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The thermal conductivity of a monatomic face-centered-cubic lattice has been calculated over a
range of temperatures from one-twentieth to one-half the melting temperature. An inverse-twelfth-

power "soft-sphere" potential was used to represent the interatomic forces. We have examined,
quantitatively, the approximations involved in deriving the Peierls phonon-transport expression for
the thermal conductivity and have determined the temperature range over which it is useful. This
has involved extensive comparisons with the formally exact Green-Kubo method, using molecular
dynamics to generate the phase-space trajectories. At low temperatures, the relaxation processes in

a crystal can be described in terms of phonon lifetimes. We have calculated the lifetimes of all the
phonon states of 108-, 256-, and 864-particle classical crystals, with periodic boundaries, by molecu-
lar dynamics and by anharmonic perturbation theory. These lifetimes were then used to estimate
the thermal conductivity.

I. INTRODUCTION

where to is the unperturbed harmonic frequency, and b,
and I are the frequency shift and linewidth. These line
shifts and linewidths depend on the thermodynamic state
of the crystal and can be measured by a variety of experi-
mental techniques, of which the most powerful is neutron
scattering. A comparison of theoretical and experimental
line shapes provides a detailed check on proposed inter-
molecular forces.

Transport properties of solids can be estiinated from
the phonon lifetimes, which we define by

I (5n(t)5n(0))dt
r (1.2)

(5n )

where n, proportional to Q'Q, is the phonon occupation
number, and 5n indicates the fluctuation of n from its
equilibrium value. It can be seen that the lifetime and
linewidth are simply related

r=(21 ) (1.3)

Despite the fact that there are mell-known formulas,

The thermodynamic and transport properties of anhar-
monic crystals are generally described in terms of the in-
teractions between phonons. ' The anharmonic forces
cause the phonon spectrum to shift and broaden, so that
the normal-mode amplitudes are no longer purely periodic
functions of time. If the anharmonic interaction is small,
so that the lifetime of a phonon state is many vibrational
periods, the normal-mode amplitudes can be written as

Q (t) Qe
—i(re+a tr u—

both classical and quantum, for the phonon line shifts and
linewidths, ' they have never been evaluated for enough
normal modes to enable a definitive calculation of the
thermal conductivity to be made. Calculations of phonon
line shapes are generally restricted to a few symmetry
directions. ' ' Analytic estimates for the thermal conduc-
tivity, obtained by approximating the Brillouin-zone
sums, ' differ by more than 50%%uo for the inverse-twelfth-
power potential.

A formally exact method of relating transport coeffi-
cients to the decay of fluctuations in microscopic fluxes
has been described by Green and Kubo. Numerical re-
sults from molecular-dynamics simulations are available
for fluids of particles interacting with hard'o and soft"
forces. The molecular-dynamics method is not restricted
to small amplitude displacements of the particles. It is
therefore ideal for investigating deviations from the in-
verse temperature dependence of the thermal conductivity,
k, predicted by classical phonon perturbation theory. ' '

In the first part of this work, we compare the autocorrela-
tion function and resulting thermal conductivity derived
from the exact microscopic heat flux, ' with the approxi-
mate formulation, valid only at low temperatures in terms
of phonon energies and group velocities. ' This enables
us to determine the range of validity of the Peierls expres-
sion for the thermal conductivity as a function of tem-
perature or rms displacement.

%'e have calculated, from our molecular dynamics
simulations, the coefficient, limz. o(A, T) that describes the
low-temperature thermal conductivity of classical crystals.
This can be compared with theoretical calculations based
on the Peierls theory of thermal conduction. ' We have
compared our molecular-dynamics-based result with ap-
proximate theories, ' and more rigorous estimates based
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on calculating phonon lifetimes for all the normal modes
of finite-size crystals and extrapolating to the thermo-
dynamic limit. The phonon lifetimes were calculated by
molecular dynamics and anharmonic perturbation theory.

The calculations described in this work were carried out
for a monatomic face-centered-cubic crystal. The inter-
particle forces were derived from a pairwise-additive
inverse-twelfth-power potential,

II. HEAT FLUX AND THERMAL CONDUCTIVITY

A general expression for the thermal conductivity, first
derived by Green and Kubo has now been obtained in

many different ways. The conductivity A is related to the
decay of equilibrium fluctuations of the microscopic heat
current, q,

A, = J (q„(t)q„(0))dt,
ktt T' (2.1)

where V is the volume, T is the temperature, and k& is
Boltzmann's constant. %e will indicate how the expres-
sion for the thermal conductivity of crystalline solids de-
rived by Peierls, ' can be obtained from the Green-Kubo
expression under certain approximations, valid at low

temperature.
For a classical system of point masses, interacting via

pairwise-additive forces, a microscopic expression for the
heat flux has been derived by Irving and Kirkwood, ' as-

suming that half the pair interaction energy can be associ-
ated with each particle. If the temperature gradient is

slowly varying over a distance corresponding to the range
of interparticle forces, then the heat flux is independent of
any reasonable method of localizing the potential energy.
Irving and Kirkwood"s prescription leads to an expression
for the heat flux q in terms of the relative coordinates,
r „, and forces, F „, between pairs of particles, and the
individual particle velocities v

(t(r) =e(tr/r)'

truncated beyond the second neighbors. For this poten-
tial, there exists a corresponding states principle linking
thermodynamic or hydrodynamic states described by the
same dimensionless parameter

x =(Ncr'/v 2V)(e/k T)'

For instance, the scaled thermal conductivity A, T ~ is a
function of x only. ' For ease of comparison with
theoretical results we ignore this scaling and treat e and o
as independent variables. The reduced density Eo'/~2V
is equal to unity throughout this work, and the melting
temperature at this density, T, is 2.29e/k~. '

way to the momentum flux or pressure tensor, from the
"heat theorem, ""

dt
—pre =0, (2.3)

where e~ is the energy associated with particle m. Since
there is negligible macroscopic particle diffusion in a crys-
talline solid, and since small fluctuations in the particle
coordinates cannot cause energy transfer over macroscop-
ic distances and times, the heat theorem for a solid is sim-
ply

(2.4)

where r indicates the average coordinate of particle m.
This leads to an alternative and simpler expression for the
heat current

qV= —,
' g(v +v„)F „r „. (2.5)

Similar expressions have been derived for the pressure and
elastic constants. ' It should be noted that no assumption
of small displacements is made in deriving Eq. (2.5); only
the absence of particle diffusion is required. Numerical
checks have shown that thermal conductivities obtained
using Eq. (2.5) are identical to those obtained using Eq.
(2.2) though the instantaneous (t =0) current fluctuations
are different.

If the interparticle potential is expanded in a power
series in the relative displacements, u „,the first nonvan-
ishing contribution to the heat flux, quadratic in the dis-
placements is, from Eq. (2.5),

q V= ——, g r „[u „(u +u„):(VVQ „), & ),
m)n

(2.6)

where the sum is over the discrete set of (X —1) vectors
and three branches contained in the first Brillouin zone.
It is then straightforward to show that the approximate
expression for the heat flux in Eq (2.6) is equivalent to the
formula first derived by Peierls, "'

where V VP „ is the force-constant matrix, and r „ is the
average separation vector. Thermal conductivities calcu-
lated with this heat flux are strictly valid only at low tem-
peratures.

If the particle displacements are expanded in a set of
normal modes with amplitude Q and polarization e, then
for a crystal of X atoms of mass m, with a fixed center of
mass, enclosed by periodic boundaries,

u =(mN) '~ QQ;e;e (2.7)

g [P „(v +v„)+F „(v +v„)r „]. qpV =gn;to; u;, (2.8)

(2.2)

This expression can also be derived, in an analogous

where co; and u; are the frequency and group velocity and
n;, which has units of action, is related to the usual defi-
nition of the phonon occupation number, n~„
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n =(n, + —,)fi=mcoQ'Q . (2.9)

This definition makes for a simple correspondence be-

tween quantum and classical results, since the energy as-
sociated with a particular mode is neo in both cases. In
Sec. IV we compare numerical results for the thermal con-
ductivity using the three expressions for the heat flux q,
q', and qi'.

The Peierls expression for thermal conductivity ' is a
simplification of the Green-Kubo result, obtained by sub-

stituting the approximate phonon heat flux, qi', with the
result
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Since the ensemble-averaged heat current is zero, we can
replace the occupation numbers by their fluctuations, 5n;
If the correlation between different phonon states
(n;(t)n; (0) ) is ignored, then the conductivity can be writ-
ten in the form derived by Peierls'

(2.11)

which follows from the definition of the phonon lifetime
(1.2) and the classical thermodynamic fluctuation formula
((5n;) ) =(k&T/co;) .

III. THERMAL CONDUCTIVITY:
NUMERICAL RESULTS

We have calculated by molecular dynamics the thermal
conductivity for the inverse-twelfth-power potential over
a range of temperatures up to about one-half the melting
temperature, with two goals in mind. First we wished to
find the coefficient of the inverse temperature dependence
that characterizes the low-temperature thermal conduc-
tivity of classical crystals. Second we wished to determine
deviations from the low-temperature T ' behavior caused
by higher-order anharmonicities. These deviations occur
in the heat current itself, beginning with terms propor-
tional to the third derivative of the potential, and in the
dynamics, beginning with linear terms proportional to the
sixth derivative of the potential together with terms in-
volving products of lower-order derivatives. Although
both types of deviation must be included simultaneously
for a systematic expansion of the conductivity in powers
of the temperature, it is of theoretical interest to examine
them separately. %'e compare thermal conductivities ob-
tained using the exact microscopic heat flux q, with those
obtained from the quadratic approximations to the heat
fluxq andq.

Heat flux autocorrelation functions were obtained at
temperatures (kii T/e) near 0.1, 0.2, 0.5, and 1.0 for crys-
tals sizes from 108 to 864 particles. The correlation func-
tions were averaged over run times of 600—10000
(mo /e)'~ (after equilibration) or about 2400—40000
Einstein (single-particle) vibrational periods. The classical
equations of motion were numerically integrated by an or-
dinary differential equation solver' which maintained the
energy conservation to about 10 Wk&T. The phonon oc-
cupation numbers, used in calculating the phonon heat

t (e/mo~)"

FIG. 1. Heat Aux autocorrelation functions of q, q, and q~
for X =108 and T=0.546'/'kq. Only the initial portions of the
correlation functions are shown.

flux qi' were obtained by a spatial Fourier analysis of the
instantaneous particle coordinates and velocities.

Heat flux autocorrelation functions are illustrated in
Fig. 1 at a temperature kii T/a=0. 55. The atomistic rep-
resentations of the heat flux, (2.2) and (2.6), result in oscil-
latory correlation functions, caused by the rapid transport
of energy back and forth over microscopic distances, by
the atomic vibrations of the lattice. These fluctuations
are averaged out by transforming to a phonon basis, re-
sulting in a monotonic decay of the heat current, as might
be expected macroscopically. In fact, the phonon heat
flux correlation function (q~(t) qi'(0) ) neatly bisects its
atomic counterpart (q (r) q (0)), and the integrals of
these two correlation functions are identical within the
statistical errors. The atomistic correlation functions
have a similar time dependence; the major anharmonic
contribution to the conductivity coming from the larger
instantaneous fluctuations of the exact heat flux, (q q).

The average long-time decay of these correlation func-
tions can be most easily seen in the phonon heat flux
correlation function which is shown at the two extreme
temperatures in Fig. 2 for N = 108 and 256. At high tem-
peratures, there is little difference between the correlation
functions for N =108 and 256, but at low temperatures,
heat currents persist much longer in the smaller system.
This is due to the reduced number of phonon scattering
mechanisms.

The various estimates of the thermal conductivity are
shown in Table I. %'e see that the Green-Kubo
molecular-dynamics method is an effective route to the
thermal conductivity of classical crystals even at low tem-
peratures. Run times of 1000(mo /e)'~ were usually
sufficient to reduce the statistical errors to less than 10%.
The number dependence of the thermal conductivity
arises from the different long-time dray rates of the heat
flux autocorrelation functions (Fig. 2), and is surprisingly
small. Although the thermal conductivities obtained with
%=108 and 256 are significantly different at low tem-
peratures, the conductivities for %=2S6 and 864 are
similar. This small number dependence is probably due to
two canceling effects. As the crystal gets larger, lower
frequency phonons, which generally make significant con-
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FIG. 3. Thermal conductivity from equilibrium Green-Kubo,
nonequilibrium molecular dynamics, and phonon perturbation
theory, The melting temperature is indicated by the vertical ar-
row labeled T,

FIG. 2. Long-time behavior of the normalized phonon heat
flux correlation functions at approximate temperatures of 0.1

and le/k~. A comparison of results for %=108 and 256 is
shown.

tributions to the conductivity, are permitted. On the oth-
er hand, the increased number of scattering possibilities
decreases the phonon lifetimes.

Nonequihbrium molecular-dynamics simulations of
thermal conduction using hot and cold reservoirs were
found to be impractical for three-dimensional crystals. 's

The phonon scattering was dominated by boundary ef-
fects. Homogeneous nonequilibrium simulations worked
much better and conductivities could be obtained with
about 10% accuracy for the high-temperature solid
phase. ' These results, together with some more recent
nonequilibrium simulations, are compared with the equili-
brium Green-Kubo results in Fig. 3. This comparison in-
dicates that the two methods calculate similar thermal
conductivities, though the nonequilibrium method is less
precise because the conductivity does not vary in any sim-
ple way with the external field used to simulate a tem-
perature gradient.

The thermal conductivities derived from the harmonic

TABLE I. Thermal conductivity of classical face-centered-cubic crystals interacting via an inverse-
twelfth-power potential. The thermal conductivities derived from each heat flux are shown together
with the temperature and nm time t,. The statistical errors are estimated to be about 5% for %=10S,
10% for %=256, and 15%%uo for %=864. A, =X0.2(m j'e)'/kq.

Tkg /» A,
' (~~)

0.103
0.101

0.208
0.205
0.204

0.546
0.534

1.191
1.142

108
256

108
256

10000
1000

5000
1000

380

203
140
150

53.2
45

23.2
27.7

360

1S1
125
135

41.7
36

14.4
16.7

365
280

180

41.4

13.4
16.0

0.95

0.89
0.89
0.90

0.78
0.80

0.62
0.60
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heat fluxes q and qP are in agreement with each other,
and vary as T ' at low temperatures. Our best estimate
of the coefficient limr o(A, T) is 26+1(e /mo )'~ .
Theoretical estimates of the thermal conductivity have
been given by Julian and Klemens. Julian calculates the
Brillouin zone sums that occur in the Peierls formula in
an approximate way, and for the inverse-twelfth-power
potential predicts that A, T=44(e /mo )' . Klemens's
theory, based on the Debye model, is in much better
agreement with our molecular-dynamics results and gives
a value of A, T=28(e /ma )'~ . We have also calculated
this coefficient from first principles, using the Peierls for-
mula (2.11), and lifetimes determined from phonon
perturbation theory (see Sec. IV). The result
A, T=25(e /ma )', is in good agreement with our
molecular-dynamics data (see Fig. 3).

At high temperatures, T~0. 5e/k t,tthe conductivities
and A,~, calculated using quadratic approximations to

the heat flux decay more rapidly than T ', due to the ef-
fect of higher-order anharmonicities on the phonon life-
times. However, if anharmonic contributions to the heat
flux are included, the conductivity A, falls off as approxi-
mately T '

up to temperatures of le/k~. It can be seen
in Fig. 3 that the thermal conductivity A, follows the low-
temperature perturbation theory prediction over this range
of temperatures. Beyond a temperature of 1e/ktt the con-
ductivity decreases more slowly than T '. The ratio
iPIA, is about 0.6 at kjtT/@= 1. These results suggest
that extensions of the low-temperature Peierls theory for
the thermal conductivity should include the higher-order
displacement contributions to the heat flux and dynamics
simultaneously.

IV. PHONON LIFETIMES

We can calculate phonon lifetimes from Eq. (1.2) using
the phonon occupation numbers obtained by Fourier
analyzing the instantaneous particle displacements and ve-
locities. At low enough temperatures we expect to make
contact with classical phonon perturbation theory. %'e

have calculated phonon lifetimes for 108 and 256 atom
crystals at four temperatures between 0.1 and 1.0e/ktt.
We estimate that the statistical errors in the phonon life-
times are between 10 and 30%. A harmonic phonon basis
was used, and the thermal conductivities obtained using
the Peierls formula (2.8) agree with our Green-Kubo re-
sults for A, and V. Of course, at high temperatures these
conductivities are considerably smaller than the "exact"
result, A, .

Phonon lifetimes calculated by molecular dynamics ex-
hibit a complex dependence on the magnitude and direc-
tion of the wave vector k. As an example, phonon life-
times in the [100] and [110]directions are shown in Fig.
4, as a function of the magnitude of k. The boundaries of
the first Brillouin zone are at ko =v 21r and ko =31r/2
for the [100] and [110] directions, respectively. A [110]
phonon lying outside the first Brillouin zone with ko. =2m
is equivalent to a zone-boundary [100] phonon,
k o =1/21r The longitu. dinal and in-plane transverse
modes of the [110]phonon form the degenerate transverse
modes of the [100] phonon and the out-of-plane trans-
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FIG. 4. Phonon lifetimes as a function of k in the [100] aud
[110] directions, for %=256 and T=O 2e/k. tt The. solid lines
are drawn as a visual aid to identify the various branches. In
the [110]direction the two transverse modes are not degenerate
and have different frequencies for motion in the plane of the k
vector and perpendicular to this plane.

verse [110] mode becomes the longitudinal [100] mode.
The lifetimes shown in Fig. 4 are consistent with this
symmetry.

The temperature dependence of the phonon lifetimes is
illustrated in Fig. 5 again for [100] and [110] phonons.
At low temperatures, the lifetimes are proportional to
T ' as expected from classical phonon perturbation
theory. This inverse temperature dependence character-
izes the lifetimes of long-wavelength phonons over the
temperature range we have studied. However, the life-
times of higher-k phonons fall off more rapidly than
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FIG. 5. Temperature dependence of the phonon lifetimes, in
the [100] and [110] directions for N =256 at various values of
k. The solid lines are the results of anharmonic perturbation
theory for %=256.
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T '. It is not possible to quantify these deviations with

the available statistics.
The straight lines, with a slope of —1, in Fig. 5 are the

predictions of classical phonon perturbation" theory for
%=256. The frequency shifts and linewidths were calcu-
lated from the usual perturbation-theory expressions, '
and the lifetime was obtained from the linewidth via Eq.
(1.3). In applying anharmonic perturbation theory to the
calculation of frequency shifts and linewidths, we have
used the conventional representations of the delta function
and principal value '

1 640
5(co) = lim

halo+ m' r02+(Q~)2
'~

1 N
11m

CO ha~a+ ~ + ( Q~ )

and the problem reduces the choosing an appropriate
value of Ace, corresponding to a smearing out of the har-

monic phonon reference spectrum, which is a sequence of
delta functions at the phonon frequencies. If boo is too
large, the details of the phonon spectrum are washed out;
if Aco is too small, there is very little overlap between ad-

jacent phonon states. An alternative method, involving

analytic integration over small regions of the Brillouin

zone, is not applicable to finite-size crystals.
We have found empirically that a narrow range of

values of hro, of the order of 0.05 (e/mar )'~, brings the

perturbation theory and molecular-dynamics results for
both N = 108 and 256 into quite good agreement, especial-

ly considering the statistical uncertainties in the
molecular-dynamics results. A suitable criterion for
choosing h,ai turns out to be minimizing the sum of the

squares of the frequency shifts, which corresponds in a

general way to the least sensitive choice of b,co. The per-

turbation theory results shown in Figs. 3 and 5 adopt this

criterion.
The predictions of classical perturbation theory can be

assessed in an overall way by comparing the thermal con-
ductivity calculated via the Peierls formula, Eq. (2.11), us-

ing the perturbation-theory hfetimes, with the molecular-

dynamics results for the conductiviP ties ior V. These re-

sults are shown in Table II together with the appropriate
he@, found by minimizing the variation in the frequency
shifts, and the sensitivity of the conductivity to the choice

of bee. It can be seen that the molecular-dynamics and
perturbation-theory results are in good agreement for the
larger crystals, and that Ace is steadily decreasing with in-
creasing X, as is the sensitivity of the conductivity to the
choice of hen. These results suggest that we have found a
useful procedure for applying phonon perturbation theory
to finite-size crystals.

It would be desirable from both theoretical and numeri-
cal standpoints to develop a theory that does not require
these empirical manipulations. Since anharmonic interac-
tions can bring a crystal of almost any size to thermo-
dynamic equilibrium, theories that require a continuous
phonon spectrum are incomplete. Numerical work on lat-
tice vibrations would be greatly assisted if direct
perturbation-theory methods for calculating phonon life-
times in finite-size crystals were available.

V. CONCLUSIONS

The equilibrium Green-Kubo method is currently the
most effective route to the thermal conductivity of classi-
cal crystals, and can be applied over a wide range of tem-
peratures. Long runs are necessary to obtain good statis-
tics, but this is compensated for by the weak number
dependence; a few hundred particles are sufficient for
temperatures down to one-tenth of the melting tempera-
ture. Nonequilibrium molecular dynamics works poorly
at low temperatures, but is consistent with Green-Kubo at
temperatures greater than one-half melting.

At low temperatures the Green-Kubo results are in
agreement with phonon perturbation theory. At one-half
melting, the Peierls calculation of the conductivity gives
about one-half the correct value; the remainder is account-
ed for by contributions of higher-order displacements, cu-
bic and beyond to the heat fiux. However, higher-order
anharmomcities cause the phonon lifetimes to decay more
rapidly than T ', and the net effect is that the conduc-
tivity can be characterized by an inverse temperature
dependence up to about one-half melting. The coefficient
of the inverse temperature dependence is quite accurately
predicted by Klemens's theory, but not by Julian's.

A difficulty arises in applying anharmonic
perturbation-theory calculations to finite-size crystals.
The harmonic reference spectrum must be smeared out to
cause some overlap between adjacent phonon states. %'e
have found a simple empirical rule for assigning a width

TABLE II. Low-temperature thermal conductivity. The slope of the classical T ' dependence of
the conductivity is calculated by molecular dynamics (MD) and perturbation theory (PT). The
molecular-dynamics results are derived from the G)reen-Kubo calculations using the quadratic approxi-
mation to the hest flux, q . The empirical width of the reference phonon spectrum used in the pertur-
bation theory is shown together with the sensitivity of the conductivity to the choice of her. The highest
normal-mode frequency in the crystal is about 35(e/m a )'~ .

36
25
27

27.2
25.6
25.3

her(ma /e)'

0.80
0.55
0.25

B(k 'T}pT

B(he@)a 'e
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to the harmonic spectrum which brings lattice dynamics
and molecular-dynamics calculations of phonon lifetimes
into good agreement with each other. It also leads to a
series of thermal conductivities that converges quite
quickly with increasing crystal size. It would be interest-

ing to develop a perturbation theory that could be directly
applied to finite-size crystals, without the use of ad ho@

prescriptions.
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