
been observed in experiments with other heavy-fermion
systems. ' A common way of disordering heavy-fermion
materials is through substitution of Ce or U by their
neighbors in the periodic system which do not have f elec-
trons (for example La or Lu). In the lowest order approx-
imation we can model this situation by setting the hybrid-
ization matrix element V to zero at impurity sites.
%ithin our SCBA scheme the "critical" concentration c
necessary to destroy coherence is then =50%; similarly if
one applies the coherent potential approximation (CPA) to

the same problem, c =33%. These high values for c are
not surprising since modeling the effect of impurities by
only setting V=O at appropriate sites completely ignores
the "Kondo volume collapse". ' Impurity atoms cause
significant local changes in the volume of the unit cell ac-
companied by strong internal stresses. The characteristic
pressures involved are typically of order
=10—10 (Tx/Qo), where Qo is the unit-cell volume. ' '
If we represent these internal stresses by randomly vary-
ing potential the critical concentration is brought down to
1—10%. This clearly indicates the importance that the
Kondo volume collapse and impurity size effects have for
coherence and is particularly significant in the context of
our result that scattering on the f sites is more important
than on c sites. On a qualitative level, we predict that the
critical concentration will be smaller for large impurity
atoms, like La or Lu, which tend to occupy Ce or U sites,
rather than for small atoms which will preferably occupy
sites of a host metal (Be, Pt, or Cu). For more direct com-
parison with experiment, however, realistic models for the
matrix 8' are required dealing with the specific impurity
atoms in a given compound; work is in progress along
these lines. '

In summary, we have presented the first study of the
effects of disorder on the coherent heavy band formation
in heavy-fermion materials. Our results indicate that the
disorder strongly affects coherence, and correspondingly
may induce significant changes in the effective interac-
tions between the heavy fermions. The Kondo volume
collapse and the impurity size effects appear to be quanti-
tatively dominant factor in suppressing the formation of
the heavy band. For disorder close to the critical value we
expect that the spatial variations in b become very impor-
tant; formulating the description in which these variations
are taken into account and therefore obtaining a more de-
tailed understanding of the "crossover" between the Kon-
do lattice and the collection of single impurities would be
a natural extension of this work.
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