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Localization of electronic wave functions due to local topology
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%'e present a simple two-dimensional hopping model for independent electrons which has strictly

localized states in addition to the extended states. These localized states can exist either in a band

gap or within the continuum. The localized states persist if the lattice periodicity is destroyed. Fi-

nally, the effect is shown to hold for a much more general class of systems.

I. INTRODUCTION AND DESCRIPTION
OF THE MODEL

During an investigation of the effect of lattice quasi-
periodicity on the localization of the electronic wave func-
tion, ' we were surprised to find localized states both
within the bands and within the band gaps, but for
reasons which apparently had nothing directly to do with
the lack of periodicity in the model. Instead, the existence
of these states —either strictly localized about a point or
localized in all but one dimension to a line—seem to de-
pend only on the local topology.

This observation is not new, but in this paper we
wish to understand it better so that we can separate the ef-
fects of local topology from those of the global aspect of
quasiperiodicity or nonperiodicity. For this reason we
have constructed a very simple two-dimensional hopping
model for noninteracting electrons which illustrates very
clearly all of these effects: (i) First, the model has strictly
localized states, and thus the spectrum is highly degen-
erate so that the density of states has a 5-function peak
whose height is proportional to the number of sites in the
crystal. (ii) Second, the model also has extended states.
(iii) Third, the model may be made random, so that the
strict periodicity is destroyed, yet the localized states per-
sist. (iv) Fourth, the localized states may either be within
the band or within the band gap of extended states.

The usual mechanisms of localization are several: ' lo-
calization due to impurities, Anderson localization due to
a disordered lattice, ' localization due to the electron-
electron Coulomb repulsion as in the Mott transition, "
and probably others. The mechanism we study in this pa-
per might best be termed topological localization, since it
depends only on the local topology of a finite portion of
the lattice. Wherever this particular lattice configuration
occurs locally in the lattice, there we will find a localized
state.

Since the states are strictly localized on identical lattice
configurations, they are degenerate in energy. If we
wished, we could thus take superpositions with a suitable
phase and create Bloch wave functions. More important-
ly, if a small perturbation is added to the Hamiltonian so
that our previous states are no longer exact, the band of
states can be expected to acquire a finite width. For a
periodic lattice, the new states would be extended, al-

though with a very large effective mass. For other lat-
tices, such as quasiperiodic or random, the nature of the
states is an open question.

We begin with a triangular lattice. The electrons can
sit on the sites of the lattice, and where there are bonds
between sites, there are nonzero hopping matrix elements
in the Hamiltonian. There are no other nonzero hopping
matrix elements, and the on-site diagonal energies are all
the same, which we take to be the zero of energy. Finally,
we ignore spin by treating each spin component indepen-
dently.

Now we modify the lattice by removing one-third of
the bonds; this means that we set the corresponding hop-
ping matrix elements of the Hamiltonian equal to zero.
The result is shown in Fig. 1. This is the dice and
decorated dice lattice studied by Morita and Horiguchi.
(At this point ignore the distinction between circle and
square sites. ) We shall speak of pairs of sites connected
by a bond as nearest neighbors; this is what we mean by
the topology of the lattice. In Fig. 1, the unit cell is indi-
cated by the rhombus; it contains 9 sites and 18 bonds.
We take the distance between nearest-neighbor sites to be
1, so the repeat distance is 3.

Now, with Fig. 1 in mind, let us make some observa-
tions about the lattice. The lattice divides into two types
of sites indicated by circles and squares, which we call
"rim" and "hub" sites, respectively, so that a nearest-
neighbor pair consists of one rim and one hub site. The
electrons hop back and forth from rim to hub. The lattice
is thus bipartite, and consequently the energy spectrum is
symmetric if we reflect about the origin. The ratio of riin

FIG. 1. A portion of the lattice; all symbols are described in

the text.

34 5208 Qc 1986 The American Physical Society



LOCALIZATION OF ELECTRONIC %'AVE FUNCTIONS DUE TO. . . 5209

to hub sites is 2:1, and the rim sites have coordination
number 3, while the hub sites have coordination number
6. The average coordination number is 4. The rim sites
form a hexagonal or honeycomb lattice, and the hub sites
a larger triangular lattice.

II. LOCALIZED STATES

Let us now assume that all nonzero matrix elements—
represented by a bond in Fig. 1—have the same value
which we take to be 1. Then the Schrodinger equation is
a matrix equation, and if we now restrict ourselves to the
eigenvalues with zero energy, it says that the sum of the
wave function of the electron on all nearest-neighbor sites
about every site is zero.

Consider now the six rim sites numbered 1 to 6 in Fig.
1. They form a wheel about a hub site centered in the
unit cell. We claim that an eigenstate of the Hamiltonian
with zero energy is given by a wave function which van-
ishes everywhere except on the rim of six sites, and there
the (unnormalized) wave function is %(n)=( —1)". To
verify, the sum of this wave function on rim sites
nearest-neighbor to each of the seven surrounding hub
sites must vanish, or 4(n)+4'(n + 1)=0. [%(n +6)
=4(n). ] This is obviously so.

Thus we have ag. eigenstate with zero energy. It is cer-
tainly localized or bound, since it vanishes everywhere off
the rim. Furthermore, we could have centered such a
state on any of the equivalent hub states; the states are
highly degenerate.

III. THE BAND STRUCTURE

Let us go on and identify the complete spectrum, by
determining the band structure. Since the lattice is
periodic, and hence invariant under translations by 3 in

directions parallel to the sides of the unit cell, we can clas-

sify the states by the irreducible representations of this
translation group. This is the Bloch or Floquet theorem.

Let w„w2, w3 be three unit vectors in the lane of the

crystal, where wi ——(1,0), wz ——( ——,, 3/2), and

w3 ——( ——,', —~3/2). Then the sites of the crystal are

given by n, w, —n2w3, where n, ,n2 are integers. If the
wave function at this site is %(n i,n2), then we impose the
condition on the wave function that %(ni+3, n2)
=a+(ni, n2) and %(ni, n2+3)=bill(n, ,n2), where

a exp(=3ik wi) an. d b =exp( —3ik w3).
Now the Hamiltonian can be written as a 9X9 matrix

for a particular representation a, b Furthermore. , since
the lattice is bipartite, the only nonzero elements are be-

tween rim and hub sites, and vice versa. Thus, if we

choose our basis so that the first six states are on the rim

sites arranged in order, and the next three states are on the

A, B,C, hub sites, then the Hamiltonian has the matrix
oITIl

1 1 1 1

M= a ' b ' b ' I 1 a

The three localized statqs about hub sites A,B,C are zero
eigenvectors of M, and for general a,b they will be the
only zero eigenvectors, since they must be orthogonal to
each of the three six-dimensional row vectors of M. On
the other hand, in general there wi11 be no zero eigenvec-
tors of the 6X 3 matrix Mt, for they are over constrained.
The remaining six nonzero eigenveetors and their eigen-
values can be found by diagonalizing the 3&&3 matrix
M Mt. The eigenvalues of this matrix are E, and thus
they each give two energy eigenvalues. The resulting cu-
bic equation is easily solved in closed form.

%henever a =1, or b =1, we do not have a new state.
Thus all properties of the problem —and thus the energies
in particular —are periodic functions of the two-
dimensional vector k. The various branches of this func-
tion, obtained by following particular eigenvalues as func-
tions of k, are the energy bands. The unit cell of this
periodic function is the Brillouin zone. We choose the
Brillouin zone as a hexagon centered at the origin, with
vertices located at +(4n/9)w/ An ide.a of the band struc-
ture can be gained by following the eigenvalues from the
origin 0, out to a vertex V, along the perimeter to a mid-
point P, and then back to the origin. These are the points
of highest symmetry. The resulting band structure is
shown in Fig. 2.

We see that there is no band gap at zero energy, and
thus the localized states sit within the continuum. This is
because when a =b =1, the three row vectors of M be-
come degenerate, and therefore the dimension of the zero
eigenvalue subspace is now 5. In addition, all the row
vectors of Mt become degenerate, and so we pick up two
more zero-energy eigenstates.

-3

6y60
M —3X30

The matrix M is a 3 X 6 matrix. M is given by FIG. 2. Band structure of the first model, with degeneracy.
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FIG. 3. Density of states for the first model, with degenera-

cy.

-3 -2

FIG. 4. Density of states for the second model, in which the
degeneracy is lifted. We have taken the parameter 5 to be equal
to 2. Note the band gap centered on E =0.

However, the localized states do exist at the energy
where two band edges just touch, at the single point k=0.
This is reflected in the fact that the density of states van-
ishes at E =0. We calculate the density of states by im-

posing doubly periodic boundary conditions, so that
a+=1 and b =1. Then the vector k can only take
values on a triangular lattice with lattice spacing 2'!3N,
and the Brillouin zone has exactly N points correspond-

ing to the 9X energy eigenvalues. We define the density
of states p(E) so, that 9N f p(E')dE' is the number

of states with energy less than E; it approaches the limit
of a continuous function as N becomes large. We show
the density of states in Fig. 3. Rather than performing a
numerical integration using the analytic band structure-
we are not interested in the model itself, but rather its
qua1itative features —we instead find the exact density of
states for a flnite lattice of 8100 sites. Thus the Van Hove
singularities which occur at energies wherever Vi,E(k)=0
are smoothed out.

IV. LIFTING THE DEGENERACY

It is qualitatively reasonable that the localized states
should sit at a point with a decreased density of states, for
in a sense these states have been removed from the contin-
uum. Another way to look at it: All other states must be
made orthogonal to each of the localized states, which
places severe local constraints on the wave functions.

From the discussion of the preceding section, we under-

stand the reason for the additional degeneracy at k=O,
which has the consequence of placing the localized states
in the continuum. It might be interesting to lift this de-

generacy so that the localized states actually sit in a band

gap. We do this by keeping the row vectors of M nonde-

generate for all a,b, by having the hopping matrix ele-

ments about each of the hub sites A,8,C different. How-
ever, we still want to preserve the localized states about
each of these hubs, which constrains the possible weights.

%e could investigate the general problem, but instead
let us simply take an example. About each hub site of
type A,8,C is a wheel of six rim sites numbered 1 to 6 as
in Fig. 1. I,et the hopping matrix elements be designated
aj,b~, cj, respectively. Impose inversion symmetry so that
aj+i ——aj, etc. For our example, we take a=(1,1,1),
1=(1, i,b, )[3/(2+5')]'", c=(b„b„1)[3/(2h'+1)]'~'.
The localized state about A is now

(1,—l,b„—b, , b, , —b, ), with similar expressions for the
others.

For the band problem, the Brillouin zone is the same
hexagon, but the band structure itself no longer has this
hexagonal symmetry. Instead, it only has two perpendicu-
lar reflection planes, corresponding to the symmetry of a
rectangle. We present the density of states in Fig. 4,
where the central band gap is apparent. As before, the in-
finite lattice is approximated by a finite lattice of 8100
sites. The wiggles near E =3 are thus smeared Van Hove
singularities from extrema in the bands, as the bands in
Fig. 2 separate.

V. CONCLUSION AND A THEOREM

Clearly we have demonstrated that the existence of lo-
calized states may depend only on the local topology of
the hopping matrix elements. For instance, consider a
wheel of six rim sites. If we fix the hopping matrix ele-
ments to each of the seven neighboring hub sites so that
we have a state localized on the rim, we can do whatever
we wish with the rest of the crystal —it doesn't matter-
for the localized state will continue to exist. It is stable
against such distortions. In particular, such a mechanism
for localized states operates regardless of whether the lat-
tice is periodic, quasiperiodic, or random. Of course, the
mechanism is independent of dimensionality.

In fact, we can even make the following very general
argument. Consider a bipartite lattice in any number of
dimensions. The first sublattice consists of Nz sites of
type A, the second of Ns sites of type 8; the total number
of sites is N =N„+Xiii. The electrons can only hop from
A to 8, or back. Assume the energy of an electron on site
A is E„, on site 8 is Es. Then if we order the basis of
states properly, the Hamiltonian has the forin

Here, I~ is an Xz QNz unit matrix, I& is an X~&(X~
A B

unit matrix, M is an Xz /X& matrix, and M is its ad-
joint, an Xz &(Nz matrix.

If +z is a null vector of M, then we may choose all

components on the 8 sublattice to be zero, and we have an
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eigenvector with eigenvalue Ez. Likewise, for a null vec-
tor of Mt, we have an eigenvector with eigenvalue E~
confined to the 8 sublattice.

Let Nz be the dimension of the null space of M, and
Nli the dimension of the null space of Mt. However, Na
is also the number of independent linear relationships be-
tween the row vectors of M, and thus the dimension of
the null space of M is the dimension of the row vectors of
M less the number of independent row vectors of M, or

Nq N~——(N—g Ng—) &Ng Ng —.0 0

Therefore, if it happens that the lattice sites are not ex-
actly half A and half 8, but instead suppose
Nq /N & N~/N, then we have shown that the energy level

Ez is degenerate with a degeneracy proportional to the
volume of the sample, or Nz & N(N~ /N Ng/N—). This
signals that we have a finite density of localized states in
our system, entirely confined to the A sublattice. (Howev-
er, the localization could conceivably be of a more general
type, such as localization in momentum space. )

The eigenfunctions for values of energy other than
Ez,Ez can be found by diagonalizing the non-negative
Nq XNii matrix M Mt,

MM iPg (E E——g)(E —Eg)P—g .

Let the eigenvalues of MMt be co. Then the energy
eigenvalues are

E =«~+Ea)/2+ I f«~ Ea)/2]'+—~'I'"
so that there is an energy gap between Ez and E~. The
energy spectrum is symmetric about the point
(Eg +Eg )/2.

Finally, we emphasize that for our general argument,

we have nowhere required that our lattice be periodic or
regular, either in the topology of the lattice or in the
strength of the hopping matrix elements of M,Mt. How-
ever, our argument does not cover the case of on-site dis-
order as in the Anderson model.

Note added. I would like to thank T. C. Choy for
pointing out to me a reference to an earlier paper of T.
Horiguchi and C. C. Chen [J. Math. Phys. 15, 659
(1974)], which calculates analytically the density of states
for the diced lattice, which is our first example. The re-
sulting expression for the density of states of Horiguchi
and Chen is rather complicated, involving complete ellip-
tic integrals whose arguments are in turn algebraic func-
tions of the energy. In this paper, Horiguchi and Chen
seem to have missed one-third of the states; these are the
localized states which lie in the zero-width peak at zero
energy. The analytic expressions are sufficiently compli-
cated that we cannot check the normalization of their
density of states directly.

A much more interesting example for which one can
calculate exactly the fraction of localized states in the
zero-width peak, even though the conditions for the
theorem to apply are not met, is given in a recent paper of
M. Kohmoto and this author, to be published in Phys.
Rev. B.

Finally, as pointed out by Sriram Shastry, these results
seem to be related to deep theorems of differential
geometry, such as the Atiyah-Singer index theorem, al-
though the exact connections are yet to be made.
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