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%e report calculations of the electronic charge density and the total energy of nitrogen as a func-

tion of volume in both molecular and nonmolecular crystal structures, using the local-density-

functional method with an ab initio pseudopotential. At low pressures the molecular bond length is

found to be 1.10 A, in good agreement with experiment. At high pressures we find a stable distorted
arseniclike structure, which is semimetallic with a very small Fermi surface and is lower in energy
than simple cubic and all other simple metallic structures considered previously by McMahan and

LeSar. To investigate the transition under pressure we have carried out calculations for a number of
structures which are on a path that connects continuously the molecular P-O2, diamond, graphitic,
arseniclike, and simple-cubic structures. The calculated transition occurs at a pressure of approxi-
mately 700 kbar, with a large barrier of approximately 1 eV/atom along this path. One signature of
the transition is a large decrease of the highest phonon frequency. Although there is some uncer-

tainty in our calculated pressure, we conclude that our results predict a transition to a nonmolecular
structure at experimentally accessible pressures, in apparent disagreement with recent experiments in

which no such transition was found up to a reported pressure of 1.3 Mbar.

I. INTRODUCTION

Nitrogen has a special place among the elements since
N2 has the greatest binding energy of all the eletnental di-
atomic molecules and, except for H2, the shortest bond
length. ' Because of the great stability of the molecule, all
solid phases of nitrogen at ordinary pressures are com-
posed of weakly interacting molecules, which leads to a
plethora of stable molecular crystal phases as a function
of temperature and pressure. Of course, all these phases
are insulators with large band gapa. 3 However, at very
high pressures the properties of nitrogen must be com-
pletely different because the molecular solid must become
unstable relative to more closely-packed phases. Such a
molecular-to-nonmolecular transition is one of the funda-
mental transitions in condensed matter physics, which has
been the object of much recent work. The purposes of
the present work are to investigate theoretically the nature
of the high-pressure phase(s} of nitrogen, to calculate the
pressures and volumes for the molecular-to-nonmolecular
transition, and, together with our previous work on ar-
senic and phosphorus, to make a more unified picture of
the properties of group-V elements. We use the local-
density functional method with ab initio pseudopoten-
tials, which has been shown to predict accurately the
structural properties of a great number of solids.

The heavier group-V elements typically occur in
threefold-coordinated structures, which may be viewed as
small distortions of the simple-cubic metallic structure '

and which are narrow gap insulators or semimetals.
Under pressure the structures approach more closely to
simple cubic, ' which has been reported to occur for P at
approximately 110 kbar. " However, As does not exist in

the simple-cubic structure and reports of simple cubic Sb
at approximately 70 kbar (Ref. 12} have not been repro-
duced in more recent work. ' The distortion from the
simple cubic is important because a group-V element is
necessarily a metal in the simple-cubic structure, whereas
in the arseniclike structure it may be insulating, semime-
tallic, or zero-band-gap-semiconductor, depending on the
topology of the band structure. Furthermore, it has a Ra-
man active phonon which can serve as a signature. In our
previous work for those elements we found structures in
good agreement with experiment; for example, we have
found that P is stable in the simple-cubic structure at
moderate pressures, whereas As is predicted not to be
stable in this structure of any moderate pressure.

The primary purpose of the present work is to investi-
gate the stability and properties of N in compressed non-
molecular phases. Our experience for P and As gives us
confidence that the theoretical methods are sufficiently
accurate to predict these properties. In addition, however,
we want to predict the pressures and volumes at which the
nonmolecular phases of N are stable, which requires cal-
culation of the relative stability of molecular and non-
molecular phases. This is a more severe test of the
theoretical methods because of the great differences be-
tween these types of structures. The accuracy of this part
of our work depends upon the extent to which the local-
density approximation (LDA} (Refs. 13 and 14} describes
solids which range from well-separated, strongly bound
molecules to simple monoatomic metals. Although there
have been many calculations of either molecules' or sim-
ple solids, ' to the knowledge of the authors, only for
hydrogen' have previous calculations been carried out
with sufficient precision to give accurate LDA predictions
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for the transition pressures and volumes. In the present
paper we present results of calculations done in a con-
sistent way for molecular crystals, simple nonmolecular
crystals, and a range of distorted structures which connect
continuously these two types of crystals.

Our work was stimulated by the recent prediction of
McMahan and LeSar' (ML} that the pressure required to
cause the phase transition in nitrogen is less than 1 Mbar.
Since this is an accessible range for pressures in a dia-
mond anvil cell, their prediction has stimulated interest
that it may be possible to realize a new metallic structure
among the first row elements. Their conclusions are de-
rived from calculations which used the Gordon-Kim
method' for the molecular phase and self-consistent
linear muffin-tin orbital (LMTO) density-functional
method' for a number of simple metallic structures.
They found that the simple-cubic structure is much more
favorable than all the other simple metallic structures
considered, in agreement with the properties of the other
group-V elements. The possibility of N occurring in dis-
torted arseniclike structures was foreseen by ML, ' who
recognized that a transition to such a structure would
occur at a pressure below that for the simple cubic. How-
ever, ML did not carry out calculations for any distorted
structures.

There is evidence from shock-wave data for a transition
in fiuid nitrogen around 300 kbar and 6000 K, which has
been ascribed to molecular dissociation. However, little
is known about the properties of any such high-pressure
phase, especially at low temperatures. Thus the prediction
of ML has stimulated new experimental studies using
static pressure techniques. Ro:ently, two groups ' have
carried out new experiments in the diamond cell going to
pressures reported to be approximately 1.3 and 1.8 Mbar
to test the predictions. The experiments have found a de-
crease of the band gap, so that the sohd appears colored,
and small changes in the molecular Raman frequencies—
both of which are the expected precursors to the
transition —but the experiments found no evidence for any
transition to a nonmoleeular phase at these pressures.
Since our work supports the general conclusions of ML
concerning the existence of the transition, there is an ap-
parent discrepancy between these experiments and our
theoretical calculations. It is not possible at the present
time to draw definitive conclusions from this apparent
difference, because it is not feasible for us to consider all
possible structures of the molecular phases(s). In particu-
lar, we have not considered the complex distorted molecu-
lar phases discovered in the recent high-pressure experi-
ments. ' %e comment on the relation to experiment in
the discussion sex:tion at the end of the paper.

The present paper is organized as follows: In Sec. II we
describe the structures with A7 symmetry, which we will
explicitly consider, and the relation to other possible in-
teresting structures. The calculational methods are
described in Sec. III. In Sec. IV we present the results for
the structures in the family with A7 symmetry, the phase
transition under pressure, and the properties of the
predicted phases —charge densities, electronic structure,
and phonon frequencies. In Sec. V we briefly describe re-
sults for other molecular structures, o. and y nitrogen, and

in Sec. VI we discuss the cohesive energy relative to the
atom. Finally, in Sec. VII we discuss our results with em-
phasis upon the role of the local-density approximation
and the relation to experiments.

II. DESCRIPTION OF STRUCTURES

The structures which we will consider for N are
grouped into molecular (coordination 1), arseniclike (coor-
dination 3), and simple cubic (coordination 6). It is well
known that the arsenic A7 structure may be described as
distorted simple cubic, in which there is an internal dis-
placement of the two fcc sublattices along the [111]direc-
tion. '5'9 The resulting structure has trigonal symmetry
and there are two degrees of freedom in addition to the
volume. One is the internal parameter u which is defined
so that u = —, denotes the simple cubic. The arsenic
structure with u shghtly less than —, is shown in Fig. 1(a}.
(We need consider only u ~ —,

' since the structures are
identical for u p —,'. ) The other degree of freedom of the
structure is the c/a ratio, where a(c) is the translation
length in (perpendicular to) the basal plane, as is illustrat-
ed in Fig. 1. For cubic structures the c/a ratio is fixed by
symmetry to be 6', and for the distorted structures ' ' it
tends to be greater than 6'~ . It follows that we may treat
A7 and simple cubic as one family of structures in which
simple cubic is a special case.

In addition, this family of structures varies continuous-
ly to a well-known molecular structure, the p-oxygen
structure, and we will use this fact to carry out calcula-
tions for N in all three types of structures within a single
symmetry class. Within the family of structures defined
above, if u is decreased continuously toward 0 one finds
an interesting sequence shown in Fig. l. At u = —,, [Fig.
1(b)] the two planes of atoms coalesce into a single plane,
which has the honeycomb structure of the planes in gra-
phite, with the plane stacked exactly as in the rhom-
bohedral phase of graphite, i.e., with each atom having a
single second neighbor either directly above or below it in
the c direction. If u is decreased further to u = —,

' [Fig.
1(c)], then a new bond is made so that each atom has four
equivalent neighbors. For c/a =6' this is the cubic dia-
mond structure. Finally, if u & —,', then each atom has
only one nearest neighbor and the structure is the p-
oxygen molecular structure [Fig. 1(d)]. This is one of the
simplest possible molecular structures since it contains
only one molecule per primitive cell. It may be viewed as
close-packed hexagonal planes of molecules, with the
molecular axes perpendicular to the planes, and with the
planes stacked in the same ABC sequence as in fcc. It
may be noted that this sequence is essentially the same as
was considered by Froyen and Cohen. They carried out
calculations along a path from rock salt to zinc-blende
structures, which is the ionic analogue of our path from
simple cubic to diamond. However, in their cases the
molecular structure played no important role.

It should be pointed out that, although our primary ca1-
culations on molecular N are for the p-oxygen structure,
there is no evidence that N actually exists in this structure
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be that given by Bachelet er al. , "in which we have taken
the i=2 component to be the local potential (i.e., it ap-
plies to all I& 2). It may be noted that the 1=0 and 1=1
potentials are very different, as they must be for first row
atoms that do not contain a p core. We expect that this
strong nonlocality plus the fact that all components of the
potential are quite strong, leads to the differences in the
behavior of the first row from that of the heavier ele-
ments. This reasoning has been used by Yin and Cohen in
their work on carbon. The resulting Schrodinger equa-
tion was solved self-consistently in momentuin space at 20
(84 in tests) special points in the irreducible part of the
Brillouin zone for simple cubic and 10 (20 in tests) points
for the A7 syinmetry structures. Plane waves of up to 50
Ry in energy (-200 plane waves/atom) were included in
the basis set used for the results reported. The only excep-
tions to these choices are for the molecular structures at
large volumes ( V~ 5 A ) and the more complex u struc-
ture, which were done with the waves from 30 to 50 Ry
included in second-order Lowdin perturbation. ' Also
smaller k point sets were used for the a and y structures
and for the p-oxygen structure at the largest volume
( V=10 A ).

To confirm that the results given are not greatly depen-
dent upon these choices, we carried out calculations with
additional plane waves from 50 to 80 Ry included in
second-order Lowdin perturbation and with the larger k
point sets. There were only small changes in the energy
differences; for example, the energy difference of 0.52
eV/atom between simple cubic and an arsenic structure
near equilibrium at V=5 A increased by 0.07 eV/atom
with the increased cutoff and by 0.06 eV/atom when the
larger k point sets were used. Although such changes
could increase the value of the stabilization energy of the
arsenic structure by -25%%uo, clearly they would not modi-
fy our conclusions concerning the relative ordering of any
of the phases considered here.

Because only relative energies enter into the question of
stability, we present our results as the energy relative to
the (arbitrarily chosen) energy of the simple-cubic phase
at the volume of 5 A . Since the calculated energy de-
pends upon the cutoffs on the plane waves, in each case
the relative energy is calculated as the difference between
the given structure and the simple cubic calculated with
the same energy cutoffs for the plane waves treated exact-
ly and in perturbation theory. We compare with MI. by
also referring their results to this energy. In Sec. VI we
will discuss our results for the cohesive energy relative to
the atom. Calculation of this quantity is more difficult
for numerical reasons and, more important, it is known
that the greatest errors in the cohesive energy come from
the errors in the I.DA applied to the atom. Thus we
emphasize that this number is not essential for any of our
conclusions and we relegate it to a separate section.

IV. RESULTS

A. Stability of structures

We first present calculations done at a single volume
which demonstrate the results for the different structures.
We have chosen the volume of 5 A because it is near the

point where the phase transition is predicted to occur,
both by ML and as found in the present work. Our pri-
mary results are the charge densities, which are shown in
Fig. 2 for four representative cases corresponding to the
structures shown schematically in Fig. 1, and the total en-
ergies, given for a number of structures in Fig. 3.

We have initially carried out calculations for structures
along the path illustrated in Fig. 1, where the u parameter
is varied keeping the c/a ratio fixed at the fcc value of
O' . The calculated total energies are shown as the points
enclosed by circles in Fig. 3, with a continuous line drawn
through the points as a guide to the eye. This curve
shows immediately the most important result: none of the
high-symmetry structures are stable. In particular, simple
cubic is unstable to the internal distortion, i.e., it has an
imaginary frequency for the zone-boundary phonon that
doubles the unit cell and generates the A7 structure. This
has been checked by calculating the force at very small
displacernents at this and other volumes, from which it
was found that simp1e cubic is unstable to infinitesimal
displacements at all Uolumes considered In ad. dition, the
only other cubic structure, diamond at u = —,', is also a
maximum in the total energy, not a minimum. The pla-
nar rhombohedral graphite structure (u = —,') is not a
point of high symmetry along this curve, as may be veri-
fied by reference to Fig. 1, which shows that ine-
quivalence of positive and negative changes in u around
the value u = —,'. The only stable minima are the two
structures which are, respectively, arseniclike, u-0.22,
and p-oxygen-like, ug0. 1. Within this family of struc-
tures the only possible phase transition is between these
two minima. The transition will be discussed after the
following considerations.

Before one can find the true minima for these struc-
tures, one must also minimize the energy with respect to
the c/a ratio, which is an additional degree of freedom
for all the noncubic structures. For this the use of the
stress theorems is extremely useful. Because of the trigo-
nal symmetry of the crystal, the only nonzero components
of the stress tensor are diagonal o and o.„„=o~„where z
is oriented along the c axis. The trace of this tensor is
3P =o~+2cr~ and the difference o~ —o~ is the shear
stress. For a given structure the shear stress is the linear
derivative of the energy with respect to the shear of the
cell, and the equilibrium value of the c/a ratio is that
which yields zero shear stress. At u=0.21 we have mini-
mized the energy with respect to the shear strain c, using
the stress theorem, and we have found e =0.05 (or
c/a =2.643 using the relation given in Ref. 5). The points
and curve for e=0.05 are shown in Fig. 3, which is ade-
quate to establish the arseniclike minimum to be u =0.217
and c.=0.05, with E„,=0.56 eV/atom below that for sim-
ple cubic. (It may be noted that these are quite similar to
those in As where u=0.23 and v=0.08 experimentally,
compared to u =0.23 and v=0.06 calculated using exactly
the same methods as here. )

For the P-oxygen-like minimum, we have followed a
similar procedure, first minimizing with respect to u, then
c,, followed by a calculation at the predicted minimum to
demonstrate that the forces and shear stresses are essen-
tially zero, i.e., that the structure is near the minimum. In
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FIG. 2. Charge-density contours for structures along the path shown schematically in Fig. 1. The plane chosen is the same as in
Fjg. 1 containing the bonds shorn as heavy lines. The increased magnitude of the bonding charge in (d} indicates the strength of the
i&«smolecular bond in the P-oxygen structure. (The reason the two bonds about each atom in the diamond structure are not identica]
is that diamond was treated as trigonal A7, just like the other cases. The extent to vrhich the results approach cubic symmetry is a
test of the accuracy of our calculations. }
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from the calculated forces. Its curvature indicates ihe high-
phonon frequency in comparison ~ith the curvature at the ar-
seniclike minimum.

this case the predicted c/a ratio is 3.1, quite different
from the ideal, and the triangles in Fig. 3 show the
behavior near the predicted minimum. The parabola
drawn through the two points was calculated from the en-

ergies and forces at these points. Note that the large
change in u between the two minima shown in Fig. 3 is
almost entirely due to the change in c, with the bond
length ( r =2uc) remaining constant to within the accura-
cy we could determine. One result is that the molecular
bond length r =1.15 A is found to be slightly greater than
that at low pressures. (At low pressures we find r=1.10
A, as discussed later, in excellent agreement with the
known bond length in the molecule. ) Although this struc-
ture is clearly very molecular in character, the results
described below show the extent to which the properties
of this p&ase are modified by the volume compression.

The electronic charge densities for the various struc-
tures along the path given in Fig. 1 show the changes in
the bonding as the coordination and geometries are
changed. The calcu&@ted densities for the two stable
structures are shown in Figs. 2(a) and 2(d). In the arsenic-
like structure at the top each atom has three bonds to
nearest neighbors: one is shown in the plane and corre-
sponds to the sohd bold lines in Fig. 1(a); the other two
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equivalent bonds are, respectively, above and below the
plane. In the P-oxygen molecular structure at the bottom,
each atom. has only one near neighbor and the strong
molecular bond is shown in the plane. The charge density
for intermediate structures between these phases is shown
in the middle figures: the flattening of the arsenic pyra-
mids into planar threefold coordinated structure of rhom-
bohedral graphite in Fig. 2(b); and the formation of a new

bond perpendicular to the planes to make the fourfold
coordinated diamond structure of Fig. 2(c). It is this new

fourth bond in the diamond structure which becomes the
single molecular bond for each atom in the P-oxygen
structure in Fig. 2(d).

In the molecule the nearest-neighbor distance is much
shorter than in the other structures and the strength of the
molecular bond is shown by the greater charge density in
the bonds, 38 electrons/cell compared to 20 in the arsenic
structure at the bond centers. Also the shapes of the
charge densities are different, refiecting the different
linear combination of the s and p states involved in each
bond. In this molecular structure each atom has three
second neighbors on different molecules, one of which is
shown in the plane. Although this is clearly a molecular
solid, the second-neighbor interactions are sufficiently im-
portant at this density to cause the distortions of the
molecular density shown in Fig. 2(d) and to other effects.
In particular, in our calculations the intermolecular in-
teractions at this volume are so large that the system is
metallic. The properties of these phases will be con-
sidered further below.

The charge densities for the unstable intermediate
structures, rhombohedral graphite and diamond, are
shown in Figs. 2(b) and 2(c), respectively. Since the bond
contours are not markedly different than those for the ar-
senic structure, the reason for the higher energy is not im-
mediately apparent. It is more revealing to examine the
band structures and the filling of states, which favor
threefold coordination or a single triple bond for group-V
elements, and do not favor structures such as the diainond
structure where electrons are forced into the conduction
band above a band gap. This has been described by ML.

B. Transition under pressure

In order to calculate the pressures and volumes at
which there can be a phase transition between the two
minima, we must determine the total energy of the solids
at each minima as a function of volume. The transition
will occur as a function of pressure when the relative
enthalpies (H =E+PV) of the two minima change sign,
which can be determined by constrocting the tangent be-
tween the two curves for E( V). Figure 4 shows the re-
sults of our calculations at different volumes, all referred
to the energy of the simple cubic at V= 5 A .

For the distorted structures we have only roughly mini-
mized the energy with respect to all parameters at each
volume. For the determination of the energy alone, it is
not essential to find the structure accurately because the
error in the energy is quadratic in any structural devia-
tions. For the arseniclike minimum we have kept u and c.
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ferent structures relative to simple cubic at V= 5 A . The calcu-
lation transition occurs at the pressure of approximately 700
kbar, given by the slope of the tangent sho~n. The curve for
simple cubic is close to that of ML (Ref. 17) and the dashed line
is the molecular calculation of ML. The shift in the latter above
our results is not relevant to our calculation of energy differ-
ences between the phases but it does show the error in our LDA
calculation of the binding relative to the atom (see the text).

fixed. For the P-oxygen-like minimum, we show points
calculated with a simple prescription that r be the free
molecule length and the c/a ratio be that derived by re-
quiring the shortest distance between atoms on different
molecular planes to be equal to that (=a) between atoms
on different molecules in the same molecular plane. This
is quite good as may be seen by the fact that the energies
of structures with optimized c/a ratios (triangles) are
only slightly lower. Also the results shown in Fig. 3, as
well as the force constants discussed below, are sufficient
to show that the energy is lowered by less than approxi-
mately -0.05 eV/atom by relaxing the bond length.

The transition pressure which we find from the tangent
construction is approximately 70D kbar, and the transition
occurs between phases with atomic volumes of approxi-0

mately 7.2 and 5.5 A /atom, i.e, a rather large volume
jump of approximately 25%%uo. The present result for the
transition is only slightly smaller than that found by ML
of approximately 770 kbars. This close similarity of the
numerical values is a coincidence because, as ML pointed
out, their pressure should have been increased to compen-
sate for differences in the two methods they used, respec-
tively, for the molecular and nonmolecular phases. ML
estimated the increase to be approximately 220 kbars so
that their estimated pressure for the transition to simple
cubic was approximately 1 Mbar. (Even though we find
simple cubic not to be stable, we can compare with ML by
constructing the tangent between the molecular and
simple-cubic curves. From Fig. 4 one can find the pres-
sure for this transition to be approximately 1.1 Mbars in
good agreement with the best estimates of ML. ) Thus our
result is indeed a lower transition pressure than that of
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ML, caused by the lower energy of the arsenic structure
relative to the simple cubic. This is also evident from the
difference in the transition volumes. We find a smaller
volume jump (-25% compared to 33%) because the
shape of E( V) For the arsenic structure is more similar to
that for the molecular phase than is E( V) for the simple
cubic.

One important result is that the energies for simple cu-
bic and diamond agree well with the LMTO results of
ML; this may be seen by comparing Fig. 4 with Fig. 1 of
MI. and, in addition, the energy relative to the atom is in
good agreement, as discussed in Sec. VI. Also our calcu-
lated E( V) for the P-Oz structure is quite similar to that
found by ML and shown as dashed lines in Fig. 4. That
curve is actually for the R3c (C&„) structure and was
found using the Gordon-Kim (GK) method. ' If we ig-
nore for the moment the shift in energy between the
curves (which is discussed in Sec. VI) the variation with
volume is similar except that ours does not increase as
rapidly at smaller volumes. This difference is understand-
able in terms of the dispersion in the bands which we find
at small volumes. Our energy is lowered by hybridization
of the bands (and by transfer of electrons when they over-

lap to form a metal for volumes below -6 A /atom). On
the other hand, the GK method's is an approximation to
the LDA designed work for closed-shell atoms and mole-
cules which does not include these effects.

C. Properties af the phases at high pressure

1. E/ectronic stotes

Perhaps the most important property to consider is the
effect of the structure upon the electronic bands at high
pressure. If the simple-cubic structure were stable, it
would of course be metallic since it would have an odd
number of electrons per cell. On the other hand, the A7
symmetry structures with two atoms per cell can be insu-

lating, zero-gap semiconducting, or semimetallic. The na-
ture of the Fermi surface (if any) is one of the goals of
this work since it will be critical for whether or not metal-
lic nitrogen could be a superconductor. This is of particu-
lar interest. in N since electron-phonon interactions should
be large in this element, as in other first row elements.
On the one hand the electron-phonon interaction is re-
sponsible for the instability of the simple cubic; on the
other hand, if the stable structure is metallic, then the
electron-phonon interaction could lead to a high supercon-
ducting transition temperature T, . Thus N can be an ex-
ample of the competition between high T, and structural
instabilities.

In Fig. 5 we show the band structure for the predicted0
stable arseniclike structure at V=6 A /atom. The calcu-
lated bands show semimetallic character not unlike those
found for As. The Fermi surface is small which indicates
that superconductivity is not favored. However, at small-
er volumes, the density of states at the Fermi surfaces
which might be more favorable for superconductivity.
The greatest difference from As, other than the greater
bandwidth, is that the N bands cross the Fermi energy EF
in only one region of the Brillouin zone (BZ) near the T
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FIG. 5. Electronic band structure of nitrogen in the arsenic-
0 3

like structure at V=6 A /atom. The most significant feature is
the set of bands crossing the Fermi surface near T. As dis-
cussed in the text, this means that at this volume X is near the
transition between a zero-band-gap semiconductor and semimet-
al with a small Fermi surface. Note that there is a gap above
the Fermi energy separating the 8 s-p bands per cell from the
higher bands.

point (the top center of the hexagonal BZ), whereas in As
there are also pieces of the Fermi surface near point I..
This has interesting possible consequences for N, if we
imagine small variations around the structure shown in
Fig. 5 (due either to physical variations like pressure or to
corrections to the present theoretical calculation). First,
symmetry analysis of the bands shows that the doubly de-
generate bands near EF at the T point must connect to the
band well below E~ at 8' and to one well above Ez at I .
Any band structure with this topology must have at least
one band crossing the Fermi energy, so that there can be
no finite gap. However, if the bands cross only at the one
point (and others related by symmetry) required by the to-
pology, the Fermi surface may consist only of points, i.e.,
a zero-band-gap semiconductor. Our calculations indicate
that this would actually happen at a slightly larger
volume so that the predicted nonmolecular phase of N is
near a transition from zero-band-gap to semimetallic
bands.

It is clear in Fig. 5 that there is a gap well above the
Fermi energy between the 2s-2p bands and all other
bands. This can happen in the light elements where 3s,
3p, and 3d are well separated in energy, whereas there is
no such gap in the heavier elements like As (see Ref. 5).

Our calculations also lead to results for the band gap in
the molecular phase and its variation with pressure. Al-
though we will give representative results here, we want to
emphasize that the calculated gaps for the molecular
phases depend sensitively upon the c/a ratio. Because we
did not judge it worthwhile to go to great lengths to deter-
mine the c/a ratio accurately (since it makes only very
minor differences in the total energy), any comparison
with experiment must be considered very qualitative.
Also we expect the calculated gap to be less than the true
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gap, as in other LDA calculations. ' Our most quantita-
tive results are for V=7 A, near the predicted transition,
and 5 A, for which our most extensive calculations were

0

done. At V=5 A the molecular structures were found to
be metallic for all values of the c/a ratio tested on both
sides on the minimum c/a=3. 1. At V=7 A the bands
are slightly metallic for c/a=2. 67 (the case indicated by
the circle in Fig. 3), but for c/a =3.4 (near the minimum)
the lowest gap is -2.7 eV. This gap is indirect and the
minimum direct gap is -5 eV. Such a minimum gap is
consistent with the data of Ref. 21, where it was found
that N becomes colored under pressure. Thus we find
that the molecular phase remains insulating ug to the
transition, unlike the conclusion of Min et al. ' for hy-
drogen, where it was predicted to be metallic in the molec-
ular phase.

2. Phonons

One of the most accessible signatures, distinguishing
the A7 structure from simple cubic, is the existence of
Raman active phonon modes. We have calculated fre-
quencies of these modes in three cases, the molecular P-

0

oxygen phase at V=5 and 8 A /atom and the arseniclike
phase at V=5. We have determined the frequencies by
calculating the force at two different values of the internal
parameter u. From this one can find a force constant and
a harmonic frequency. For V=5 the u values are the
ones shown in Fig. 3 closest to the miruma, and as we
have already noted, the parabola drawn in Fig. 3 for the
stable molecular structure is derived from the forces. Al-
though we have not tried to find accurate values of the
phonon frequencies (which would require extensive tests
with larger k point sets, energy cutoffs, and different dis-
placements to extract the anharmonic terms, as was done
in our previous work ), we believe that the results show
the important features.

Our results are that the frequency at the largest volume,
i.e., lowest pressure, is 2780 cm ', which is to be com-
pared to the experimental value of 2359 cm ' for the iso-
lated molecule and the Raman active modes of the crystal,
approximately 2400—2470 cm ', observed by Reichlin
et al. ' in the pressure range approximately 0.5—1.0
Mbars. Secondly, there is a large decrease at V=5 (where
the theoretical pressure is approximately 1.9 Mbars) to
1820 crn '. This large decrease illustrates the extent to
which the molecules are interacting in the highly
compressed molecular structure. The lower frequency is
also presumably related to overlap of bands and metallic
character of the bands. We would expect only a moderate
decrease in the frequency so long as the band structure is
insulating; thus we conclude that the frequency is not
greatly changed from the molecule at the calculated tran-
sition volume of -7.2 A /atom and pressure of approxi-
mately 700 kbars.

Probably the most important point is that the frequency
in the arseniclike structure is much lomer, 960 cm '. %'e
consider this large difference (a factor of 2 in the frequen-
cy means a factor of 4 in the force constant) to show that
the phonon frequencies in any reasonable nonmolecular
structure are greatly reduced compared to those in any

reasonable molecular structure. If that is so, then the Ra-
man frequency is a clear indicator of the molecular-to-
nonmolecular transition. Since the recent experimental re-
sults ' report that there are no great reductions in the
intramolecular phonon frequencies even at the highest
pressures of 1.4—1.8 Mbars, our results support the inter-
pretation that N has remained in a molecular structure in
these experiments.

V. OTHER STRUCTURES

Because one cannot examine all structures, it is essential
to consider candidates likely to be low in energy. This is
particularly relevant for the present work, since nitrogen
forms molecular structures at high pressure ' ' which are
more complex than any which we are able to consider
here. To try to quantify the effects of different structures,

0

we have done calculations at one volume ( V=5 A ) for
the two actual structures observed for N at low pressures:
a-N2 [cubic Pa3 ( Ti, ), 4 molecules/cellt and y-Nz (tetrag-
onal, 2 molecules/cell). We have chosen the bond length
to be the molecular value, which leads to energies only
slightly above the minimum (-0.05 eV/atom as was dis-
cussed in the preceding section). This is the only free pa-
rameter for u-Nq. For y-Nz we have also chosen
c/a =1.1, close to the experimental value at low pressure.
As shown in Figs. 3 and 4, we find that each of these is
higher in energy than P-02 by approximately 0.25—0.5
eV/atom. Thus we have not found any structure lower
than P-Oz in our tests.

It would certainly be unwarranted to conclude that all
other molecular structures will also be higher in energy.
Perhaps it would be appropriate to consider the difference
of -0.5 eV to be representative of the variations among
different molecular structures. If some other molecular
structure were lower in energy than P-02 by approximate-
ly 0.5 eV at V=5 A /atom, it would still be above the ar-
seniclike structure. The transition would still occur but
nearer this volume. Changing the transition volume from
5.5 (as in Fig. 4) to 5 A /atom would change the transi-
tion pressure from approximately 0.7 to 1.2 Mbar as may
be found from the tangents to the E(V) curve given in
Fig. 4. This illustrates the extreme sensitivity of the tran-
sition pressure to the exact form of E(V) for the true
molecular phase. The values of the transition volumes are
not so sensitive; thus it would be extremely useful if ex-
perimental measurements of the volume were made as a
function of pressure.

We can also comment that if some other nonmolecular
phase mere low in energy, e.g., the known complex struc-
tures of P, then this would always lead to a lower transi-
tion pressure. Also they could have major effects upon
the bands of N in the compressed phases. Just as P
changes from semimetallic in the arsenic structure to
semiconducting in the more complex phorphorus struc-
tures, so it is reasonable to conclude that N would do the
same. Since we have not treated any of these phases, we
cannot cominent further on their stability.

VI. BINDING ENERGY OF THE MOLECULE

The binding energy relative to the atom is of intrinsic
interest even though it is irrelevant for the transitions dis-
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cussed above. Since the binding energy is a small differ-
ence between the total energies of the molecule and two
separated atoms, it is essential to calculate each individual
energy in such a way that errors will cancel. In all the
calculations done here, the most significant error in the
absolute value of the total energy is due the finite number
of plane waves used in our basis set. Thus it is essential to
calculate the energies of the atom and molecule using ex-
actly the same cutoff on the plane waves, as was also done
by Northrup and Cohen in their calculations for Si and
Ge molecules. %e have done this by making a periodic
structure of atoms with the same volume per cell as that
(i.e., the volume per molecule) in the calculations for the
P-02 structure. Since the energy cutoffs are the same, this
means that the basis sets are the same. At the volune of
20 A per cell, with a 50 Ry cutoff, we find an energy
difference of 266.378—258.309=8.069 eV/atom. Four
corrections to this number are needed: The major correc-
tion is for the fact that we have not properly treated the
lowest-energy spin state of the atom. A better value is ob-
tained by lowering the atomic energy by 2.924 eV, as
found by spin-polarized LDA calculations. Secondly, as
a computational point for our "atomic" calculation, the
cell of 20 A is not sufficiently large for the atomic case
because of the effects of having partially filled bands for

0
the "atom. " Calculations on large cells (up to 60 A ) with
reduced cutoffs shows that the correction is a lowering of
the atomic energy by 0.272 eV. This gives a binding of

8.069—2.924 —0.272=4. 873 eV/atom

for the static solid at this density. For the molecule we
should also consider the zero-point motion which adds an
energy of —,

'
the phonon energy, 0.146 eV/molecule, to the

energy of the molecule. Finally, we add a correction for
the energy of the molecule relative to the crystal. We take
this from ML since the GK method is accurate for this
difference. Using the results given ML (Ref. 17) this is a
lowering of the energy of the isolated molecule by 0.386
eV/atom compared to that at the compressed volume of 8
A /atom. Thus our calculated binding of the molecule is

4.873 —0. 146/2+0. 386=5. 186 eV/atom

or 10.372 eV/molecule. This may be compared with the
experimental binding of 9.90 eV/molecule, a Cl calcula-
tion of 9.96, and other LDA calculated values of 7.8
(LMTO), 11.34 (Gaussian basis), and 9.97 (improved
LMTO). The fact that our value is larger than experi-
ment is in accord with other LDA calculations, and the
agreement with experiment is comparable to that found
for diamond carbon, which is 7.58 compared to the exper-
imental value of 7.37 eV/atom.

The qualitative aspects of our binding-energy calcula-
tion may already be seen in Fig. 4 in the comparison with
the molecular calculation of ML, shown as dotted lines.
The energy for the molecule has been placed on the graph
by ML using the atomic energies as the reference energies.
Since the correct experimental binding energy of the rnole-
cule is assumed in the GK method, that curve at large
volume can be regarded as the correct energy of the
molecular solid. Our result is below the dotted curve by
approximately 0.3 eV or 0.001 hartree/atom in agreement

with the value of the binding energy given in the preced-
ing paragraph.

The zero of energy used in the present work relative to
the atom can be determined in the same way. Using our
value of 264.210 eV/atom for simple cubic at V=5
A /atom and 50 Ry cutoff, we find the energy to be
—2.71 eV (0.099 hartree) relative to the atom. This is
slightly larger binding energy than the value of —2.57 eV
from Fig. 1 of ML, who also used the local-density ap-
proximation. Considering the differences in the form of
the LDA (ML used the von Barth-Hedin form), the use of
ab initio pseudopotentials and a finite number of plane
waves in the present work, and the spherical approxima-
tions in the LMTO, the agreement is very good. Indeed,
the difference is less than the height of the symbols
around the points in Fig. 4.

We wish to emphasize that our overestimate of the
binding of the molecule is expected in the LDA, and it is
not an essential point for any other aspects of this paper.
For the purposes of the present work, it is much more im-
portant that we have used a single method, so that the rel-
ative energies of the different phases could be determined
accurately.

VII. DISCUSSION AND CONCLUSIONS

We believe the most important and most well-founded
conclusion to be drawn from the present work is that N is
predicted to occur in a distorted three-fold coordinated
structure at high pressures. The simple cubic is found to
be unstable to distortions that take it to the A7 arseniclike
structure at all pressures considered, up to —10 Mbars.
%e conclude that these are large electron-phonon interac-
tions which lead to the distorted structure, removing most
of the Fermi surface that would occur in the simple-cubic
structure, and decreasing the prospects for superconduc-
tivity. Since the Fermi surface increases with pressure,
this may suggest that superconductivity will be more like-
ly to occur at higher pressures. The band structure is
found to be near the transition point between a zero-
band-gap semiconductor and a semimetal with a small
Fermi surface. In either case, it has properties distinctly
different from a simple-cubic metal. The phonon fre-
quencies are predicted to decrease markedly in going from
a molecular structure to the arsenic structure (by a factor
of at least 2 compared to zero-pressure nitrogen). This
can serve as a distinct signature in high-pressure experi-
ments.

Thus at high pressure nitrogen is found to behave much
like the other group-V elements. In the respect that it is
predicted not to be stable in the simple-cubic structure, it
is more like As than like P. Although this might seem
counterlntultlve, a possible explanation may lie ln the dlf
ferent role of d states in these elements. %hereas the d
states play little role in N, they are important in P where
they are just above the Fermi energy and are mixed into
the filled states. In As the 3d shell is a filled core state
and the 4d states are less important in As than are the 3d
states in P. This can be seen directly in the pseudopoten-
tials, for which the d part is more repulsive for As than
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for P. We have previously concluded from our calcula-
tions that d states stabilize the simple hexagonal structure
in Si and we believe the same can happen for the simple
cubic. Lack of d contributions was also argued by Yin
and Cohen to be a factor in the high energy of metallic
states of C.

The results for the molecular phase are less definite be-
cause of the difficulty in establishing the lowest-energy
molecular structure. %e have seen that properties such as
the band gap are sensitive functions of the structure, and
we have not attempted to accurately predict such proper-
ties. Perhaps the most important qualitative result is that
the best calculations indicated the molecular phase
remains insulating up to pressures above the predicted
transition pressure of -700 kbars.

Our results for the transition pressure are most tenta-
tive because they depend upon small differences in energy
between states that are very different in character. In par-
ticular, all our results depend upon the validity of the
local-density approximation (LDA) for the total energy.
If there is a significant difference in the accuracy with
which the exchange and correlation are represented by the
LDA in these very different phases of nitrogen, then our
results will be affected accordingly. Previous work using
the LDA has found impressive agreement with experi-
ment; however, it should be noted that in cases where the
transition is between very different phases there are devia-
tions from experiment. For example, in silicon the transi-
tion from diamond (semiconducting, coordination 4) to
P-tin (metallic, coordination -6) is found to be at
110—125 kbars experimentally, compared to 70 kbars
found by Needs and Martin and 90 kbars found by Yin
and Cohen, in two independent, but nominally identical
calculations. Such precedents show that the I.DA predic-
tion for the transformation pressure for N might also be
in error by -50%. In this light, it is relevant to note that
the transition volumes are much better determined by the
theory, and it would very useful if the experimental stud-
ies could include measurements of the volume, e.g., as has
been done recently for hydrogen.

It is important to point out that we have not considered
the complex structures which have been found recently
for N at high pressures. ' We have done calculations for
the known a and y structures, which we found to be
higher in energy than the P-Oz structure at the
compressed volume of V=5 A . As we discussed in Sec.
V, if the spread in energies of all our molecular calcula-
tions, approximately 0.25—0.5 eV/atom, is taken to be an
estimate of the uncertainty in the energy difference, then
transition pressure can change by approximately 0.5
Mbar. This source of uncertainty could be reduced
straightforwardly in future calculations because there is
no fundamental limitation on numerical accuracy for the
complex molecular structures.

Our conclusion is that the calculations indicate a transi-
tion to a nonmolecular structure at approximately 700
kbars, in apparent disagreement with recent experimental
resultsi' i which have reported no transformation up to
pressures above 1.3 Mbars. We conclude that either (1)
there is a transition as predicted, but that it has not been
observed because of a large energy barrier to the transi-
tion, or (2) the transition does not occur up to such pres-
sures. Although the latter result would mean a sig-
nificant difference from our calculated pressure of ap-
proximately 700 kbars, we cannot at this point set firm er-
ror bars on this calculated number because it may be a
sensitive function of the detailed structures and the
exchange-correlation energies of each phase.
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