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A general formulation is developed for determining the free energy of a Fermi gas contained in an

arbitrary smooth external potential barrier and in a weak magnetic field, in the low-temperature lim-

it. The %igner phase-space formalism of quantum mechanics is used as a calculational tool. Expli-

cit formulas are given, which enable one to compute surface and temperature effects on various

physical properties (susceptibility, specific heat, etc.}of the system. Some simple examples are con-

structed for the diamagnetic-susceptibility calculation, which show that the corrections depend on

the form of the surface potential barrier and the size of the material, but, in general, they are small
0

in comparison with the dominant Landau result when the size is much larger than -100 A. The
general formalism that we present can also be applied to other kinds of Fermi gas (for example, nu-

cleons) contained in an external potential. For example, we show how the modified Thomas-Fermi

theory may be extended to include temperature effects.

I. INTRODUCTION

The Landau diamagnetic susceptibility was obtained'

by considering an electron gas confined in a very large
box. Analytic expressions for this quantity were derived
for a zero-temperature degenerate gas and for a high-
temperature Boltzmann gas. ' Later the same system was
reinvestigated by Dingle and formulas were obtained for
a Fermi gas in both low- and high-temperature limits. In
general, since the electrons are confined by some kind of
surface potential barrier, one may expect changes from
the Landau values due to the surface effect. The investi-
gations of this question have been carried out by many au-
thors in the past few decades. The common point of
those investigations is the consideration of simple specific
models for the potential barrier. For example, Friedman
used a one-dimensional finite well potential and also a
harmonic potential. In both cases he found that the sur-
face effects were small. Here we shall pay particular at-
tention to the work of Jennings and Bhaduri. ' They ob-
tained a general expression for the diamagnetic suscepti-
bility of electrons moving in a smooth potential barrier of
arbitrary shape, for both a high-temperature Boltzmann
gas and a zero-temperature degenerate gas. At the high-
temperature limit, they were able to separate the Landau
diamagnetic term from the surface —barrier-dependent
correction terms and the latter decreased to zero faster
than the Landau term as the temperature increases. For a
zero-temperature degenerate gas, they also claimed a simi-
lar separation and a small surface correction but, as we
shall see, this is not possible.

The results for a Fermi gas confined in a smooth arbi-
trary potential both (i) at high-temperature and (ii) at
low-temperature (but nonzero) limits are still lacking. It
is our purpose here to redress this situation.

Jancovici pointed out that when the one-component
electron plasma (jellium) is considered the exchange effect
can be very small when ( b/A, ) »1, where b =e /kT and

A, =(2m' /kTrn)'~ are the average distance of closest ap-
proach and the thermal de Broglie wavelength, respective-
ly. The quantitative physical reason for this is that free
particles can exchange only when they approach one
another at a distance of the order of the de Broglie wave-
length A,, which is small in the classical limit, and also the
Coulomb repulsion inhibits such encounters. After expli-
cit calculations by the path-integral method, and in the
absence of a magnetic field, he was able to obtain analytic
expressions for two-body exchange effects, which turned
out to be indeed exponentially small when T ~~ 5 X 104 K.
Similar methods were then employed in the low- and
strong-magnetic field limits and the same conclusions
were drawn. Thus we conclude that question (i) does not
need to be considered and so we shall confine our atten-
tion to question (ii).

As we will see, at zero- and low-temperature limits the
separation between the Landau term and the surface-
barrier-dependent term cannot be achieved in general. In
fact, the surface corrections to magnetic susceptibility and
specific heat can be as large as those of free-electron gas
when the size of the material is small. We consider only
weak magnetic fields (%co, ~&kT, where co, is the cyclo-
tron frequency).

The problem discussed above can be generalized to oth-
er kinds of Fermi gas (for example, nucleons) contained in
an external potential. It is well known that ' the dom-
inant contribution of shell effects to nuclear masses can be
extracted by considering the nucleons moving in a one-
body shell potential. To calculate the sum of the occupied
single-particle energies, the Strutinsky and Bohr-
Mottelson' methods are widely used. An alternative ap-
proach, the modified Thomas-Fermi (MTF) theory, was
developed by Jennings et a/. " They assumed T=O.

At room temperature the thermal energy is of order
10 eV whereas the nuclear energy scale is approximate-
ly MeV, which shows that the zero-temperature approxi-
mation for the calculations in nuclear physics is very ac-
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II. GENERAL FORMULATION
IN THE LO%"-TEMPERATURE LIMIT

In Fermi statistics the free energy of E noninteracting
electrons is given by

I' =i(lp, —g ln(—1+e ' ),

where }u is the chemical potential, determined by

N=g, g( e' +1)

g, is the spin degeneracy, p= 1 /kT is the inverse tempera-
ture, and E; is the energy of the ith level. '

The general relationship between the free energy in Fer-
mi statistics and the Boltzmann partition function Z(p)
has been established by Sondheimer and Wilson' ' for
arbitrary temperature. If one defines a function 4 (E) by

'P' = f "
y(E)e P'dE-

I-p($(E) ), — (3)

where I.p denotes the Laplace transform, then it follows
that

F =Np+ I P(E) dE, (4)

where fo is the Fermi function

P(E —P)+ 1)—1

Evaluations of Eqs. (3) and (4) often involve analytic or
numerical solutions of the Schrodinger equation and sum-
mation of infinite series, which is, in most cases, very dif-
ficult. In order to avoid the direct computation of the ener
gy levels of the system, Wigner'5 pioneered the develop-
ment of the phase-space formulation of quantum mechan-
ics, so as to provide a framework for the treatment of

curate at room temperature. Hut in some cases the
thernial energy can become comparable with the nuclear
energy. Examples include artificial nuclear fusions or
very hot stars ( T & 10 K). Furthermore, the TF theory
has also been widely used in atomic physics in which the
energy scale is of the order eV F.or these reasons we wish
to consider the extension of the modified TF theory to
nonzero temperatures.

In summary, the above motivates us to develop the for-
mation for a noninteracting' Fermi gas in a weak mag-
netic field and confined in an arbitrary external potential.

In Sec. II, we present the general formalism in the low-
temperature limit, which is then applied to the calculation
of the diamagnetic susceptibility for an arbitrary potential
and next for certain choices of the surface potential. The
validity of the MTF theory is also discussed. We then
discuss the temperature effect on the MTF theory in Sec.
III. The surface effect on the specific heat is determined
in Sec. IV. Finally, discussions and conclusions are given
in Sec. V. More detailed analysis of MTF is presented in
the Appendix.

quantum-mechanical problems in terms of classical con-
cepts. For example, in the high-temperature limit, the
Wigner-Kirkwood expansion' is a very powerful tool to
evaluate the Boltzmann partition function

Z(P)=g, pe

In the absence of a magnetic field, to order ()t (apart from
the overall phase factor, h', in front) the expansion reads

Z(2)(P) 2
m

2m R

3/2

2
3re-~U ].— 'U

24m

where U is the external potential. The superscript "2"
denotes order ()1 and the subscript "0"denotes the absence
of a magnetic field (which will be considered below). We
should notice that the definition of Z(p), given by Eq.
(6), is larger than the usual definition by a factor of g„
which explains the shift differences of Eqs. (4) and (7)
from the original ones. '3'~

The essential feature of the modified Thomas-Fermi
theory is to use the Wigner-Kirkwood expansion and Eqs.
(3) and (4) to obtain an approximation for the free ener-

gy.
" It has been shown" that this MTF theory is closely

related to the Strutinsky method in nuclear physics, and
also to the three-dimensional Wentzel-Kramers-Brillouin
(WKB}method. '

One would notice that the Wigner-Kirkwood expansion
is valid only for small p, but the Laplace inverse in Eq. (3}
in principle involves the values of the partition function
for all values of p. We wish to present the following ar-
guments on the validity of MTF.

Suppose that a typical energy-level spacing of the sys-
tem is && and the number of electrons is N At low tem. -

peratures, the energy of the system is on the order of
X 4E, for a large N. The energy fluctuation of the sys-
tem, e.g., when the external magnetic field or temperature
varies, is about the order of 4E, which is a reasonable es-
timate for the amplitude of the oscillatory part of the en-
ergy. In general, the singularity of the Boltzmann parti-
tion function at p=0 gives rise to the steady part of the
energy, whereas the singularities along the imaginary axis
of p plane accounts for the oscillatory part (a mathemati-
cal proof of this conclusion and more discussions on it
are presented in the Appendix). A small-p (Wigner-
Kirkwood) expansion of the Boltzmann partition function
therefore will enable one to obtain the steady part of the
free energy, and to ignore the oscillatory part. Hence the
error of the MTF theory is on the order of X,which is
usually very small. In this paper we are only interested in
the (steady) Landau diamagnetism, so MTF provides us
with a good approximation. Needless to say that when
one is concerned with the oscillatory behavior of the sys-
tem, such as the de Haas —van Alphen effect, MTF is no
longer valid.

By expressing P(E) is a Taylor series in powers of
(E —(M),
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E E p p {2n)
@ kT (Znj

X (1—2' ng(2n),

(9)

where g(Z) is Riemann's zeta function.
The combination of Eqs. (4) and (9) gives the free ener-

gy at the low-temperature limit, with an arbitrary poten-
tial built in P(p, ) [by virtue of Eqs. (3) and (7)],

F=&p —(()(p)

y(2n)(p )(kT)2n( 1 21 —2n g(2n)
n=1

(10)

Here the Fermi energy p is determined by [Ref. 13, p. 329
and Eq. (A2.9)]

BS 0 ~ y())(p) 2 g y(2n+1)( )(kT)2n
p

X(1 21 2n)g(2

In particular, at zero temperature, we have the usual re-
sults

m (n)( )P(E)= g, (E—p, )",„o
it has been shown that [Ref. 13, p. 331 and Eqs. (A6) and

(AS)]

reduce Eq. (10) to a form that contains po only by first
solving Eq. (11) for p. To the order of (kT/po), the Fer-
mi energy is

H 0"'(po)
p =po — (kT)2

y(2)(p )

(()'"(po)

6 y(2)(p )

(()"'(po) (t)'"(po)

Substituting Eq. (14) back into Eq. (10), we finally obtain
the free energy at the low-temperature limit,

(3)( )
2

F=Fo 4'—'(po)(kT)2+ (kT) „(15)

(14)

where I"o Npo ——p(po) —is the zero-temperature result.
The magnetic susceptibility immediately follows from

(B+/B~)p, y, T Since XQ + By(po)/BB it is
easy to verify that, using Eq. (15),

m2
X=X.+ X,'"(I T)'

6

4 2g(3)( ) g(3)( )
X() — X()

' (kT), (16)
72 y(2)(@ )

o y(2)( )

where Xo is the magnetic susceptibility at zero tempera-
ture Xo"' —=B"Xo/Bp,o. Using Eq. (25) of Ref. 5, but includ-
ing spin degeneracy, we have

and

I'o =&po 0(po»— (12)
e 2()l

( )
1 2m

12 ' ' ' "' 240)r'

' 1/2

Bpo

By(E)
BE "o

=—0' "(po)

The Fermi energy p, which is defined by Eq. (11) and
used in Eq. (10), is temperature dependent. We shall now

X fd r(V U)B(po —U)

X(po —U)

where B(X) is the Heaviside unit step function and

(17)

1 2m

2H fP

$2 2

fd r(pU)'~ B(,p— U) — —fd r(p U)'~ V UB(p U)+5—((M)—
24m ()p2 BE

X fd r(E' U)'~ V UB(E' —U) ]
+—

is the density of states of an electron gas with Fermi ener-

gy p in the absence of magnetic field. By setting U to be
zero, the last two terms in Eq. (18) vanish, while the first
term gives the density of states for the free-electron gas.

In general, in contrast to the conclusion of Ref. 5, we
point out that the first term in Eq. (17) is not the well-

known Landau term, the reason being that the density of
state differs from that of the free-electron gas when a
nonzero confining potential barrier is considered. We will
illustrate this point more clearly below by choosing a sim-
ple form for the potential.

Substituting Eq. (17) into Eq. (16), we obtain the
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lowest-order temperature correction to the magnetic sus-
ceptibility,

e 8 fi& =do()M0)—
24m c

gp()M0) ~ (25)

rre fP 2 „1 2m
2 2 (kT) go(pp)—

72m e 2

'& ~~Ue Vo —U
p

X ((Mp
—U) (19)

We should mention that in the zero-potential limit our
formulas lead to Landau' and Dingle's2 results (including
the de Haas —van Alphen effect).

We shall now apply Eqs. (17) and (19) to evaluate the
diamagnetic susceptibility for some simple choices of po-
tential barrier.

A. Isotropic harmonic-oscillator potential

2+2 g2
Z(2)(p) Z(2)(p) e ~ ~ Z(0)(p)

2) = 0
24 2 2 0

where
' 3/2

(20)

To proceed further we need a more explicit form for the
relation between the Fermi energy pp and the number of
electrons, which can be obtained by using Eq. (13) for N
in terms of the first derivative of P()M). We now turn to
the evaluation of the latter quantity.

In a weak magnetic field limit, the corresponding
Wigner-Kirkwood expansion has b(oui derived by Jennings
and Bhaduri. To order 8, where 8 is the magnetic
field, it reads as follows:

In this case

U= —,mu r

It has been shown that

eA 1

15m12ptl c

where the density of states is'

Po 1
2

gp Po (~)2
Making use of Eq. (19), to order T,

(27)

Z(o) 2
m

0
2m'

(21) m (kT) 1 e A'

(%co) (rip) 12m c
(29)

and Zo '(P) is given by Eq. (7).
The inverse Laplace transform of Eq. (20) divided by p

gives

eBFP
(tp(P )=00(P ) g—o(P )

24m c

where gp(p, ) is given by Eq. (18), and where

(()0(p) —=&„'(zp(p)/p )

c+(~ Z()(p) e~"dp2o.i ~ —(~ p2
3/2

f )'di„&
( U)5/21 2m

3'

(22)

P 2U( U)1/2
16m

—PUe
pn+)/2 U) n —1/2

[n (2n —1)!!]'/

Xe(p —U), n =1,2, . . . , (24)

has been used to establish Eq. (23).
Then Eq. (13) reads

(23)

where I„' is the Laplace inverse, and the real number C
is chosen such that every singular point of Zo(p)/p stays
on the left-hand side of C.

The integrals in Eq. (23) cut off at the classical turning
point U(r„)=p. The relation

Also
4 2

Po Po

12(e )' 8(~) (30)

2Pp+Ep =
2 Pleo Pp (31)

0+PO
1/2

2mr p

(32)

For a typical metal, Ep+ijo-eV. Thus, even for rp as
small as 100 A one finds that ()Ice is no greater than about
0.1 eV. So it is a good approximation to retain the first
terms in Eqs. (28) and (30). Then by making use of Eqs.
(13), (27), (28), and (30), we have the following relations:

p~N
go P&sat (33)

IMp

3
1 go
3

(34)

where p, i) ——ei)i'/2mc is the Bohr magneton. The combina-
tion of Eqs. (32) and (34) gives an explicit expression for
the Fermi energy,

I 2
6

Vp=&~E0 —+
2 E()

(35)

Consider now, for example, a small metallic ball with
radius rp and let Eo be the work function of the metal. If
one uses the isotropic-oscillator potential to describe the
surface effect, one will have
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with n =X/V =3M/4rrro, the number of electrons per
unit volume, b =(2/m)' (4mn)'

We note that Eq. (33) has the same form as the Landau
diamagnetic susceptibility, except that the latter has the
Fermi energy of free-electron gas

' 2/3
(2mB) 3n

(36}
2m 8~

instead of po given by Eq. (35).
In terms of the mass density p, the molecular weight

M, the number of valence electrons Z, and Avogadro's
constant Xo, one has %=Zoo/M and N/V pl)l, so
that

' 1/3pro
4m'

The high-temperature case has been considered by Tho-
mas and Jennings et al.

%'e are interested in getting the correction to the har-
monic case to first order in k in the low-temperature lim-
it.

From Eq. (18), the density of states is
' 3/2

I S
go(po) =

(2rnto )' 4~

poA,
Zpo+

(mes )

where S is the surface area of the slab.
To obtain the second term in Eq. (17), we need to calcu-

late the integral

(43)

=3.84(EoR) '/
( ZM ')' (37)

where y' is given by U(y') =p. We obtain

I(A, )=2 f (rnco )(p,o—,

mccoy

—Ay )
'—dy

+24k, f y (p,o——,'mco2y )
'~ dy, (44)

K,F

b+Eo
= 1.71(EoR) ' (pZM (38)

=2p[d + (d + 1)'r2]

where Eo is in eV, p in g/cm, Z,M are pure numbers,
and R is the ratio of the effective electron mass and the
free-electron mass. If one puts Z=1, p=0.97 gcm
M=23, Eo ——2.35 eV, and R =1.3 for Na, one obtains

Xo GF

&L, Po

where yo ——(2po/mto )'~ . The second term can be easily
obtained, while the first one turns out to be a complete el-
liptic integral. The result, to first order in A, , is

13v 27rpok,
I(A)=it(2mor )'~+ (45

(mcus )3'
Substituting Eq. (42} and (45) into Eq. (17), we obtain the
diamagnetic susceptibility at zero temperature,

' 1/2
e i}P S 2

&2,m 2g2 4m

4mpo
X

A (2mto )'

=0.62, for Na . (39)
2mpo 13@2

iit (mtoi)s~~ 60(mt' )
(46)

Po,, ,
Po

(40}

From these results and Eq. (29), we find that the tem-
perature effect is smaller than the free-electron gas case

~r& ir kT
'2 '

XL,
e SA, 2m

12mmc (mco )
i

1/2

The temperature correction to order T is

A2 2~ &o
ETX= — (kT)'

(3P o

(47)

B. Thomas potential

No~ we choose the one-dimensional perturbed hal~ion-
ic potential, originally introduced by Thomas,

U(y) = —,
' m~2y'+~X'. (41)

at room temperature. The corresponding ratio in the case
of the free-electron gas is about 10

From Eqs. (46) and (47) we conclude that temperature-
dependent corrections due to surface effects arise only
from the anharmonic part of the potential.

III. TEMPERATURE EFFECT ON THE MODIFIED
THOMAS-FERMI THEORY

By taking the inverse of Eq. (3) and using Eq. (7), Jen-
nings et al. " found that the first classical term in the
%igner-Kirkwood expansion led to the energy given by
the Thomas-Fermi (TF) theory, while the quantum
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correction terms gave the corrections to the TF theory.
By explicit calculation, using the Woods-Saxon potential,
they were able to show that those higher-order terms tend-
ed to zero very fast and the results involving the first
correction agreed fairly well with the values evaluated
through the Strutinsky method.

This modified Thomas-Fermi theory is valid only for
zero temperature. For the reasons explained in Sec. I, we
need to extend this theory to include the temperature ef-
fect. With the help of our general results derived in Sec.
II, it can be done in a straightforward fashion.

Substituting Eq. (23) into Eq. (15) we obtain

1 2m
Fo =Xpo-

3fr2 A2

3/2

5/2

p 2 U( U)1/2
16m

where Fo is the energy given by Jennings et al. ,
"

(49)

F =Fo+hy E, (48) and we obtain, to the order of (kTlpo),

hpE =—1 2m

18

' 3/2 r f
—' f 'd3„(li U)i/2+ " f 'd3rp2U(po —U') 3/2 (k7)2

0 64m

1 2m

324

' 3/2
9
16

r

3p p —U
—1/2

r

3r p —U 1/2
0

80 d 3r( U)
—1/2

d3r p2U( U)
—3/2 0

32m
3p p U 1/2

0

I' r

f d3i( U)
—i/2 f d3„p2U(p U)

—3/2

8 Pp
3p U 1/2

0

(kZ)', (50)

which is the sought-after temperature effect on the MTF
theory. Usually it is sufficient to consider only a few
terms of the lowest orders in temperature.

The Fermi energy at zero temperature can be deter-
mined by Eq. (13), i.e.,

3/2
1 2M

(3ir ) fi

IV. SURFACE EFFECT ON THE SPECIFIC HEAT

The specific heat of a Fermi gas in the absence of an
external potential has been discussed by many authors.
We now compute the correction terms due to the surface
potential.

First, we obtain the internal energy by B(pF)/Bp, which
gives

X dr P0—U/ U=a(ps)/ap
4 (3)( )

2

=F + P' '(ju )(kT) — (kT) (52)

(po —U) '/2V'U (51)
Then
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4 (3)( ) 2H (),k, ~ t4 Volk, ,
18 y(2)( )

(53)

C„=m Nk (kTIp, o) 1 ——,', (3N)
'2

Again we shall discuss the model for a small metallic
ball (ro (100 A) with a harmonic potential barrier. For
simplicity we retain the lowest-order term in Eq. (51)
only. With the help of Eqs. (22), (28), and (30), the heat
capacity can be written as follows:

1 2m""'=2+

2 2m
Po )(4O) =

' 3/2

3r p —U 1/2

' 3/2 r

d3r U 5/2

(57)

(58)

we did for the diamagnetic susceptibility, can be carried
out following the outline given by us.

Equations (37) and (56) give rise to the following ques-
tion: Are these relations true for an arbitrary potential?
The ai)swer would be yes, but with a factor which depends
on the form of potential. To see this point, we compare
Eqs. (18), (23), and (25) with only the first terms retained,
0

1.e.,

(3N)
24 co 1 2m"-3.

' 3/2

3r U 3/2 (59)

where o), =eB/mc is the cyclotron frequency. The last
two terms are negligible. Recalling that the specific heat
for free-electron gas, C„' ', say, at low temperature is

C„' '= Nk(kT!eF),I) (55)

we obtain

Po

Then we cast Eq. (59) into the following form:
' 3/2

) 0 2m U(P))1—3'
r

X
'

3r/ —U1/2 (60)

C(o) =0.62 for Na.

V. CONCLUSIONS AND DISCUSSIONS

We have obtained analytic expressions for the free ener-

gy of a Fermi gas in the presence of an arbitrary smooth
potential and a weak magnetic field in low-temperature
limit. The formulas derived were then applied to calcu-
late the surface and temperature corrections to the di-
amagnetic susceptibility. Detailed discussions for the sus-
ceptibility problem were given for various special choices
of surface potential barrier.

In the harmonic barrier model, we have essentially as-
sumed that every electron in the system is influenced by
such a surface potential. This is true only when the size
of the material is very small ( —100 A). In this case, the
Fermi energy is measurably enhanced with respect to that
of free electrons. Surface corrections to the physical
properties (magnetic susceptibility, specific heat, etc.) are
expected to be of the same order of magnitude as those of
free-electron gas. To obtain quantitative results, one
needs to use a more realistic surface potential barrier.

In the case where the size of the material is much larger
than 100 A, the above assumption is no longer valid. One
can then separate the total number of electrons N into two
parts: there are N i electrons near the surface and N N, —
well inside the surface. It is those electrons near the sur-
face that give rise to the surface corrections. Since
N& ~~X when the size is large, one would then expect the
surface corrections to be small.

The general formulation developed can be readily used
to compute the surface effects on other physical quanti-
ties. To show this, we have briefly discussed the specific
heat for the system. More detailed calculations, like these

by defining the integral mid value of U(r) by

PoI d r(I4O U)'~ U=—U(ri) I d r(po U)(~z-
The diamagnetic susceptibility, Eq. (17), takes the form

' 3/2 r
80Xo=- d3r(I4O U)'~—

(61)

2
Pa 1 2m
3 2lr' 1)P

which is

(a N 1—
Po Po

r

eF U(r) )1—

(62)

(63)
Po Po

Similarly, the specific heat can be written as follows:
' 3/2 r

1r k T 2m d3 ( U))/2
3n2

Again we find that

eF U(r) )1— (65)
Po Po

In the case we have considered, U= —2rnm r, it is
readily verified that

U(r))= 2) o.
Equations (64) and (65) then reduce to Eqs. (37) and (56).

The modified Thomas-Fermi theory has now been ex-
tended to include the temperature effect, which may pro-
vide one with a useful method of evaluating the thermal
fluctuations in nuclear and atomic physics. However, in
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the latter cases, one must choose more realistic potentials
(as, for example, the Woods-Saxon potential). The formu-
las given here can form the basis of such calculations but
integrations, such as appears in Eq. (60), will have to be
performed numerically.

Taking the complex conjugate, one has

+i A,IE)
gs&

J

(A2)
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which is
~
Z{P~')

~

=+ oo.
Lemma 3. t8=0 is always a singular point of Z(P).

Proof.
~

Z(P=O)
~

=+ oo. (A3)

APPENDIX: SOMa GmSRAI. PROPERTIES
OP THE SOLTZMANN PARTITION FUNCTION

AND THE FUNCTION $(E}DEPINED BY EQ. {3).

In this appendix, we wish to gain more insight on the
modified Thomas-Fermi theory by first discussing some
general properties of the Boltzmann partition function
and its Laplace inverse. Then we shall illustrate our re-

sults further with a simple special case, one-dimensional
harmonic-oscillator system.

The Boltzmann partition function Z(P) is defined by
Eq. (6) for an arbitrary system. If we consider Z(p) as a
function of complex variable P, definition Eq. (6) is obvi-

ously not proper for the left half P plane. We now define

Z(p) in the entire p plane by the sum function obtained

by performing the summation in Eq. (6) in the right half

P plane. For example, let us consider one-dimensional
harmonic-oscillator potentiaL The eigenenergies are
E„=(n + —,

'
}t}its.

g, g exp( PE„)—
n=0

does not exist in the left-hand P plane. After performing
the summation, we obtain a sum function
[sinh(Pt}leo/2)] (with g, =2), which is then the defini-
tion for Z(P) in the entire P plane.

Lemma l. If Pl is a nonzero singular point of Z (P), Pi
must be a purely imaginary number, i.e., Pi i AI, wh——ere,

A,i is real.
Proof. Suppose Pi ——ai+i A, i with real aI and }t,i, and

~
Z(Pi)

~

=+ oo. We shall consider first the right half of
P plane, i.e., ai yO,

—(aI+iA, ( )E. ~(E,

Hence we conclude that all the singularities of Z(P) lie

symmetrically along the imaginary axis of the P plane.
Theo~em. The function $(E) defined by Eq. (3) has the

following general form:

Ijk( E) /st(E) + g [8,', '(E)cos( A iE)+8ott'(E)sin( A iE)]
/=1

—=P„(E)+P (E),

=—~S~+~~ (AS)

where F,t =%duo —/st(po} and F = —t}) (ttto).
Proof. P(E) can be obtained by an inverse Laplace

transform [see Eq. (23)] through a standard semicircle in
the P plane, P(E) can then be expressed as a sum over all
the residues of the integrand Z(P)eE~/P . All residues at
nonzero singular points have the form G„(E)exp(iA,„E)or
g„(E)iexp(iA, „E),where G„(E), Q„(E) are real functions
of E. If we notice the fact that $(E) is always real [see
Eq. (12)], we conclude that the sum over all residues at
nonzero singularities can be written as the second term of
Eq. (A4). Hence the steady part of P(E) is determined
only by the residue at P=O. Combining Eqs. (12) and
(A4) we obtain Eq. (AS).

As an illustration of the above general results, we shall
consider an N-electron (noninteracting) system confined
in a one-dimensional harmonic-oscillator potential, where
exact results can be easily obtained without any help of
MTF.

The Boltzmann partition function in this case is

where tI)„(E) is determined by the singularity at P=O,
whereas the oscillatory parts, 8~"(E) and 8~(2)(E) are
determined by the singularities at P+I —+i A.i, with A,i real
and positive. The free energy at zero temperature is given
by

Fo = [NV 0 4' t(po—)l + [—0 (juo) ]

=Z(ai) &+ (A 1)

Contradiction. Hence aI ——0, i.e., there is no singularities
of Z(P) in the right half P plane. By definition, it is also
true for the left half P plane.

Lemma 2. If Pi=ikris a singul, ar point of Z(P), so is
Pi' = t X,. —

Proof. Suppose
~
Z(Pi)

~

= oo, hence

[Z(A)] '=
J

Z(( 1

sinh( pirittp/2 }
(A6)

P+i ——+, 1=1,2, 3, . . . .2m. li

%e shall now evaluate

The nonzero singular points are purely imaginary and
come in pairs,



LIPO %ANG AND R. F. O' CONNELL 34

c+i~ eEP
P(E)= dc—i m P sinh(Pfico/2)

=)'o+ g (rt+r i-»
I=1

(AS)

The function P(E}is evaluated by a Laplace inverse

p(E)=&E '(Z(p)/p )

(A13)
where the residue at p+i is

( —1)' 'exp(+2m. ilE/fico) ~
2(lm )

Hence the oscillatory part of iI)(E) is

0 «)= g(rt+y i}
1=1

( —1)' 'cos(2trlE/fico)

=1 (ltr)
(A10}

Similarly the steady part of cti(E) is determined by the
residue at p=0,

which is exactly Eq. (Al 1).
The Fermi energy icio can be determined by Eq. (13),

2p, o ( —1)' 'sin(2mlicco/fico)—2+
1=1 lit

which is equivalent to

po (N——fico) /2 .

(A14}

(A15)

Substituting Eq. (A15) into Eq. (A5), we obtain
Fo NAco——/4. But here we are interested in comparing
the two parts of the free energy,

4 12
(A16)

(Al 1) and

It is of interest to see that MTF instead gives the steady
part of the function P(E). The Wigner-Kirkwood expan-
sion for the present system is obtained by Eq. (7) and
U=Tma x,2 2

( —1) 'cos(2mliLco/fico)F„= fic—o g
l =1 (lm )

12
(A17)

24
2 Pifi co

(A12) We can see that when N ~&1, I -N I„.

'L. Landau„Z. Phys. 64, 629 (1930).
R. B.Dingle, Proc. R. Soc. London, Ser. A 211, 500 (1952).

3See, e.g., R. B. Dingle, Proc. R. Soc. London, Ser. A 212, 47
(1952); F. S. Ham, Phys. Rev. 92, 1113(1953);R. B.Thomas,
Jr., Phys. Rev. B 7, 4399 {1973).

4L, Friedman, Phys. Rev. 134, 336 (1963).
58. K. Jennings and R. K. Bhaduri, Phys. Rev. 8 14, 1202

(1976).
B.Jancovici, Physics 91A, 152 (1978).

7A. Alastuey and B. Jancovici, Physica 97A, 349 (1979); 102A,
327 {1980).

%.D. Myers and %.J. Swiatecki, Nucl. Phys. 81, 1 (1966).
V. M. Strutinsky, Nucl. Phys. A95, 420 (1967);A122„1 (1968).
A. Bohr and B. R. Mottelson, Nuclear Structure (Addison-
%esley, Reading, Mass. , 1975), Vol. 2.

' B. K. Jennings, R. K. Bhaduri, and M. Brack, Phys. Rev.
Lett. 34, 228 (1975). See also B. K. Jennings, Ph.D. thesis,

McMaster University, 1975 (unpublished); Ann. Phys. (N.Y.)
84, 1 (1974).

~2See, e.g., A. Isihara, Phys. Rev. A 1, 318 (1970), and refer-
ences therein for a discussion of interactions.

isA. H. Wilson, The Theory of Metals, 2nd ed. (Cambridge
University„Cambridge, England, 1965).

~4E. H. Sondheimer and A. H. %ilson, Proc. R. Soc. London,
Ser. A 210, 173 (1951).

' E. Wigner, Phys. Rev. 40, 749 (1932); for a recent review, see
M. Hillery, R. F. O' Connell, M. O. Scully, and E. P. Wigner,
Phys. Rep. 106, 121 (1984).
J. G. Kirkwood, Phys. Rev. 44, 31 (1933);B. K. Jennings, R.
K. Bhaduri, and M. Brack, Nucl. Phys. A253, 29 {1975).
R. Balian and C. Bloch, Ann. Phys. (N.Y.) 63, 592 {1971).
R. K. Bhaduri and C. K. Ross, Phys. Rev. Lett. 27, 606
(1971).


