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%e report exact, numerically simulated, and analytic calculations of the density of states (DOS) at
or near the surface of. semi-infinite substitutionally disordered alloys in the tight-binding approxima-
tion to the Hamiltonian. The exact DOS is obtained through a recursion method, which is applic-
able to systems of any dimensionality„and yields results which possess the desirable analytic and

convergence properties. Both the surface generalization of the coherent-potential approximation
(CPA) and of the embedded-cluster method (ECM) are used to calculate averaged and partial DOS's
and to compare them with the exact results. As is the case with bulk alloys, the CPA yields a
smooth overall description of the exact spectra, while the ECM properly reproduces much of the
structure of the DOS even when used with relatively small clusters of atoms. A discussion of the
work and its possible utility is given.

I. INTRODUCTION

In this paper we present an exact numerical technique
as well as analytic methods for the calculation of the den-
sity of states (DOS) on the surfaces of substitutionally
disordered alloys described by tight-binding (TB) Hamil-
tonians. The methods presented here are applicable to the
study of the surfaces of two- as well as three-dimensional
materials and are thus an extension of some of our previ-
ous work on semi-infinite, one-dimensional disordered
systems.

The importance of understanding the properties of
semi-infinite ordered and substitutionally disordered ma-
terials has led to the development of a large number
of approaches for the study of surfaces within various
physical models and formalisms. In our study' of concen-
trated, substitutionally disordered semi-infinite chains we
used the position-space renormalization-group (PSRG)
method' ' (also called the decimation technique) to ob-
tain "exact," numerically simulated, electronic DOS's at
or near one-dimensional surfaces. The PSRG method can
be formally generalized to two- and three-dimensional
semi-infinite materials but its implementation becomes
computationally very difficult with increasing dimen-
sionality. On the other hand, the recursion algorithm
presented in Sec. II is computationally simple enough to
provide a viable technique for the study of surfaces of
two- and three-dimensional disordered systems. The nu-
merical calculations for the electronic DOS on the surface
of a substitutionally disordered alloy based on a two-
dimensional square lattice presented here indicate the via-
bility of the method and demonstrate that this numerical
algorithm converges sufficiently rapidly so that stable and
reliable results can be obtained with samples containing
only moderately large ( —10 ) numbers of sites.

In our study of one-dimensional semi-infinite disor-
dered systems we also investigated several analytic
methods for calculating the DOS at or near substitutional-
ly disordered surfaces. One of these methods made use of
the continued-fraction expansion' in conjunction with the

augmented space formalism, ' ' and yielded results which
were in rough agreement with the DOS determined by the
exact PSRG method but missed most of the detailed
structure of the latter. By contrast the embedded-cluster
method" ' (ECM) was found to reproduce the features
of the exact spectra even with clusters of moderate size
(7—13 atoms).

In this paper we use two analytic techniques for the cal-
culation of the single-particle spectra on the surface of
substitutionally disordered alloys. One of these methods
is a generalization of the coherent-potential approxima-
tion ' (CPA) for bulk disordered materials to alloy sur-
faces, and the other is a similar extension of the ECM.
We now give a brief description of both of these methods.

The CPA (Refs. 21—26) has proved to be the most reli-
able and accurate single-site theory for the study of bulk,
substitutionally disordered alloys. In the CPA, one con-
siders the real, disordered material as replaced by an effec-
tive medium characterized by an energy-dependent, com-
plex site potential (self-energy). This potential is deter-
mined by the self-consistency condition that the scattering
resulting from a real atom embedded in the medium van-
ishes upon averaging over all alloy constituents. As a re-
sult the CPA accounts properly for statistical fluctuations
confined to a single site, and has a large number of physi-
cally and mathematically desirable properties. Thus, the
CPA always yields analytic, physically meaningful re-
sults, e.g., non-negative DOS, has the proper behavior in
the limits of vanishing scattering strength or concentra-
tion and constitutes a proper interpolation scheme away
from those limits. ' In spite of these desirable proper-
ties, however, the CPA cannot account for statistical fluc-
tuations extending beyond a single site and thus cannot be
used properly in the study of many physical properties,
e.g., short-range order, formation of magnetic moments,
etc., in which local environment fluctuations play a signi-
ficant role. Local environment effects can only be taken
accurately into account within a multisite or cluster
theory.

Of the many cluster methods (of which we cite
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only a small, representative sample) which have been pro-
posed for the treatment of local environment effects, the
ECM (Refs. 19 and 20) has proved to be the most useful.
Although the ECM introduces no further self-consistency
than that already embodied in the CPA, it preserves the
analytic properties of the latter and allows the proper
treatment of local statistical fluctuations associated with
compact clusters of atoms in the material. In fact, re-
gardless of the method used to determine the effective
medium, be that method the CPA, the molecular CPA,
the traveling cluster approximation, or any other tech-
nique, it can easily be confirmed that the ECM is essential
in the treatment of arbitrary clusters of atoms embedded
in that medium. This approach, the treatment of small
clusters of atoms surrounded by a properly chosen analyt-
ic effective medium, has been shown to yield accurate re-
sults for the single-particle, e.g., DOS's, and two-
particle, e.g. , ac conductivity, properties of substitution-
ally disordered bulk alloys. In this paper it is shown that
the ECM can be generalized in a straightforward way to
the study of surface properties of substitutionally disor-
dered two- and three-dimensional materials.

The development of analytic theories for substitutional-
ly disordered systems has profitted greatly from coinpar-
isons between the result of calculations basixi on such
theories and exact or experimental results, where such
were available. It was particularly the comparison with
exact computer simulations for model tight-binding sys-
tems obtained primarily through the use of the negative
eigenvalue theorem ' which aided in sorting out various
approximations on the basis of accuracy, analytic proper-
ties, and ease of computation. The negative eigenvalue
theorem, however, is inapplicable to semi-infinite materi-
als. In contrast, both the PSRG method and the recursion
algorithm to be presented here can be used in the study of
infinite as well as semi-infinite disordered solids. The re-
sults and comparisons presented in this paper provide a
link between analytic theories, such as the CPA and the
ECM, and exact methods for the study of disordered sur-
faces. They are also a guide to the further development of
approximate methods for the study of materials lacking
full three-dimensional character, as corresponding com-
parisons have been in regard to three-dimensional, infinite
systems.

The remainder of the paper is arranged as follows. In
Sec. II we present our numerical algorithm for calculating
the DOS's on the surface of two- and three-dimensional
substitutionally disordered alloys. The generalizations of
the CPA and the ECM to the study of alloy surfaces are
given in Sec. III. In Sec. IV we present the results and
comparisons of calculations based on these formalisms,
while Sec. V contains a discussion of our work and certain
conclusions which can be drawn from it.

H=Xe li& &i I+X II'ij(li& &j I+ I j& &i I) (2.1)

H'~+1}=H,+H',
where

Ho H' '+s—~+i l
N+1) (N+1

l
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is the Hamiltonian describing the coupled first N sites
and the "decoupled" (N+1)th site. Thus, H' ' has the
form of Eq. (2.1),

H'"'= y„., li& &il
i=1

N —1

+ g w( li ) (i + 1
l + li + 1 ) (i

l ), (2.4)

with the hopping, W, restricted to nearest neighbors for
simplicity. Now, the "perturbation" H' in Eq. (2.2) is the
coupling between the (N + 1)th site and the ¹hsite,

H'=8'(lN) (N+1 l+ lN+1) (N
l

) . (2.5)

The Green's function corresponding to H' +" can then
be determined from the Dyson equation,

G(N+1} 6 +6 Hro(N+1} (2.6)

where the unperturbed resolvent corresponding to Ho is
given by the expression

Go(z)=G'~'+
l
N+1)(z —a~+i) '(N+1 l, (2.7)

with z a complex energy parameter, z =E+iq, where E
is real and i) is an infinitesimal positive part. Equations
(2.6) and (2.7) allow the implementation of a recursive
procedure for determining G' +". Since the (N+1)th
site couples only to the Nth site, the one-electron Green
function at the boundary site can be calculated by the re-
cursive expression

Here, c; can assume the "values" c.z or c,z with corre-
sponding probability c or 1 —c, depending on whether site
i is occupied by an atom of type A or 8, respectively.
The hopping integral, 8';J, in general depends on the oc-
cupation of sites i and j, a dependence referred to as off-
diagonal disorder (ODD). For siinplicity, in our calcula-
tions we consider only diagonal disorder with 8';J depend-
ing only on the distance between sites i and j. The effects
of ODD as well as those of multiple bands and polyatom-
ic unit cells can be included in the computation in a
straightforward way but with a certain increase in compu-
tational labor.

The essential idea of the recursion technique can best be
presented with reference to a one-dimensional disordered
chain of N+1 sites. The Hamiltonian of such a chain
can be written in the form

II. THE RECURSION ALGORITHM Gx+i,~+i =(z En+i ~—Gx, x)(N+1} 2 (N} —1 (2.8)

The recursion algorithm is most easily adaptable to
systems described by Hamiltonians of a TB character.
Thus, we consider a binary alloy, A,81 „characterized
by a single-band model Hamiltonian of the well-known

for the ( N + 1,N + 1) matrix elements of G' +" in terms
of the (N, N) matrix element of G' '. The element GN N

can also be expressed by means of an equation such as Eq.
(2.8) which leads to a solution for 6@++i'~+i. Finally, the
local density of states at the boundary site N +. 1 is given
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by the usual expression

n (z)= ——Imp~i N+i(z) .(%+1) 1 (N+1 j (2.9)

Go,o=0(0) (2.11a)

(ii) Generate the (N+1}th line with the parameters
corresponding to the disordered material under considera-
tion and obtain 6&++i'~i+i using Eq. (2.10).

(iii) Calculate the density of states from the expression

n' + '(z) = —— Im TrGN++, N+i (z),(%+1) 1 1 (%+1) (2.11b)

where n' + "(z) is the average density of states of the

N2-1 ~

The prescription outlined thus far is valid only for one-
dimensional systems. However, the form of Eq. (2.8) is
preserved in applications to two- and three-dimensional
finite-size systems by an appropriate redefinition of the
scalar quantities entering Eq. (2.8) as matrices. Let us
consider a rectangular section of a square lattice with

N1 X%2 sites, shown schematically in Fig. I. %e consid-
er the lattice as a collection of N2 linear molecules or
clusters of Ni sites each as is indicated by the dotted lines
in Fig. 1. The cluster energy, hopping terms, and Green
function matrix elements are now Ni )&Ni matrices in the
cluster space, and Eq. (2.8) assumes the form

(2.10)

where the subscripts N and N +1 refer to clusters and the
underlines denote %1 X&1 matrices with I being the unit
matrix.

The recursive process generated by Eq. (2.10) can be
outlined as follows.

(i) Initialize Go o, i.e.,

(N+1)th line which, by construction, is a boundary of
the iterated lattice, i.e., the lattice with Ni X(N+1) sites.

(iv) Repeat steps (ii) and (iii) until the desired sample
size is reached.

(v} Perform the average,

n(z)= g n "(z),1
%0+%~ —1

(2.12)
i =No

where the first No lines are truncated (neglected) in order
to minimize the effects associated with our use of samples
of finite size. Clearly, these considerations can be general-
ized to three-dimensional systems in a straightforward
way.

The advantage of the algorithm just described in com-
parison to a straightforward use of the PSRG decimation
method is that it requires comparatively small memory
since only GP~ needs to be stored at each step. This al-
lows simulations with rather large samples. We point out
that, for the sake of simplicity, the averaged DOS at the
(N +1}th line is calculated from the trace of 6@++i'&+i,
which effectively implies that we neglect the effects of the
boundary sites on the line. For moderately large-size clus-
ters such effects can safely be ignored.

The recursive algorithm used here is a genera1ization to
disordered surfaces of the transfer matrix method5 used to
study the electronic structure of ordered (translationally
invariant} semi-infinite solids within the TB approxima-
tion. In the latter case, the methods become identical.
Real-space methods, however, are necessary in order to
treat disordered surfaces for which the concept of Fourier
transformation is, strictly speaking, inapplicable.

The application of the present method to three-
dimensional surfaces apparently requires the use of rather
large matrices, of order N2, where N is the number of the
lattice points on the surface plane. Use of present-day
supercomputers can easily accommodate values of N suf-
ficiently large for our purposes (of the order of 50). In
fact, the value of N necessary to obtain converged results
decreases with increasing disorder reflecting the corre-
sponding decrease in the electronic mean-free path. Thus,
realistic three-dimensional calculations can be carried out
without too great a difficulty in the majority of cases.

0
Co

III. THE CPA AND THE ECM
FOR SUBSTITUTIONALLY DISORDERED SURFACES

In this section we present a summary version of the ex-
tension of the CPA to alloy surfaces as proposed by Berk'
and also describe the extension of the ECM to substitu-
tionally disordered semi-infinite systems.

~ - .

FIG. l. Schematic diagram of a square lattice with NI XX~
sites. The dotted lines identify a one-dimensional molecule or
cluster of NI sites. The open circles indicate the cluster used in
applications of the ECM discussed in the text, with Co denoting
the center of' the cluster.

A. CPA for surfaces of substitutionally disordered alloys

For the sake of simplicity of presentation, we consider
the case of simple semi-infinite lattices which can be
thought of as being generated by the repetition in one
direction of a basic plane. More complicated structures
consisting of the repetition of a stack of planes can be
treated in a straightforward generalization of the methods
presented below. Furtherinore, we consider the ease of
unrelaxed disordered surfaces in which the potential on
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planes near or on the surface, and the concentrations of
the various species and the crystal structure are identical
to those characterizing the bulk alloy. Finally, we will
focus our discussion on diagonally disordered single-band
binary alloys as described in Sec. II. All of these restric-
tions can be removed in a conceptually simple manner but
with a concoxnital increase in computational labor.

For the discussion of surface properties it is convenient
to label the matrix elements of the Hamiltonian, Eq. (2.1),
by the planes, Ip, Ii, . . . , etc., parallel to the surface and
the sites, i,j, . . . , etc., belonging to these planes. In our
notation, the surface plane is labeled by Ip. Thus, the TB
single-band Hamiltonian of Eq. (2.1}can be written in the
form

H = g s';
I
I,i & &I,i

~

J,i

+gW,"l'(~I,i&&J,J ~+ ~~,J&&I,i}~),
f,j
J,J

where Wl, l =—0. The Green function is given by usual

expression

W (k)= ~We ' ' I J
J I'CI

jEJ

(3.7)

where i EI indicates that site i belongs to plane I. Using
Eqs. (3.6) and (3.7), we can write the effective Hamiltoni-
an, Eq. (3.4), in the form

H(k), )= 2+I» &I
I

+X W (k)))( II& &J I+ I
J& &I I),

(3.8)

where k)) is a vector parallel to the surface and belonging
to the first Brillouin zone defined by the structure of the
surface, while R; and Rl denote the positions of sites in
planes parallel to the surface. Finally, I(il denotes the
number of sites in plane I (which for the model con-
sidered here is independent of I}. Similarly the interpla-
nar hopping can be written in the form

6(z) =(z —H)-', with a corresponding Green function
(3.2)

and the local DOS associated with site i in plane I is ob-
tained from the average

n; (E)= ——Im& 6;; (E)&(;), (3.3)

where the symbol & &(;) denotes an average over all al-
loy configurations in which the occupation of site i
remains fixed. We use the notation & & without sub-
scripts to denote an average over all configurations in-
cluding the occupation of site i.

Clearly, an exact evaluation of the average in Eq. (3.3)
is an impossible task and this average must be evaluated
in an approximate fashion. In the spirit of the CPA, we
consider the semi-infinite disordered material replaced
with an "ordered" medium characterized by plane self-
energies o, and an effective Hamiltonian

6 (z;k))) = [[z—H(k)))] (39)

We emphasize that H(k)) ) is a function of the complex en-

ergy variable z through the corresponding dependence of
the self-energies, cr (z). Also, it is clear that Eq. (3.8) is
formally identical to that for a one-dimensional semi-
infinite system with "site" energies ol, and "intersite"
hopping W (k)) ). The matrix elements 6;l (z) for a site i
in plane I and a site j in plane J are obtained by the in-
verse 6 I'

G ( )= QG (k)(}e
II kII

(3.10)

It now remains to provide a prescription for determining
the still unknown self-energies o . In the spirit of the
CPA we impose the conditions

H = g (r'
I
I,i & &I,i I

I,i

+g Wfl~(
~

I i & &~j ~
+

~

J1 & &I,i
~

)

«,", & =0

(3 4) for the plane scattering matrix, or

& 6,", (z) & =6',,'

(3.11a)

(3.11b)

W"(k )= ~ W" '))
II 2 ~ ij;j

i+j

(3.6)

in which the Wl are identical to the quantities occurring
in Eq. (3.1). The last expression can be cast into a con-
venient form through a Fourier transform (Vl') in a direc-
tion parallel to the surface. We introduce a mixed Bloch-
Wannier representation in which a quantity A (x,y) can
be represented in the form

A (x,k„)= J d yA (x,y)e (3.5)

where N„ is the number of values taken by the variable y
(x and y assumed discrete}. In this representation, the FT
of the intraplanar hopping integral, W~, i and j belong-
ing to plane I, is given by the expression

for the corresponding Green function, where the average
is over the occupation of a single site. Explicitly we can
write these conditions in the respective forms,

and

&r;; &=&(e;—o )/[1 —(e; —o )6 ]&

6ll &[
l I+(611) )]—)&—(3.12a)

(3.12b)

corresponding to Eqs. (3.11a) and (3.11b), with 6 =6;; .
In these equations 6;; denotes the Green function associ-
ated with a real atom at site i in plane I embedded in an
effective medium obtained in the CPA. Since 6 is a
function of al/ o, these conditions constitute an infinite
system of coupled equations for determining the self-
energies o at each energy of interest.

In order to solve the set of equations represented by the
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0 ~O as I~00 (3.13)

Therefore, we can truncate the set of equations [(3.13),
(3.12a), and (3.12b)] after a conveniently chosen value of
I, I,„, replacing all cr' for I)I,„with o . The results
of numerical calculations presented in Sec. IV show that
cr converges sufficiently strongly to its limiting value o~

so that I can be chosen as relatively small, say,I,„=2or 3.

self-consistency conditions [(3.12a) and (3.12b)], we use

the observation that cr as a local quantity must converge
toward a limiting value, o, b denoting bulk for I far
away frolli the surface,

in a given translationally invariant medium such as that
obtained in the CPA. The cluster Green function takes
the form

G'(z) = [zI H'—b'—] (3.18)

where H' is the intracluster part of the Hamiltonian, Eq.
(2.1), and 5' is the cluster renormalized interactor describ-
ing the effect of the surrounding medium on the cluster c.
Since by definition b,' is independent of the occupation of
the sites in the cluster, it can easily be determined within
successive levels of approximation from Eq. (3.18)
through a replacement of H' by the corresponding part,
H', of an effective medium Hamiltonian. Thus, we ob-
tain

B. Computational considerations
S =zI —H' —[6']-', (3.19)

g"(kii)=[z —o"—W (kii)] (3.15)

is the Green's function of a single plane in the bulk alloy,
with W (k~~) defined in Eq. (3.6) being the FT of the in-

traplanar hopping, and b, (k~~) is the renormalized interac-
tor' (RI) describing the interaction of any plane with the
rest of the bulk material. The RI can be obtained from
Eq. (3.14) for any energy, z, and wave vector k~~, in the
orm

b(k~[) —[z —o —W (k[[)]—[G (k~])] (3.16)

once 6 (k~~) has been determined. As a simple example
consider the case in which the hopping W is confined to
near neighbors. Then, the Green's function 6 (k~~) for
any plane I in the semi-infinite material can be written in
a convenient continued-fraction form. In particular, im-
posing the "surface-bulk" approximation, i.e., I,„=O,
with only the surface described by a self-energy different
from that of the bulk, we obtain for the surface Green
function the expression

T

In this subsection, we exhibit in some detail the struc-
ture of Eqs. (3.12b) thus clarifying somewhat the compu-
tational aspects of their solution. We note that the bulk
Green function, Gb, for the alloy in the CPA can be ob-
tained from the Dyson equation

6 ( ll)=g (kll)+g (kll)~(kll)6 (kll)

=[g "(k(~) ' —&(k~))] (3.14)

Here,

where the site matrix elements of 6 ' are determined from
Eq. (3.10). Once 6' has been evaluated, one obtains local
densities of states associated with any site i and any clus-
ter configuration J through the simple generalization of
Eq. (3.3),

n; (E)=——ImG; (E) .
7T

(3.20)

IV. NUMERICAL RESULTS

We have used both the exact algorithm presented in
Sec. II and the surface generalization of the CPA and the
ECM summarized in Sec. III to calculate the DOS on the
surface of random substitutionally disordered semi-
infinite alloys based on a square lattice, cf. Fig. l. In all
cases, the values of the alloy parameters chosen in the cal-
culations are stated in the figure captions. Figure 2 shows
the exact DOS's obtained through the application of the
exact algorithm of Sec. II to samples with 30X30,
100& 100, and 100&(500 sites. The DOS's shown are typ-
ical for states on the surface corresponding to the "cen-
tral" site along an edge of the sample, cf. site Co in Fig. 1.

As is seen in Fig. 2(a) the DOS corresponding to the
relatively small sample, 30X30, shows a great deal of
structure and is asymmetric about the center of the band,
E =0. Increasing the size of the sample to 100X 100 sites
[Fig. 2(b)] and to 100X500 sites [Fig. 2(c)) reduces the
structure substantially and produces DOS spectra with the
proper symmetry in energy. Thus, the numerical algo-

b,(k(()6 (kii) = z cr W(kii) ———
2

(3.17)

(a) (b) {cl
where b(k~~)/2 denotes the interaction of the surface
plane with half of the bulk material on one side. In this
ease only cr is to be determined and conditions (3.12)
reduce to a single equation.

C. Embedded-cluster method (ECM) for surfaces

As has been shown in previous work, ' ' the ECM con-
stitutes the simplest cluster theory based on the CPA that
yields physically meaningful, accurate results in most
cases of physical interest. In the ECM, one calculates ex-
actly the Green function of a cluster of atoms embedded

00 30
E

00 30 60

FIG. 2. Exact DOS's for semi-infinite alloys on a square lat-
tice, associated with samples of (a) 30&30, (b) 100&& 100, and (c)
100)&500 sites, panels left to right, respectively. Here,
cg ———sg ——3.0, 8'=1.0, and C=0.5.
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0,0

—4.P—

—b.p

-80
0.0,

(c)

—b.p
2

i I I i i i

-b P -30 00 3,0 bp-bp -30 0o 3.0 b 0

FIG. 3. Real (solid curve) and imaginary part (dashed curve)
of the self-energy in a three-plane I =2 application of the
CPA to the semi-infinite alloy with parameters c.~ ———e,q ——2.0,
8' = 1.0, and e.=0.10 for (a) 0; (b) o'; (c) o, and (d) o .

rithm yields spectra which properly satisfy the "self-
averaging" property, i.e., becoming stable with increasing
sample size and having the proper symmetry and analytic
behavior. We note that in this strong scattering ease, the
exact results show clearly the presence of subbands, "cen-
tered" at the values of sz and az, associated with the
atoms of the two species in the alloy. These features are
expected for disordered systems and are analogous to the
corresponding results for one-dimensional disordered
cham s.

Results for the self-energies obtained in a three-plane
CPA calculation, I =2 are shown in Fig. 3. The figure
depicts the real and imaginary parts of the self-energies
associated with the surface plane, the first and second
planes below the surface as well as the planes in the bulk
of the material. In this case, the self-energy was restricted
to the same value for all planes below the second. As is
seen in Fig. 3 the self-energy, as a local quantity, indeed

converges quite rapidly with increased distance from the
surface. In fact, the "bulk" self-energy, o, is practically
identical to that obtained in an independent application of
the CPA to an infinite two-dimensional bulk alloy. This
is in keeping with previous results, and justifies the trun-
cation of the set of Eqs. (3.12) at a relatively small value
of I

In contrast to the rapid convergence of the CPA self-
energy, the site-diagonal Green function, being of a more
global character, converges relatively slowly with increas-
ing distance from the surface. It is seen in Fig. 4, that the
Green function at the ninth plane below the surface is still
different from that of the bulk at low energies. The rate
of convergence increases somewhat with increasing con-
centration, i.e., increasing disorder, but is generally quite
more sluggish than that of the self-energy.

Figure 5 depicts the DOS obtained in the CPA (left
column) and in the ECM (right column) for two different
alloy systems. In each case both the CPA and the ECM
clearly exhibit the formation of two subbands associated
with the two species of the alloy. As expected, the CPA
yields smooth DOS curves which reflect the overall
features of the surface DOS. The ECM on the other hand
displays considerably more structure exhibiting the effects
of local statistical fluctuations. These ECM surface den-
sities of states are obtained at the center of a cluster of six
sites, three of which are confined to the surface and three
on the plane below the surface, cf. Fig. l. As is seen in
Fig. 5 the introduction of second neighbor ( Wi) hopping
introduces an asymmetry in the DOS spectra although the
overall character of the bands remains similar to that of
alloys with hopping confined to nearest neighbors.

The accuracy of the ECM, even with rather small clus-
ters, is exhibited explicitly in Fig. 6. Here, the surface
DOS for the center of a cluster of six sites calculated in
the ECM is compared with exact spectra obtained using
the recursion method. It is seen that the HCM properly
reproduces the main peak in the exact DOS and much of
the subsidiary structure. The agreement between the exact
and analytic (ECM) results would be expected to increase
with increasing cluster size used in the application of the
ECM.

0.375,
(b) (d)

0.250—
LU

C

0.125

(e)

UJ

i
0.125

- 60 - 3 0 0 0 3 0 6.0-6 0 -Xl Q.O 3.0 6.0 -6 0 -3.0 0.0 XO 6 0-6.0 -3-0 0.0 3.0 6.0

FIG. 4. DOS s at and below the surface of a two-dimensional semi-infinite alloy obtained in the CPA for the alloy characterized in
Fig. 3.
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FIG. 5. CPA, left co1umn, and ECM, right column DOS's
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8'2 ——0.0 for the alloy on the top row, panels (a) and (b) and
8'& ——1.0, 8'2 ——0.5 for that in panels (c) and (d).

In addition to providing rather accurate overall DOS's,
the ECM can also yield DOS's associated with specific
cluster configurations. Several such spectra are exhibited
in Fig. 7. These DOS's exhibit the expected structure
such as the Slater-Koster impurity peak for an A-atom
impurity surrounded by 8 atoms [Fig. 7(a)]. On the other
hand, partial cluster DOS also bring forth certain limita-
tions imposed by the use of a single-site effective medium.
As discussed elsewhere, s such a medium in conjunction
with the ECM can lead to a particularly poor description
of band edges and of partial DOS's associated with large
clusters of like atoms. Thus, the configurational DOS for

0.30

0.20—

t'(')
o.io—

I

I

—30 0.0 3.0

FIG. 6. Comparison of exact (histogram) and ECM (heavy
curve), total densities of states for the surface of the semi-
infinite square alloy characterized in Fig. 2.

a cluster of atoms of type A [Fig. 7(b)] fails to satisfy the
integral sum rule by about 15%%uo. By contrast, the DOS in
Figs. 7(a) and 7(c} satisfies the sum rule quite accurately
(within the numerical accuracy of the calculation}. In the
absence of a fully self-consistent cluster theory, a way out
of this difficulty would be to use a inore accurate embed-
ding medium such as that obtained in a "two-site" CPA
calculation. In any case, the ECM can be expected to
yield correct average DOS s, cf. Fig. 7(c), and in principle
allows the introduction of short-range order into the
averaging process.

V. DISCUSSION AND CONCLUSIONS

We have presented both an exact numerical technique
as well as analytic approximations for the calculation of
the single-particle Green function on or near the surface
of concentrated substitutionally disordered alloys. The
numerical algorithm discussed here is computationally
feasible with alloys of general dimensionality. This makes
the technique preferable to the position-space
renormalization-group (decimation) method whose com-
putational complexity increases dramatically with increas-
ing dimension. The results of an application of the
method to semi-infinite disordered systems in two dimen-
sions shows that stable results are obtained with samples
containing only moderately large numbers of sites (see
Fig. 2).

Of the analytic methods discussed here, one is a gen-
eralization to the study of surfaces of the CPA for bulk
alloys, while the other is an extension of the ECM (Refs.
19 and 20) to the calculation of the DOS at or near the
surface of substitutionally disordered systems. Our nu-
merical results reveal that the relative accuracy of these
two analytic methods in the calculation of surface DOS's
is similar to that in the corresponding calculation of bulk
DOS's. In particular, the ECM yields DOS's which prop-
erly reflect the structure in the exact spectra and thus ac-
counts for the effects of local statistical fluctuations on
the surface of a substitutionally disordered solid.

As mentioned earlier, we neglected all effects of surface
relaxation, such as differences in the potentials, concentra-
tions or structure at or near the surface of an alloy.
Indeed these effects are expected to be present in realistic
systems. From our discussion it follows that the CPA can
account for variations in the potentials and concentration
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in a straightforward way. Short-range structure effects
can also be taken into account in a matrix generalization
of the scalar method discussed here. Clearly, surface re-
laxation and the treatment of short-range order effects,
not possible within the CPA can be incorporated into a
cluster method such as the ECM in quite a simple
manner.

We close our discussion with a comment regarding the
application of the analytic methods presented here to real-
istic three-dimensional TB disordered systems. As is well
known, most three-dimensional disordered systems usual-
ly display rather mild structure as compared with their
one-dimensional counterparts. For such systems the

single-site CPA can be expected to provide a reliable
method of study. On the other hand, the study of short-
range order effects and related properties require the use
of a multisite (cluster) method. For the treatment of such
effects, the ECM in conjunction with even small clusters
of atoms (say 2 or 3) can be expected to yield a sufficient-
ly accurate approximation for most purposes.
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