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Phase shifts, image planes, and surface states at metal surfaces
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Crystal- and image-potential-induced surface states of Cu, Ag, and Ni are studied with use of the
phase-analysis model, with an accurate expression for the classical image-barrier phase shift. The
energies of the first three surface states of the {111)and (001) faces of these metals are obtained as a
function of the image plane distance to the surface, z; . The experimental results are reproduced if
a small effective z; is used. The effects of changing the plateau of the image potential are also
analyzed.

I. INTRODUCTION

The experimental detection of image-potential-induced
surface states has aroused new interest in the factors
determining the binding energies of surface states in gen-
eral. ' Multiple-reflection theory has been particularly
successful in explaining in a simple and accurate way the
"crystal-induced" surface states and the Rydberg series
produced by the long-range image potential. In this
theory, also referred to as phase-analysis model, both
types of surface states naturally appear on the same foot-
ing.

The aim of this paper is to present a new multiple-
reflection calculation of surface states using an accurate
expression for the phase change produced by the image-
potential barrier. We also analyze the effects of changing
the image plane distance to the surface and the depth of
the plateau in the image potential. We use nearly-free-
electron theory to obtain the phase shift produced by the
crystal barrier and an approximation due to Wannier to
calculate the image-barrier phase shift. The model is ap-
plied to study the surface states of copper, silver, and
nickel.

Some authors have paid attention to the effects associ-
ated to the variation of the crystal potential in the direc-
tion parallel to the surface. 'o These effects can be incor-
porated in a natural way in the multiple-reflection scheme
of Echenique and Pendry by introducing a parallel
dependence of the crystal phase shift P, . Thus, the so-
called "phase analysis" and "surface corrugation" models
do not constitute alternative models. Besides, Pendry
et al. " have shown that corrugation effects in silver do
not lead to appreciable effects neither on the binding ener-

gies nor on the effective mass parallel to the surface for
the image states. Similar conclusions have been reached
by Hulbert er al. for the unoccupied image states on
Cu. "

The outline of the paper is as follows. In Sec. II, we
describe, in some detail, the model that we are going to
use obtaining the phase shifts produced by the crystal-
and by the image-potential barrier. In Sec. III, we apply

the model to calculate the binding energies of the first
three surface states of the (lll) and the (001) faces of
copper, silver, and nickel. This calculation is done as a
function of the image plane distance to the surface and
for two values of the saturation plateau of the image po-
tential. Finally, in Sec. IV, we discuss the results and ex-
tract some conclusions.

II. DESCRIPTION OF THE MODEL

The first question to decide in the construction of the
model is which one-electron potential to use in the effec-
tive Schrodinger equation for the surface states. This is,
of course, a simplification of the many-body problem
occurring in reality. The surface screening and other
many-body effects are simulated by a suitable one-electron
potential. Several model potentials exist in the litera-
ture. ' While self-energy based calculations are asymptot-
ically correct, but not very reliable close to the surface, the
density functional formalism is not adequate in the
asymptotic limit, but provides very precise results at short
distances. We will assume that the potential inside the
crystal is the same as for the bulk and abruptly terminates
at half an interlayer from the last layer of surface atoms.
Outside the crystal we consider a flat potential merging
into an imagelike Coulomb potential, which we know has
the correct asymptotic behavior. In Fig. 1 we schemati-
cally show the model potential that we are going to use.
The two arbitrary parameters of this model potential are
the depth of the flat region and its width, or, equivalently,
the distance of the image plane to the surface, z;~.
Echenique and Pendry chose a potential outside the sur-
face that matches into the crystal inner potential. Howev-
er, in some references, the flat potential is matched into
the inner potential modulated by the g Fourier component
of the crystal potential Vs, where g is the reciprocal lat-
tice vector opening the gap whose surface states we want
to study. Because of that, we will consider two extreme
depths for the plateau, i.e., equal to the bulk inner poten-
tial and equal to this plus the Fourier component Vz.
These two plateau levels are represented in Fig. 1.
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I th hase-analysis model one treats the states as e ec-n ep
tron waves un erdergoing multiple reflection betwee

Echeni uecrysta an e1 nd the image potentials. Following Ec eniq
7and Pendry's nomenclature, we denote by P, an

h between incident and reflected waves, pro-phase c anges ween
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d ed b the crystal and the image potentia s, respec
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1 . B d states occur when the sum of Pb
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1-multiple o m, w icf 2 h' h is a Bohr-like quantization cond'-
tion on the round-trip phase accumulation.

The phase change produced by any general potential
barrier is given by

P'(zo)y=2tan-'

Wi ] y2(2Z iz/A, )

where A, is defined as Z&/&2
~

E
~
„and Z, is the multi-

1
'

fficient in the 1/z potential, which is equ to 4p ying coe icien
'

we wi11 usefor metals. For numerical purposes, we wi
%'annier's approximation to rr g ~y2 e .Pr' (Ref. 14),

Fi (y) =y [Ji(y) cos(A,m )+N, (y) sin(A, n )j,
where y = &z=(SZ )'~ . From Eqs. (1) and (2) we obtain for
the image-barrier phase change,

4Z, Jo(y) cos(A.m )+No(y) sin(An )

ky J, (y) cos(A,n)+N&(y) sin(A, n)
(3)

In Fig. 2 we represent Pi„as given by Eq.E . (3), as a func-

where zo is t e va ue oh 1 f the coordinate perpendicular to
the surface z at the boundary of the barrier, P(z is t e
convergent solution of Schrodinger equation inside the

v'(z) is its derivative with respect to z, and k is
the wave vector right outside the barrier. ~ua '

obtained by matching both the wave functions and their
derivatives outside and inside the barrier.

I.et us consider first the phase change due to the
ima e-potential barrier. The Schrodinger equation or1I11age-po C11

this potential corresponds to the radi eq
states of the hydrogenic problem. Therefore, the solution
convergent at infinity is the Wittaker function

FIG. 2. Energy variation of the image-potent' ptential hase shift
P& as given by . , or~. (3), f three values of z„z,=0.001, 0.5, and
1. The dashed lines correspond to Pq as given by Eq. (5).

Fi . 1.f for different cutoff distances z, (see Fig.
In the hydrogenic limit, i.e., when z,~, i, en
wards a set of steps at the energies

z
F. = — (n =1,2, . . . ) .ll (4)

Of e in the asymptotic limit, Pb from Eq. 3 repro-course,
duces the hydrogenic series Increasin. g z„e
P& become smoother. In Fig. 2, also represented dashed
line) is the curve

r

u th literature ' ' ' as an approximat~on tooften use m e i e
the image-barrier phase change. It correspon s o

1 rl defers from the inore accurate expression,and it ceary e ers
Eq. (3). As we will see, all the surfaces stu i
s ond to z, close to 0.5 a.u. For this value of z„4» is al-
ready quite at, so we o nori, d ot expect very large differences
between using qs.E s. (3) or (5) for P&. However, these

ondinff become appreciable for the correspon ing
out bderivative functions, as it has been clearly pointed ou y

McRae an ane.d K ' This is important because these
functions are re a o1 ted t the lifetime of the state as shown

.'" Theb Echeni ue' and by Echenique and Pendry. ' e
curve for Pb in Fig. 2 corresponding to z, =0.5 a.u. is rel-
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atively similar to what Smith calls "experimental" curve
for Pb .Both the steplike and the imagelike behavior of
this curve are naturally included in our (()b. We have also
calculated Pb using a more elaborated approximation for
lVi, i&z, also given by Wannier, ' obtaining no significant
differences with respect to the value obtained from Eq.
(3).

To calculate ((), we consider the gap to be nearly-free-
electron-like and the surface states within it to be of the
form described by Gocidwin. ' For the sake of simplicity,
we only analyze gaps opened by potential Fourier com-
ponents corresponding to lattice vectors g normal to the
surfaces that we study. Following Smith, we find for P„

k tan tan —+5 —q,2 2
(6)

where

sin(25) =-
2V

'

,'q =(4E—Es+Vs)'~ (E+Es—),
E is the energy relative to the crystal inner potential and

Es is equal to g /8. We have used atomic units
throughout (4=m =1). The origin of coordinates has
been chosen on a surface atom and we are mainly interest-
ed in Shockley-inverted gaps, so that V &0. The phase
accumulated in the plateau,

2k(z; +z, ),
has to be added to either P, or Pb This. discussion com-
pletes the description of the method.

~ y~ ~e1
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III. RESULTS

We have applied the model to study the surface states
of Cu, Ag, and Ni associated with the bulk I gap for the
(111) faces and with the bulk X gap for the (001) faces.
Both the L and the X gaps are opened by potential com-
ponents corresponding to reciprocal lattice vectors normal
to the (111)and the (001) surfaces, respectively. The four
needed parameters for the calculation are Vg, Eg, the Fer-
mi energy EF, and the work function (()u. They are all
represented in Fig. 1. The first three parameters are ob-
tained from the bulk band structures. Vs is taken as half
the width of the gap that we are considering. Eg is the
energy difference between the center of this gap and the
crystal inner potential. The Fermi energy is measured
with respect to the bottom of the gap. The work function
is the difference between the vacuum level and the Fermi
energy. The values of the parameters that we have used
for the different surfaces are listed in Table I.

In Figs. 3, 4,and S we represent
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as a function of the image plane distance to the surface,
z;, for copper, silver, and nickel, respectively. The hy-
drogenic series corresponds to integer values of A, . The
first three surface states of the (111) and the (001) faces
are studied for each of the three metals considered. The
solid lines, in the three figures, correspond to considering

Zion ( .u.)

FIG. 3. Energy parameter A, as a function of z for Cu(111)
and Cu(001). The solid lines correspond to the lower plateau of
the potential and to using Eq. (3) fer Pb. The dashed lines are
for the higher plateau and the dotted lines use Eq. (5) for Pq
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the barrier plateau at the same energy as the bottom of the
crystal potential, and using Eq. (3) for Ps. The dashed
lines are obtained by a similar calculation but considering
the plateau at an energy Vs higher than before. They
coincide with the results of Weinert et al. z

The dotted lines are obtained using the approximate ex-
pression for Pb given by Eq. (5) and considering the same
potential as for the solid lines. To obtain the fairly good

agreement between the solid and the dotted lines observed
in Figs. 3—5, one has to consider that Eq. (5) includes the
phase delay accumulated in the part of the plateau be-
tween the image plane and the Coulomb potential, i.e.,
2kz, .

%e can also note that the changes in the plateau level
do not substantially alter the results for small z; . The
only exception is the n =0 surface state of Cu(001).
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FIG. 4. Same as Fig. 3, but for Ag(111) and Ag(001}. FIG. 5. Same as Fig. 3, but for Ni(111) and Ni(001).
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TABLE I. Summary of data for the (ill) and (001) faces of Cu, Ag, aud Ni. All energies are in eV. V~, Eg, E~, aud Po are the
parameters used in our model. E (expt. ) and E (theor. ) are the experimental and theoretical values, respectively, of the surface state
energies. z are the image plane distances that fit the experimental energies with our model.

Sample

Cu(111)

Cu {001)

Ag{111)

Ag(001)

Ni{111)

Ni(001)

3.05

2.15

2.53

3.7

13.45

12.1

11.6

14.7

0.85

—1.8

0.31

—1.78

0.9

—2.53

4.94

4.59

n=0
n=1
n=0
n=1
n=0
n=1
n=0
n=1

g
Expt.

—0.39
—0.94

1.15
—0.64

—0.1

—0.77

—0.2
—0.6

0.7
—0.4

19
4

20
5

22
23

24
23

Theor.

—0.46
—0.76

0.2
—0.52

—0.16
—0.78

0.4
—0.53

—0.4
—0.61

0.7
—0.52

—0.45
—0.5

—0.3
—0.7

—0.4
—0.1

—0.2

—0.1

—0.05

0
—0.7

In Table I we summarized the data for the (111) and
(001) surfaces of copper, silver, and nickel. We start by
listing the values of the parameters Vs, Es, EF, and $0,
used in our model. ' We then list the experimental re-
sults for the energies of the n =0 and 1 surface states.
The energies corresponding to the n =0 states are mea-
sured with respect to the Fermi level, while all other ener-
gies are considered with respect to the vacuum level. The
theoretical energies for the first three surface states, ob-
tained using our model, are also given, considering
z; =0. These predictions are 1.5, 1.43, and 1.6 a.u. for
Cu, Ag, and Ni, respectively. All energies above are given
in electron volts. Table I ends up giving the values of z;
that will reproduce, within our model, the experimental
energies of the n =0 and 1 surface states.

In Table II we compare the results of the phase-analysis
model for two different expressions of Ps, Eqs. (3) and (5).
We do that for Ag(111) and Ni(001). The three (111)sur-
faces considered in this paper present similar results and
the same occurs for the (001) surfaces. We compare the
binding energies obtained with both methods, taking

z, =0, and the derivatives of p& with respect to energy,
taken at their corresponding binding energies. The differ-
ences for the binding energies are fairly small, especially
for the (111) faces, but they are relatively important for
(BP& jBE)

~ E, and therefore for the lifetimes.

IV. DISCUSSION AND CONCLUSIONS

We first notice that in our model potential the experi-
mental values are reproduced for values of z; smaller
than the ones quoted by Lang and Kohn. Although at
first sight this might be surprising, it contains, however,
the correct physics of the problem and is consistent with
recent studies of many-body effects in the binding ener-

gies of image states at surfaces. Bausels and Echeniquez
have shown that if one defines a local effective one-body
potential in the manner prescribed by Manson and
Ritchie in their self-energy formalism, the effects of
plasmon dispersion (defining the image plane position)
and high momentum single-particle excitations (leading to

TABLE II. Comparison of the phase-analysis model using two different expressions for Pb, Eqs. (3)
aud (5). E„Eare the bindin—g energies measured with respect to the vacuum level aud (Bgb/M) are
the derivatives with respect to the energy of Pb.

3kb~b
{ y l)

BE
Sample

Ag(111) n=0
n=1
n =2

Eq. (3)

4.9
0.78
0.21

Eq. (5}

4.74
0.79
0.21

Eq. (3)

0.50
3.7

24.8

Eq. (5)

0.28
4.12

30.1

Ni(001) 45
0.52
0.17

3.4
0.49
0.16

0.6
13.0
70

0.46
8.44

45.3
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a finite value of the effective potential at the origin) can
be neglected when realistic values of the surface-plasmon
dispersion relation are used. A simple but qualitatively
correct description of this cancellation has been recently
given by Giesen et a/. Note that this does not mean
that the image plane positions are much smaller than the
ones calculated by Lang and Kohn. The asymptotic ex-
pansion of the image potential can be derived from the
Taylor expansion of the surface response function in
powers of momentum parallel to the surface. The coeffi-
cient of the linear term, defining the image plane, can be
chosen, as done by Bausels and Echenique, z to reproduce
Lang and Kohn's values for the image plane position.
What this means is that if an effective potential, evaluated
from an undispersed response function, is used in regions
outside the validity of the asymptotic value, no image
plane shift should be included. This is the reason for
which our theoretical values for the surface state energies
are too high if we use for z; the predictions by Lang and
Kohn. This, of course, is still true for the potential used
by Weinert et al. ,z as can be seen in Figs. 3—5 (dashed
lines).

We should like to emphasize that because of the above,
our calculations with such simple models cannot be used
to extract information about the image plane position. In
fact, the whole model might be too simple, but its impor-
tance relies on the correct description of the systematics
and trends of the binding energies and lifetimes of both
crystal-induced and image-potential-induced surface
states.

The model also gives information about the lifetimes of
the surface states, which are related to the penetration of
the wave functions in the material and so to the deriva-
tives of Ps with respect to energy taken at the resulting

binding energies. (Bgb/BE) as a function of energy
presents a series of peaks when we use Eq. (3) for Pb .The
positions of the binding energies in the gap determine the
positions of the states in the peaks and so their lifetimes.
The same is also true for the contribution of the bulk to
the many-body corrections to the effective mass, due to
the penetration of the wave function in the solid.

To conclude, we have studied theoretically the first
three surface states of the (111)and (001) faces of Cu, Ag,
and Ni. %e have used the phase-analysis model, consider-
ing two different potentials and varying the image plane
distance to the surface, z; . We conclude that the results
are fairly insensitive to changes in the plateau of the im-
age potential. On the other hand, they strongly depend on
z; . To reproduce the experimental results one should use
an effective z;m much smaller than the theoretical predic-
tions by Lang and Kohn. %e have used an accurate ex-
pression for the image-barrier phase shift Pb and com-
pared the results with those obtained with the Pb normally
used in the literature. The differences are not drastic, but
they are big enough to recommend the use of the more ac-
curate expression, which, at the same time, can be easily
calculated. Then the model can correctly predict the
trends in the binding energies and lifetimes of surface
states.
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