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A valence-bond (VB) study is made of the channel structure of indirect-exchange interactions be-
tween paramagnetic transition-metal cations via diamagnetic ligands. The Introduction briefly sur-
veys the literature regarding the channel concept in molecular-orbital (MO), VB, and hybrid MO-VB
treatments. A computationally convenient expression, well known in direct-exchange formalism, for
the exchange-coupling constant J is extended with corrections due to biquadratic terms in the effec-
tive spin Hamiltonian. We present a decomposition of J into a sum of contributions from
unpaired-electron pairs (channel sum). The validity of this decomposition is numerically confirmed.

I. INTRODUCTION

The aim of the present paper is to analyze the possibili-
ty, in the framework of the valence-bond (VB) method, to
decompose the indirect-exchange interaction between two
paramagnetic transition-metal cations via an intervening
diamagnetic anion, in a sum of electron-pair contributions
from so-called “channels.” In each channel, only one un-
paired electron per cation is “active” in the exchange in-
teraction, whereas the other electrons at the cations are
“passive,” except for some averaged potential. The chan-
nel concept was first introduced in the theory of direct-
exchange interactions (see, e.g., Van Vleck!). Later on,
channels were broached by Goodenough? in the qualita-
tive description of indirect-exchange interactions and their
dependence on geometry and chemical composition.
Three types of approaches to the channel concept can be
distinguished: the molecular-orbital (MO),*> the VB,*3
and the mixed MO-VB®’ treatments. In the following,
we briefly indicate, in examples with orbitally nondegen-
erate cations, on what premises the channel concept rests.

A. MO treatments

In the MO treatments, one first applies a self-
consistent-field (SCF) procedure in the system considered,
which yields delocalized molecular orbitals. Subsequent-
ly, the unpaired electron orbitals are unitarily transformed
into orbitals localized at the cations, which are used for
the orbital description of the ground configuration. Then,
in increasing order of approximation, contributions to the
exchange coupling are formulated.*® The first-order
spin-dependent energy correction, usually called the “po-
tential exchange,”® is a sum of direct-exchange terms be-
tween pairs of electrons, one at each cation, and thus
shows an exact channel structure. In the second order of
approximation, different spin-dependent corrections arise.
Depending on the type of excitation considered, one
speaks of “kinetic” exchange (cation-cation charge
transfer), ‘“correlation,” and “polarization” exchange
(ligand-cation transfer and excitations to unoccupied orbi-
tals). An examination of these second-order terms’ re-
veals that, in good approximation, per cation, at most one
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of the singly occupied orbitals in the ground configuration
enters the formal expressions, leading again to a channel
summation. The electrons in the remaining orbitals give
rise to additional one-electron potentials in the expression
for the kinetic exchange. Since in numerical applications
of the MO treatment, the Kkinetic exchange is often found
to be dominant, the influence of these potentials is expect-
ed to be important and has to be considered with great
care.

B. VB approaches

In the VB approaches, the ground-state spin multiplets
are expressed, in zeroth order of approximation, as linear
combinations of antisymmetrized products of, generally
nonorthogonal, ion ground-state wave functions. In this
type of description, a formulation of the indirect-exchange
interaction between cations with more than one unpaired
electron in terms of channel contributions has, as far as
we know, to date not been deduced. In the papers of
Keffer and Oguchi,* and Huang and Orbach,’ the validity
of the channel property is adopted from the beginning.
Their analyses deal with three-center, four-electron sys-
tems representing channels which, from orbital-overlap
considerations, are assumed to be dominant. In this paper
we deal in particular with the validity of the channel
property in the VB type of approach.

C. MO-VB methods

In the hybrid MO-VB methods, one first constructs
“magnetic” orbitals for the unpaired electrons in clusters
each containing one cation and its ligands by, e.g., apply-
ing a SCF procedure.” The magnetic orbitals thus ob-
tained for the two cations are generally nonorthogonal. In
the second step, the indirect-exchange interaction between
the cations is formulated as a direct-exchange coupling of
the electrons occupying these nonorthogonal magnetic or-
bitals. The role of the ligands in this coupling is dif-
ferently accounted for in the various papers.>”!° A prin-
cipal problem is to define proper wave functions for
bridging ligands shared by the clusters.!® Channel formu-
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lations of the MO-VB method are given by Kahn and Bri-
at,® and by Eremin and Rakitin.” An examination of the
analysis of Kahn and Briat shows that cubic and higher-
order powers of the intercluster overlap are neglected.
Consequently, the exchange splittings only arise from sin-
gle intercluster permutations and simply become, in this
order of approximation, a sum of channel contributions.
Each channel represents a direct-exchange coupling be-
tween two unpaired electrons, assuming some one-electron
potential as a substitute for all electron repulsions. In the
papers by Eremin and Rakitin, the channel concept rests
again on the restriction that only single intercluster per-
mutations in the total antisymmetrizer are considered. In
a formal analysis of the channel contributions, the authors
take into account, in some way, the role of the ligand elec-
trons.

In the following, we analyze the channel concept for the
indirect-exchange interaction in the VB method. Usually,
the bilinear Heisenberg—Dirac—Van Vleck (HDVYV) spin
Hamiltonian is adopted as a description of the spin-
multiplet energies and the exchange-coupling constant
(ECC) is expressed in terms of the difference between the
energies of two specific spin states. We note, however,
that VB treatments yield, already in the ground configura-
tion, biquadratic and even higher-order terms in the effec-
tive spin Hamiltonian which are due to multiple interca-
tion permutations and the spin dependence of normaliza-
tion factors. We will examine the influence of these addi-
tional effects. Subsequently, we will show the possibility
of decomposing the ECC in terms of channel contribu-
tions associated with similar sets of permutations. In the
example of a linear Mn** —F~—Mn?"-like system, nu-
merical values of the channel sums, as obtained at dif-
ferent levels of approximation, are compared with the en-
ergy difference of the two specific spin states. We further
comment on the neglect of biquadratic terms and, in addi-
tion, on the feasibility of a “transferable” channel model
in a VB type of description.

II. FORMALISM

A. Total-spin energies

If the total-spin multiplet energies of two coupled iden-
tical open-shell ions 4 and B with spin quantum numbers
S 4 and Sp, respectively, are correctly described by the en-
ergy spectrum of the HDVV Hamiltonian,

¢ 2P I g=C—J 5,

(c, C=c+J[S4(S4+1)+Sp(Sp+1)], and J are scalars;
& 4, % 3, and & are spin operators of 4,B, and the total
system, respectively), the exchange-coupling constant J
can obviously be determined from two total-spin state en-
ergies. In the following, we recapitulate the derivation of
the well-known and computationally convenient expres-
sion for the ECC in terms of energies corresponding with
a specific “mixed-spin” state (M) and the state with
highest total-spin value (H) of the form!!

In a simple orbital description of the electrons, these two

spin states are in an orbitally nondegenerate ground con-
figuration associated with single Slater determinants,
which renders the computational effort relatively small.
Dealing with a three-center superexchange unit A4-C-B,
where A and B are the paramagnetic centers and C an in-
tervening closed-shell anion, the total VB spin-orbital
wave functions are of the form

\I’f=Nf_1/2M¢0'f N

with ®=¢ ,dpdc, the product of the many-electron orbi-
tal functions of the ions; «/, the antisymmetrizer with
respect to all electrons; oy, a spin function; and Ny, the
normalization constant which, due to the nonorthogonali-
ty between the ion orbital functions, is dependent on the
choice of o. The interionic interactions are considered to
be small compared to the intraionic coupling energies, so
that S, and Sp remain good quantum numbers. Conse-
quently, g can be expanded in the tensorial product of
the ion spin functions. The ion orbital functions are as-
sumed to be the ground-state eigenfunctions of the Hamil-
tonians for the ions, #°y (X =4,B,C), i.e., they obey the
eigenvalue equations

HKxbpx=¢€xdx -

Selecting from the highest-spin multiplet the function (in
the usual notation)

op=|54S4) |S8,S8) |Sc=0,Mc=0),
and defining the mixed-spin function by
opm=15454) | S, —Sp) |Sc=0,Mc=0),

the spin-orbital functions Wy and Y, become single
determinants. The function o, can be expanded in terms
of the pure total-spin states og, according to

Smax
opmM= 2 CsO0s »

S=0
with c¢g the vector-coupling coefficients and S,,,x=S4
+ Sp. Using the commutation property of the total Ham-
iltonian and the antisymmetrizer, and substituting the
eigenvalue equations for the ions, one finds that the spin-
multiplet energies are given by

Eg=E°+Ng ' (®og,7 o bog) ,

with E®=€,+€5+€c and 2 the interionic interaction
operator. The energy of the mixed-spin state can be writ-
ten as

S, N

EM=NA;1 2 C_%EsNS Wlth NM= 2 CSZ‘NS . (2)
§=0 S=0

In the evaluation of Eg, the nonorthogonality of the ion-
orbital functions leads to nonvanishing contributions of
multiple intercation permutations in the antisymmetrizer
and a spin dependence of the normalization constants.'?!3
As a consequence, in representing Eg as the expectation
value of an effective spin Hamiltonian, also quadratic and
higher-order terms in the scalar product -% arise in
the operator.!>!> To analyze the effect of the (relatively
small) additional terms, we extend the effective spin
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operators for the energy Es and norm Ng with a biqua-
dratic term, leading to

Es=jo—j1S(S +1)+j,[S(S+1D]*, (3a)

Ns=no+nS(S +1)+n,[S(S+1D]*. (3b)

It should be realized that the spin dependence of the
norms N is incorporated in the coefficients j; and j, of
the expression (3a) for Es. After substitution of these
quadratic forms in the expressions for the energies of the
mixed- and highest-spin states, expansion of N, ' and
summation'* over S in (2), one can verify that, up to and
including biquadratic terms (- )%, the energy differ-
ence between the two states becomes

Ey—Ey

n
45,5, J1+ J1n0 +j2[4—(25,4+1)

—(28p+1)%172 . 4)

The expression in parentheses is a correction to Eq. (1)
and results from taking into account the biquadratic
terms in Ey and the expansion of E,,.

One may optimally approximate the biquadratic spec-
trum of Ejg, given in Eq. (3a), with a bilinear HDVV spec-
trum by a least-squares fit on the splittings. In that case,
it is found that

J=j1+ja[T—12(S,+Ss++)*1/10. (5)

The values of the coefficients of j, in Egs. (4) and (5)
differ by, at most, 5%, whereas the quotient n,/n, is gen-
erally found in the applications to be of the order 10~3.
Hence, expression (4) is a good approximation to the op-
timal exchange-coupling constant according to Eq. (5).

B. Channel summation

We now concentrate on the possibility of decomposing
expression (1), discussed in the preceding subsection, for
the ECC in terms of a channel summation. Obviously, if
the one-electron orbitals for the description of the ionic
ground states are assumed to be mutually orthogonal, the
ECC in the ground configuration of the coupled system
can indeed be simply written as a sum of channel contri-
butions. In that case, each channel is associated with a
single intercation transposition of electron labels and
yields (a weak) exchange coupling of ferromagnetic sign.
However, there is a fundamental nonorthogonality be-
tween the ion orbital functions. Consequently, higher-
order permutations in the total antisymmetrizer of indi-
rect-exchange type then contribute as well to the spin-
dependent part of the interaction energy. These contribu-
tions can be of either ferromagnetic or antiferromagnetic
sign. In the following, we demonstrate that, taking into
account this nonorthogonality, the channel property of ex-
pression (1) remains approximately valid.

Applying the technique of a symmetric double-coset
(SDC) decomposition'* !¢ of the permutation group G of
all electron labels with respect to the subgroup G,
X GgXGg, ie., the direct product of the permutation

groups associated with the ny (X =A4,B,C) electrons on
the ions, it is straightforwardly found that

A=A NA A gDl gl )

where the projector 2 is a linear combination of interion-
ic permutations ¢ (SDC generators). The SDC generators
can be chosen as permutations with a disjoint cycle struc-
ture, each cycle containing at most one electron label per
ion. In this analysis, we confine ourselves to permutation
operators involving only the valence-shell electrons of the
ions. Calculations have shown!’ that contributions from
SDC generators to exchange splittings rapidly decrease
with the number of electron labels involved. Even when
large interionic overlap integrals occur, the limitation to
generators with five labels or less resulted in errors of only
1—2 %. To attain the channel decomposition of the ECC,
we adopt here this truncation in 2 and list in Table I the
SDC generators grouped in conveniently chosen subsets
Q;, i =0—-5. Q is the unity operator, and Q; and Q, are
the sets of single and double cation-ligand transpositions,
respectively. Q; comprises the simplest permutations
which yield spin-dependent terms in the numerator and
denominator (norm) of the energy expressions. Avoiding
shared labels, Q, and Q4 can be expressed as the products
of 0,Q, and Q;Q,, respectively. Qs is the set of permu-
tations responsible for a biquadratic term in the effective
spin Hamiltonian, and will therefore be neglected. The
operator product # = 4o g2 o 4 p, obviously sym-

TABLE 1. SDC generators ¢ with five or less electron labels
for the permutation group G with respect to the subgroup
G, X GgXGc, grouped in the sets Q;, i =0—5. The factors f,
are the weight factors of permutations ~ in the projector #,
which is obtained from a symmetrization of £ as described in
the text. x,x’ (x =a, b, and c) in the permutations ¢ denote
different electron labels on the ion X, with X=4, B, or C,

respectively. nc is the number of valence electrons at the
ligand.
Qi g fl‘
Qo () 1
o (ac) —nc
(bc) — nc
Q2 (ac)a’c’) nclnc—1)
(be)(b'c’) nclnc—1)
Qs (ab) —1
(abc) ne
(ach) ne
(ac)bc’) nelne—1)
Qs (ab)(a’c) ne
(ab)(b'c) ne
(ac)a'bc’) —nc(ne—1)
(ac)a'c'b) —nclne—1)
(bc)ab'c’) —nclnc—1)
(bc)ac'b’) —nclnc—1)
Os (ab)a'b’) 1
(ab)(a'b’c) —nc
(ab)a'ch') —nc
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metric in the labels of the electrons on each cation, is
nothing but the projector arising from a SDC decomposi-
tion of &7 with respect to G¢. In this projector we con-
sider only the permutations ~ of the same cycle type as
those in the sets Q;, thus neglecting permutations with
more than one electron label per cation in a cycle. In
passing, we note that SDC generators with pure intraca-
tion transpositions do not contribute to the interaction en-
ergy, if the ion orbital functions are assumed to be exact
solutions of their eigenvalue equations. The factors f. in
the truncated projector #, straightforwardly obtained in
the SDC formalism, are also given in Table I. Defining
projectors £2; by summations in the sets Q;, weighted
with coefficients f., the subprojectors #; of #, contain-
ing the Q;-like permutations, are obtained by a symmetri-
zation of 2; with respect to the electron labels on the ca-
tions. The subprojectors #; and %, take the form

'%3: 2 2 Q3(ﬂ,b,€) ’

.@4—22 2 > 24a,a’, bb,cc’),

' (#a) b’ (£b)

where the summations run over the electron labels on each
cation. The projector #, can be rewritten as

3?4-2293(abc) 2 S 2.a'b'\c")

a’ (#a) b’ (sb)
with ¢s4c¢’,

where 23 is similar to £2; but with slightly different
weight factors. We note that if one approximates
nc(nc—1) by n2, the projectors 2% and 25 become iden-
tical.

A significant expression for the spin dependence of the
interaction energy,

|

‘ S 3 (p2:2)) -

T(a,b)=
(ng—1ng—1) .y » b

where now 2;=2a’,b’,c’) and 2;=2,(a,b,c).
Dependent on the pair of permutations from 2, and 2,,
¢ denotes the sum of all interionic electron-repulsion
operators involving one label in each of these permuta-
tions. Omitting the correction term in expression (7a), Ef
becomes the sum of the spin-dependent energies of the
channel systems (aCb), expressed in the same order of ap-
proximation. In this case, the remaining electrons a’'s#a
and b’'s:b are accounted for by their Coulomb potentials.
Since the contributions of spin-paired valence electrons at
the cations to the exchange interaction cancel, the summa-
tion can be limited to the unpaired-electron labels. The
corrections (7b) all involve two permutations, each with a
different electron label on one cation. We note that these
terms are left after an extensive cancellation between con-
tributions from £, in the numerator and crossterms
occurring after expansion of the norm. For this reason, a
neglect of the corrections is not simply equivalent with an
elimination of %, in % from the beginning.

The main approximations adopted to obtain the chan-

E;—E°=N;®o;, 7 o Pos) ,

is obtained by means of a series expansion of E;—E 0 in
terms of the subprojectors #3; and Z#,. The first term in
this expansion, denoted E!, is the energy expression in
which the permutations in % responsible for the spin
dependence do not occur. Up to and including terms of
the same order as those arising from %, the expansion
straightforwardly yields

Ef=E0+El+(<Vﬂ3)f—<y)<%3)f)(l—<%|>)
—((Vﬁﬁ—(%’l)(?/))(ﬂg)f
FU TR =R (T, 6)

where ®o and o/ are omitted in the notation, and ( )
denotes the expectation value in the product space
spanned by the antisymmetrized ligand function and the
occupied cation spin orbitals. Further, note that #, van-
ishes, in this order of approximation, in the spin-depen-
dent energy corrections.

A channel decomposition of the spin-dependent part of
Ej is simply obtained by substituting in Eq. (6) the sum
expressions for #; and #,, obtained above. This leads to
the channel expression

Ef=E0+E1+2[((VQ3)f——(Q3>f(V))(1——<Q1>)
a,b
—(72) A2 7)) 23),
T(a,b)], (7a)

where 2,=2(a,b,c) and 2;=2;(a,b,c). The term
T(a,b) is a correction which, in the approximation
243=2,, mentioned before, is of the form

(223),(2) (g2 {23) s +()(2)(23)5), (Tb)

nel decomposition of the ECC, Eq. (7a), can be summa-
rized as follows:

(a) Biquadratic and higher-order terms in the effective
spin Hamiltonian are neglected. The ECC of the remain-
ing bilinear spin Hamiltonian can then be expressed by
Eq. (1), as outlined in Sec. ITA.

(b) Only SDC generators with five electron labels or
less, without intracation permutations, are considered.

As an additional approximation, we assume that the
correction term, Eq. (7b), is small.

III. NUMERICAL COMPARISON AND DISCUSSION

In this section, we compare the two values of an ECC
as obtained from Eq. (1) by, first, performing a complete
calculation of the energies E,; and Ey, and, second, by
using the channel approximation Eq. (7a) for these ener-
gies, omitting the correction term T (a,b). If the two
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values are quite different, one can conclude that at least
one of the approximations summarized above is incorrect.
On the other hand, if the results agree, the premises in the
decomposition are, apart from accidental cancellation of
errors, apparently fulfilled and the channel property is
confirmed. The comparison is made in a linear model
system representing the unit Mn?*—F~—Mn?*, the
ligand in the middle of the two cations, with ionic separa-
tions according to experiment. To establish the reliability
of the result, the calculations are carried out using dif-
ferent orbital sets obtained by changing the parameters of
the 2s and 2p, and 3d Slater orbitals in the description of
the valence shells of the ligand and cations, respectively.
The core electrons are contracted at their nuclei, thus
leaving a 3d>(2522p®)3d° configuration.

Concerning the choice of orbital parameters, it has to
be noted that the Clementi values,'® albeit optimal for the
isolated-ion energies, fail in correctly describing the more
remote overlap regions which are important for the in-
teraction. This can be verified by considering the numeri-
cal Hartree-Fock solutions!® which show a much slower
decrease in the orbital tails. As a consequence, the
Clementi parameters yield an overly small value for the
ECC. For this reason, we use more extended orbitals in
the comparisons which lead to ECC’s in the experimental
order of magnitude. In Table II, results of three calcula-
tions are presented in which the parameters for the 2s and
2p orbitals at F~ are considered equal, whereas the ratio
of the cation and ligand parameters is determined from
the ratio of the averaged r? expectation values of the
Hartree-Fock solutions for the valence-shell orbitals. For
each example the orbital parameters, the individual chan-
nel contributions, their sum, and the exact value for
(Epp—Epg)/25 are listed in the table. An excellent agree-
ment is found and the channel approximation is correct to
within 3%. The “diagonal” channels oo, 7w, and 88
yield antiferromagnetic contributions, while those from
“off-diagonal” channels om,08,..., are ferromagnetic.
The difference in sign is a consequence of the nonortho-
gonality of orbitals in the diagonal channels, which leads
to dominant antiferromagnetic contributions from the
nuclear-attraction operators. The relative smallness of the
contribution of the oo channel compared with that from
the 77 channel is rather surprising in view of the common
assumption that, due to the angular properties of the
3d orbitals, the d,p2d, subchannel dominates its 7
equivalent. However, we note that after a Schmidt
orthogonalization of the d, orbitals, with respect to the
ligand orbitals in the subchannels d,p2d, and d,p3is’d,,
respectively, the overlap integral between the Schmidt or-
bitals has, in the latter subchannel, a considerably smaller
value. Interpreting the indirect-exchange interaction as a
direct coupling of the unpaired electrons in the Schmidt
orbitals (accounting for the ligand by one-electron poten-
tials) the reduction of the overlap integral due to the 2s

TABLE II. Results in the linear superexchange unit
3d%(2s%2p®)3d* for the channel contributions to the ECC J,
their sum, and the value for J as obtained from a complete cal-
culation of Eq. (1). The intercation distance is 7.7 a.u. The
choice of the Slater-orbital parameters A is discussed in the text.
o, 7, and § indicate the symmetry type of the 3d orbitals in-
volved in the channels. m is the number of equivalent channels
of the type indicated. All quantities are expressed in atomic
units.

J (1079

Asg 1.30 1.55 2.04

Channel m Ay =Rz 0.86 1.02 1.34
86 2 —6 -1 —0.0
T 2 —525 —285 —22.1
oo 1 —774 —100 —2.5
& 8 22 8 0.5
8o 4 1 0 0.5
o 4 19 7 1.6
T 2 16 7 0.5
85 2 0 0 0.0
channel sum — 1546 —569 —339
(Epy—Eg)/25 —1578 —587 —343

electrons simply leads to the weaker antiferromagnetic
coupling obtained.

The electron potentials of passive electrons a'#a and
b's£b, occurring in the diagonal channels aCb, incom-
pletely screen the nuclear charge. As a consequence, con-
traction of these electrons at the nucleus induces a fer-
romagnetic shift in the channel contribution. Since the
indirect-exchange interaction mainly arises in the ligand
region, the latter shift has, as we have verified, only a
moderate effect on the ECC. A subsequent simplification
in the calculation of the d,Cd, and the d,Cd, channels
is to consider only the exchange contributions from the
d,pis’d, and d,pid, subchannels, respectively,
representing the remaining ligand electrons by their
Coulomb potentials. It is again found that the ECC is
only moderately influenced. However, a contraction of
the passive ligand electrons at the nucleus then causes a
strong ferromagnetic shift. Further, we note that in view
of the observed dependence of the ECC on the interionic
separations,m it is by no means evident that the channel
contributions are transferable?! in the 3d, transition-
metal series.
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