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Rocks whose pore space is saturated with a conducting brine have a dielectric permittivity which

increases significantly with decreasing frequency in the range 1—1000 MHz, and a conductivity

which shows a corresponding decrease in the same range. Here a simple model is developed which

accounts for this effect within the framework of an analytical representation proposed by Bergman.
The model postulates a particular analytic form for the density of resonances characterizing the

geometry of the pore structure. The parameters of the model are completely determined by infor-

mation about the dc conductivity of the rock, plus two exact sum rules satisfied by any composite

density function and an inequahty which may be taken as an equality in the limit when the contact
area between rock grains is small in comparison to the surface area of the grains. The resulting

dielectric permittivity of the composite varies as ~ at low frequencies, where b can be calculated

in the model from measurements of the static conductivity of the rock. No microscopic derivation

is given for the resu1ting composite dielectric permittivity in terms of any geometric model of the

rock. Nevertheless, the model is sho~n to agree well with measurements of the permittivity and the

conductivity of a variety of brine-saturated rocks over a broad range of frequencies.

I. INTRODUCTION

The dielectric response of rocks whose pore (or void}
space is saturated with brine and/or oil is of great interest
in oil exploration. ' 3 In these applications, the practical
goal is to infer the relative quantities of oil and brine in
the pore space of the rock from a knowledge of the com-
plex dielectric permittivity and the porosity of the rock.
This task is greatly facilitated by the knowledge of a mix-

ing formula —that is, a relation, ideally of an analytic
form, which connects the complex dielectric perinittivity
of the composite to the permittivities of the individual
components, and the relative volume fractions of the com-
ponents. A variety of such mixing formulas have been
proposed by various authors for brine-saturated rocks and
for other composite media. ' These account, with vary-
ing degrees of success, for some aspects of the dielectric
response of rocks. While it is unrealistic to assume the
existence of a universal mixing formula appropriate to all
rocks (irrespective of their pore structure), it seems
reasonable that there may exist certain families of rocks,
each characterized by a single mixing formula. Thus, for
example, sandstones and shales might be described by dif-
ferent mixing formulas, but the same mixing formula
might apply to different types of sandstone.

Besides mixing formulas, the dielectric response of
brine-saturated rocks can also be studied in other ways.
Lysne, for example, has analyzed this response in terms
of a distribution of response times which could be adjust-
ed so as to account for some of the observed data (see also

Korringa }. Korringa and LaTorraca have made use of
exact bounds which can be placed on the complex dielec-
tric permittivity of a composite, in conjunction with
known analytic properties of this permittivity, to provide
limits within which experimentil observations must fall.

In this paper we propose an analytic mixing formula
for the limiting case of a rock fully saturated with brine
(that is, a two-component composite). The mixing formu-
la is shown to be in agreement with experimental data
over a broad range of frequencies for a variety of rock
types. The range of frequencies discussed roughly covers
those currently of interest in oil exploration.

The basis of the proposed mixing formula is an analytic
form for the dielectric permittivity of a two-component
composite originally proposed by Bergman. " This ana-
lytic form may be supplemented by two exact sum rules
and a number of inequalities which must be obeyed by the
complex dielectric perrnittivity of any such composite.
These relations are not, of course, sufficient to determine
the mixing formula uniquely. Our postulated form, there-
fore, makes certain implicit geometric assumptions about
the composite. The fact that we obtain good agreement
with experiment is then taken as evidence that these as-
sumptions are reasonable. One assumption, which
mathematically makes its appearance by taking one of the
inequalities as an equality, is equivalent to a "small grain
contact area hypothesis, " i.e., we assume that the contact
area of neighboring grains is small compared to the grain
surface area. Thus the mixing formula is only appropri-
ate to such families of rocks. The case of a three-
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component composite in which both oil and brine are
present in the pore space will be discussed in a later paper.

The observed dielectric response of rocks' ' ' has
two striking features: an increase or enhancement of the
dielectric permittivity as the frequency is decreased, and a
corresponding decrease of the conductivity. The mixing
formula proposed here can quantitatively reproduce both
these features. This suggests that the mixing formula is a
reasonable representation of the geometry in a variety of
rock types.

We turn now to the body of the paper. Section II
presents the basic model of a brine-saturated rock as a
classical two-component composite medium, and also re-
views the Bergman analytic representation of the compos-
ite dielectric permittivity. Several simple approximations
to this permittivity, some of them well known in the
literature, are discussed in Sec. DI, and their deficiencies
in the present context outlined. In Sec. IV we develop the
mixing formula proposed here, based on the formalism of
Sec. II and certain plausible geometric assumptions about
the pore structure of rocks. The integral defining the
mixing formula is evaluated analytically in Sec. V in
several asymptatic regimes which together comprise the
entire range of current experimental interest. A detailed
comparison with experiment on a variety of rock samples
is presented in Sec. VI, following which Sec. VII summa-
rizes and discusses the principal findings.

II. BERGhhkN ANALYTIC REPRESENTATION
OF A T%'0-COMPONENT COMPOSITE

We consider a two-component composite medium, con-
sisting of the rock matrix with complex dielectric con-
stant e„and the brine with complex dielectric function e .
In general, e„will have the form

lgw
&w =&w+

6'()CO

comprised of a real part eN and an imaginary part depen-
dent on the brine conductivity o~, the angular frequency
co, and the permittivity of free space eo (we use mks units
throughout). The rock matrix will usually have a fixed
real dielectric constant

At the frequencies of interest here, i.e., below about 1

GHz, dielectric losses due to dipolar relaxation of the
water molecules can be neglected to a first approximation.
Thus both cr and e', like e„', can be treated as constants
independent of frequency.

If the wavelengths and attenuation scale lengths of the
applied electric field are much greater than the dimen-
sions of the largest grains and pores in the compasite,
then scattering of electromagnetic radiation is neghgible,
and we can characterize the saturated rock by an effective
complex dielectric constant

with the real part e' and the conductivity o. both depen-
dent on the frequency of the applied electric field.

A useful general property of the complex dielectric
function in the quasistatic limit considered here is that of
homogeneity. If both e„and e„are multiplied by a con-
stant A, , then so is the resulting effective dielectric con-
stant. This implies

e(A,e„,i,e )=A,e(e„,e ) .

Alternatively, one may say that the ratio e/e, depends on
the (complex) ratio e /e„, rather than on e and e, indi-
vidually. This homogeneity relation is equivalent to the
statement that a suitably defined function

f=1—e/e„,

depends only on the variable e /e„. Instead of consider-
ing this ratio, however, it proves more convenient to work
with a variable

s=(1—e /e, )

in terms of which the analytic representation of f is rela-
tively simple.

The analytic properties of f(s) are central to the
present discussion, and follow from elementary considera-
tions, as was first shown by Bergman. To clarify the ar-
gument, let us suppose that f(s), viewed as an analytic
function of the complex variable s, is in fact a rational
function of s. Since the composite must dissipate energy
whenever both components dissipate energy, we have

Ime«0 whenever Ime, «0 and Ime «0,
and this implies, after a small amount of algebraic manip-
ulations, that if Ims+0 then

Ims/Im[f (s)] ~0 .

Hence the change in the sign of Im[f (s)] which occurs at
a pole (or zero) of f(s) must be accompanied by a change
in the sign of Ims. This implies that if f(s) has a simple
pole at s =s;, then s; must lie an the real axis. Moreover,
such poles must have positive residues, in order to ensure
that Im[f(s)]/Ims has the correct sign near the poles.
Likewise, higher-order poles cannot occur, because near
such poles Im[f (s)] changes sign several times and, there-
fore, condition (8) is certain to be violated. Therefore, all
the poles of f(s) are simple, are located on the real axis,
and have positive residues. Thus f(s) has the representa-
tion

8„f(s)=g ", with 8„&0,
s~ —s

where the magnitudes B„ofthe residues and the locations
s„of the poles reflect the pore structure of the rock.
From the rigorous requirement that e be real and positive
whenever e„and e are real and positive, it follows that
the poles s„are restricted to the interval 0&s„&1, and
that f(1) obeys the inequality

f(1)+1 .

In any composite with a random geometry, all the
poles, except the one at the end point s =0, are expected
to be broadened into a branch cut along the real axis. The
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pole at s=0 retains its identity and is best treated
separately. Hence Eq. (6) needs to be replaced by the in-
tegral representation ' "

f(s)=—+J,ds',
' g(s')

s os —s'
1000 MHz

Q.03

where the density of resonances, g(s'), takes positive real
values.

The constant A appearing in Eq. (11)has a simple inter-
pretation. In the limit of very low frequencies, both e
and eN are dominated by their imaginary parts in a typical
brine-saturated rock, while e„remains constant. Hence s
is small and sf (s), as given by Eqs. (5) and (6), approaches
the ratio crolo of the static (dc) saturated rock conduc-
tivity o.o to the brine conductivity o . Since in this limit
the value of f(s) is dominated by the contribution of the
pole at s =0, we can, from Eq. (11), identify A with
sf(s). Thus 3 takes the simple form

where the last equality follows from Archie's empirical
"law, " which states that the static conductivity of a
brine-saturated porous rock varies as a power law of the
porosity P (P is the volume fraction occupied by the pore
structure). ' Archie's law is known to be approximately
valid in many brine-saturated rocks. The exponent m
typically has values in the range 1.5—4, depending on
rock type. '

The constraints that the density function g(s') must
satisfy are not completely known. When the composite is
nearly homogeneous, the electrostatic fields are almost
uniform and a perturbation expansion for f(s) in powers
of s can be developed. From the results thus obtained by
Brown's (see also Herring' ), it follows that f(s) has the
expansion

(13)

to second order in 1/s. Hence by expanding (11) in
powers of 1/s and equating terms with (13), we obtain the
two sum rules '

gs ds (14)
1I s'g(s')ds'=

3 P(1 —P) . (15)

From (10) we also have the inequality constraint

o ] s
(16)

Some additional subtle inequalities on the function have
been obtained by Schulgasser' and by one of us. ' We
choose, however, to ignore these inequalities, because they
impose rather mild constraints on g(s'). Inequality (16),
however, is important and wiB be included.

%e have already noted that low frequencies,
~«cr /woe„', correspond to small values of s. This
feature is more clearly illustrated in Fig. 1, where the
values of s are plotted for sandstone saturated with two
types of brine: one very saline, the other moderately sa-
line (and thus not as conducting). The low-frequency
dielectric enhancement in these materials becomes espe-

0.02

Brine Conductivity
20 8/m
2 Slm 0.01

-0 05
l

-0.04 -0.03 -0.02 -0.01
0

0

FIG. 1. Trajectories of the variable s =1/(1 —e /e, ) as a
function of frequency for a sandstone saturated with different
brines in the frequency range 1—1000 MHz. These trajectories
show the range of the variable s probed by dielectric measure-
ments.

III. SIMPI.E APPROXIMATIONS
FOR THE DENSITY FUNCTION

The existence of a low-frequency dielectric enhance-
ment can be shown to imply a nonzero density function
g (s') at small values of s'. This result can be readily un-
derstood by considering formula {11)at low frequencies
where s =iape~,'/cr; if g(s') vanishes below some small-
s' cutoff so, it is easily seen that e' must saturate at some
maximum value for frequencies corresponding to small s'.
At the opposite extreme of large values of s', near s'= 1,
the inequality constraint {16) implies that g(s')-+0 as

cially important at frequencies below 1000 MHz in the
former and below 100 MHz in the latter (see Fig. 5), cor-
responding in both cases to values of s in the range
0.0—0.1. Thus, measurements of the dielectric enhance-
ment in the range of frequencies below 1000 MHz provide
a sensitive tool for probing the local variations of the
spectral function g(s') in the vicinity of s'=—0.01. By
contrast, the sum rules (14) and {15) and the inequality
constraint (16) only provide global restrictions on the
shape of g (s') over the entire range 0 & s ' & 1.

Consequently, in order to determine g(s'), we need to
make additional assumptions about the form of the densi-
ty function beyond the integral constraints noted above.
Ideally, g(s') would be determined by some microscopic
model which incorporates information about the rock
geometry to give a composite dielectric function or a mix-
ing law. Rather than seeking such a model, we attempt to
produce a form for g (s') which is compatible with the ob-
served dielectric enhancement. %e begin by investigating
several simple choices of g (s') to gain a qualitative idea of
how the shape of this function affects the low-frequency
dielectric enhancement. We then offer a form which
seems to fit the observed data Note, .however, that the
dielectric properties will depend principally on g(s') at
relatively small s', and will be insensitive to any assump-
tions made about g (s') at large values of this argument.
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s'~1. Thus, any choice of g(s') which is to produce
dielectric enhancement must exhibit both these features.

To see how the form of g(s') infiuences the low-
frequency dielectric enhancement, we consider first the
simple linear choice

g(s') =C(1—s'), (17)

which is nonzero at small values of s' and goes to zero at
s'=1 as required. The second sum rule (15) implies that
the constant C must take the positive value

C=2$(1—P) . (18)

Substituting this formula back into the first sum rule (14)
gives the expression

(19)

for the dc conductivity ratio ap/0' ~ Tlllls tlie form (17)
directly implies Archie s law (12) with an exponent m =2
(which is typical of many rocks}. However, this feature of
the approximation should not be regarded as significant,
because it is unlikely that such a simple density of reso-
nances as (17) would be characteristic of real rocks.

Substituting these expressions into the integral represen-
tation (11) for f(s) gives

3Q
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FIG. 2. Measured data on brine-saturated sandstone con-
pared with the results of various theoretical models.

2 1f(s)= +1—(1—s)ln 1——
S S

which implies, via Eqs. (5) and (6), that

e=P'e„+(1 P) e„+2/(—1 —P)
E'r

1
ln

&u

(20)

(21)

Im[h(a+i5)] =Im f ds'
' (a i5 s—') g(s—')

(a —s')'+5' (25)

Following standard analysis, we focus on values of s near
the branch cut of h(s}. Substituting s=a+i5, where
0&a &1 and 5«1, we obtain

~e=P~e+(1 P)~e„, — (22)

is the complex dielectric function corresponding to the
choice (17) of g(s'). The formula is clearly invariant
under the interchange e„-+e, e~~e„, $~1—((}, imply-
ing that the approximation treats the rock matrix and the
pore space geometries on a symmetric basis. However,
this approximation turns out to be unsatisfactory when
compared with experimental data because the low-
frequency dielectric enhancement predicted by (21) is too
low (see Fig. 2).

Next, we'consider an approximation which is found
empirically to work remarkably well at high frequencies
(near 1000 MHz). This is the so-called complex refractive
index method (CRIM), given by

Since the integrand is very sharply peaked near s'=a, we
can replace g (s') by g(a}, extend the range of integration
over the entire real axis, and change the variable s' to
u =(a —s')/5 to obtain the estimate

00

Im[h (a+i5) j—=—g(a)f,du = —~g(a),—"1+u
(26)

g(s')= ——lim Im[h(s'+i5)] .
mb o

(27)

We next apply Eq. (27) to the present case. Froin the
complex-refractive-index method (23) and the representa-
tion (11),together with (19), we have

1/2

which becomes asymptotically exact in the limit 5~0,
giving the Stieltjes inversion formula p

which has been discussed extensively in a variety of con-
texts." Equation (22) has the equivalent form

h (s) =2/(1 —P) 1 — 1 ——l
(28)

e=tA} e +(1—t|})e„+2/(1 P)Qe,e„—
obtained by squaring (22}. Like the approximation (21),
the complex-refractive-index mixing formula treats both
rock and pore space geometries on a symmetric basis and
gives the expression (19) for the dc conductivity, which is
compatible with Archie's law.

To deduce the spectral function g (s') corresponding to
this mixing formula, we first consider the more general

Substituting this expression into (27) gives the expression

g (s') =C(s') ' (1—s')'

for the density function, where s' is real and

C=2$(1 P)/n. — . (30)

Thus g(s'} diverges as s'~0, and consequently the low-
frequency dielectric enhancement is stronger than that as-
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sociated with the simple linear form for g (s'). In fact, as
demonstrated in Fig. 2, the enhancement predicted by the
complex-refractive-index mixing law is too strong at low
frequencies, when compared with experiment.

One other feature of this mixing law is unsatisfactory.
Although g (s') given by the above equations satisfies the
first sum rule (14), it fails to satisfy the second. Specifi-
cally, the moment

1I s'g(s')ds'= —,
'
P(1 —P} (31)

is too small when compared with (15). Clearly, to rectify
this discrepancy we need to shift some of the weight of
the density function to higher values of s', thereby reduc-
ing the low-frequency dielectric enhancement. This is
precisely what is needed to improve agreement with exper-
iment.

IU. PROPOSED MIXING FORMULA

It is clear from this formulation that any dielectric
enhancement in the composite must come from the func-
tion g(s'). This function depends on the pore structure in
a complicated way which must be difficult to determine
from any microscopic theory. The dielectric enhancement
must be associated with long relaxation times for the elec-
tric currents to equilibrate once a uniform electric field is
established across the sample. Such long relaxation times
can result from many geometric effects, including the
presence of platelike grains, as has been suggested by Sen, 5

or needle-shaped pores as suggested by Lysne. Another
possibility is a pore structure which is inhomogeneous on
many length scales, giving it a fractal or self-similar char-
acter.

Since the CRIM fares well at high ai, it seems natural
to consider a form for g(s') with a smooth crossover in
analytic behavior at low frequencies from, e.g., a depen-
dence characteristic of the complex-refractive-index
method for large s to a linear dependence such as (17) for
small s. We have not succeeded in finding such a func-
tion for which the integral (11), giving f(s), can be easily
approximated at the frequencies of interest. Instead, we
propose a simple form for g(s') which gives many of the
features of the observed dielectric enhancement and of the
frequency dependence of the conductivity, though we
have no microscopic justification for the form at present.

Motivated by formula (29} for the density function of

Cl (1—b)1 (1+e)/I (2—b +e)=P —A, (34)

CI (2—b)I (1+e)/I (3—b+e)=P(1 —P)/3, (35)

CI (1 b)l (—e)/I (1 b—+e) & 1 —A, (36)

which must be satisfied by the three unknowns C, b, and
e. The inequality (36) is not useful unless it can be re-
placed by an equality. Hence we make the additional as-
sumption that (36) can be treated as an equality, or
equivalently that f(s)=1 when s =1. Physically, this as-
sumption implies, via Eqs. (5} and (6), that a "conjugate
rock" obtained by interchanging rock and brine in the sa-
turated sample would be poorly conducting. This should
be a reasonable approximation if the rock grains have a
small contact area in relation to their cross section.
(There must, of course, be many such points of contact to
give the observed rigidity to the rock. )

By supposing that (36} is an equality, and noting that
the gamma function satisfies 1(1+x)=xI'(x}, we can
take ratios of the preceding equations to obtain the identi-
ties

(1 b)/(2 b—+e)= ——, P(1 P)/(P A)—, —

(1 b+ e)/e = ( —1 —A ) /(P —A ),
which have the solution

b =1—P(1 —P)/[2P —A(3 —(t )],
e =P(P A)/[2$ —A(3——P)],

(37)

(39)

(40}

for the exponents b and e. Typical values of these ex-
ponents are given in Table I for A =P, corresponding to
Archie's law with m =2. Note that both the exponents
take on reasonable, positive values over the entire range of

the complex-refractive-index method, we propose the fol-
lowing form for g(s'):

g (s') =C(s') (1—s')',

where C, b, and e are parameters which may be deter-
mined as follows. By substituting (32) into (14), (15), and
(16) and using the well-known identity '

1I (s') '(1—s')~ 'ds'= I (a)I (P)/I'(u+P) (33)

for expressing the resulting integrals in terms of the
gamma function I (x), we obtain the thriM, equations

TABLE I. Typical values of exponents b and e with m =2.

0.05
0.1

0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5

0.0256
0.0526
0.0811
0.1111
0.1429
0.1765
0.2121
0.2500
0.2903
0.3333

0.4872
0.4737
0.4595
0.'f
0.4286
0.4118
0.3939
0.3750
0.3548
0.3333

0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
1.0

0.3793
0.4286
0.4815
0.5385
0.6000
0.6667
0.7391
0.8182
0.9048
1.00

0.3103
0.2857
0.2593
0.2308
0.2000
0.1667
0.1304
0.0909
0.0476
0.00
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not too close to a negative integer, corresponding to most
cases of interest. In fact, it usually suffices to keep only
the leading term, and we thereby obtain

h (s)=—(1—A) —Cm( —s) "(1—s)'/sin(bm ) .
b

f(s)=—+A (I}—A

s s —50
where A =2//(3 —((}), (52)

and so is given by (51). The corresponding dielectric con-
stant is readily found to be

The effective dielectric constant e of the composite is
obtained from either (44}or (45) via the relation

(1—$}(1—e /e„)e=e l+
1 —(1—P/3)(1 —e /e„)

(53)

e= Ae„+(1—A)e„—e,h(s), (46)

e„=—e = i 0' /Epop, ' (47)

and to use Eq. (46) with the estimate (45) for h (s}. If we
now write e in the form (3), e' and o are found to have the
asymptotic behaviors

~'= ~,' '(er~/eo)"[C~/2 sin(bm /2)]co-', (48)

O' =A cT~ +E"„o'~(epf0) (49)

which are typical of brine-saturated rocks at low frequen-
cies.

One other asymptotic limit deserves mentioning. It is
well known from the theory of classical dielectrics that
the conductivity ratio A satisfies the inequality

where we have used (11) and the definitions (5) and (6).
The constants b, e, and C can be computed from
(34)—(36), (39), and (40). The constant A can be varied to
fit the data, or better still, it can be determined from mea-
surements of the ratio oo/0 in the low-frequency limit
[see Eq. (12)]. This gives a mixing formula valid at finite
frequencies entirely in terms of exact sum rules and
"zero-frequency" measurements.

Direct numerical evaluations of the integral formula
(41) are easy to perform for all frequencies of interest, and
provide a check on the approximation formula (45).

It is instructive to examine the asymptotic behavior of
the complex dielectric constant. At sufficiently low fre-
quencies, it suffices to write

which is just the Clausius-Mossotti (or Maxwell Garnett)
expression with the conductor (i.e., the brine) regarded as
the host and the rock as the embedded material. Thus the
proposed new mixing formula reduces to the Clausius-
Mossotti expression, as it should, in the limit where the dc
conductivity approaches the Clausius-Mossotti limit.
Note that since b is large and negative in this regime, the
mixing formula predicts that there will be no dielectric
enhancement at low frequencies in such composites.

VI. COMPARISON %'ITH EXPERIMENT

We have compared the predictions from the proposed
mixing formula, Eq. (46), with a variety of data on brine-
saturated rocks: data on sandstone (range of brine salini-
ties, same porosity) and limestone (range of porosities,
same brine salinity) obtained at Chevron by a method
described elsewhere, ' and data on whitestone, disaggre-
gated whitestone, and disaggregated marble obtained by
Kenyon. These data are presented in Figs. 5—8, where
other relevant parameters are also presented. In general,
the accuracy of the measurements degrades at lower fre-
quencies and higher salinities. The error bars in the
Kenyon data in Fig. 7 are typical of the expected errors in
the data presented.

The dielectric permittivity e' for the brine in our
theoretical calculations was corrected for the effects of
temperature T (=75'F) and the salinity X (in kppm, or
kiloparts per milhon} using the following empirical rela-
tions 25' 26

A &2$/(3 —P) . (50)

This inequality is just a special case of a well-known
theorem due to Hashin and Shtrikman. i The theorem
states that the conductivity of an isotropic two-component
composite lies between two extreme cases obtained from
the Clausius-Mossotti (or Maxwell Garnett) approxima-
tion by alternately regarding each of the two components
as the host material. In the present case, a very simple re-
sult is obtained when the inequality (50) is approached as
an equality. Letting A =2//(3 —((})—5, where (i «1, we
readily find from Eqs. (39) and (40) that in this limit b be-
comes large and negative, while e becomes large and posi-
tive and the ratio b/e approaches a constant. The density
function g (s') therefore becomes very sharply peaked, and
may indeed be regarded as a 5 function, at
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The weight of the 5 function may be determined from any
of the equations (34)—(36), and the function f(s) [Eq.
(11)]finally takes the form

FIG. 5. Data on brine-saturated sandstone for various brine
conductivities compared with theoretical predictions (so1id
lines). The value of e,

'
used is 4.65.
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FIG. 6. Data on brine-saturated limestone for various porosi-
ties compared with theoretical predictions (solid hnes). The
value of (.', used is 9.0.

e' (0, T)=94.88—0.2317T+0.000 217T2,

e' (X,T)= 1 2.4372X
e' (0, T) 58.443(1000—X)

with the relationship between the brine conductivity rJ
and the salinity Xbeing also an empirical one,

' —17 +7OO123 3647 5

(1000X) '
(54)

One of the input parameters in the theoretical calculations
is the static or dc rock conductivity 0O. In our calcula-
tions we have taken this to be equal to the measured con-
ductivity for each sample at the lowest frequency of mea-
surement.

Figures 5—8 show the results of the theoretical calcula-
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FIG. 7. Kenyon's data on brine-saturated whitestone com-
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FIG. 8. Kenyon's data on brine-saturated rocks for three dif-
ferent rock types compared with theoretical predictions (lines) of
this paper. The value of e,

'
used is 7.5.

VII. DISCUSSION

%e have presented in this paper a simple mixing for-
mula for calculating the dielectric constant and conduc-

tions based on Eq. (46). In all cases the series expansion
(44) and the direct numerical evaluation of the integral
(41) give identical answers.

Several features stand out in all these curves. In every
case there is a significant dielectric enhancement at low
frequencies, but some rocks show much more enhance-
ment than others. There is also a characteristic frequency
dependence of the conductivity, which invariably in-
creases from its low-frequency value to a somewhat
higher value in the vicinity of 1 6Hz. Overall, both the
degree and the frequency dependence of the dielectric
enhancement and the frequency dependence of the con-
ductivity are well reproduced by the theoretical calcula-
tions. This is particularly satisfying when it is realized
that the theory is constructed on the basis of static quanti-
ties: The input parameters are the porosity and the static
conductivity. Note, for example, that in the Kenyon data
the three samples shown exhibit, respectively, strong,
modest, and very weak dielectric enhancement —a trend
that is predicted by the theory on the basis of static quan-
tities only.

The predicted dielectric enhancement at low frequencies
is very sensitive to the assumed static conductivity of the
composite. The reason for this sensitivity is that the stat-
ic conductivity enters into one of the sum rules determin-
ing g(s') [see Eq. (14)] and hence has a strong effect on
the exponent b which determines the dielectric dispersion
at low frequencies. To test this sensitivity, we have recal-
culated some of the results of the sandstone assuming two
slightly different values of oo (with difference of about
10%). This produces a change in the predicted dielectric
constants of about 30%%uo at 10 MHz, though much less at
higher frequencies.
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tivity of brine-saturated porous rocks as a function of fre-
quency. This mixing formula is derived from purely stat-
ic inputs —the porosity of the rock, the dielectric proper-
ties of both rock and brine, and the dc conductivity of the
rock. The mixing formula is designed to satisfy the
known analytic constraints and sum rules on the complex
dielectric response of a composite medium. In this
respect it is superior to the complex-refractive-index
method, which works well only in the high-frequency
range.

The fact that our mixing formula works well on a wide
variety of samples suggests that it includes in some way
the relevant feature of the pore geometry. Simply satisfy-
ing the analytic constraints on the dielectric function is
not enough to ensure agreement with experiment. An ex-
plicit microscopic model which starts from the pore
geometry and leads to the proposed mixing law is still
lacking. While it would be of value to have such a model,
its absence does not make the mixing formula any less
useful.

Further work is needed in several directions. More de-
tailed tests of the model are still needed. An extension to
where both brine and oil are present in the pore space
auld be the ultimate practical goal, though considerably
more difficult than dealing with the present case. This
task is now being attempted. And finally, as noted above,
it would be of interest to have a microscopic model that
would lead to the proposed mixing formula, so that one
could have an explicit picture of the geometrical effects
which produce the enhancement.
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