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Void nucleation as a diffusive instability
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The dynamics of vacancies in a system with both production and annihilation mechanisms have
been analyzed as to their coalescence to form voids. The modeling of the phenomena is done by in-

troducing a vacancy-concentration field. An equation for this field is formulated which incorpo-
rates, in a simplified way, (i) vacancy diffusion, (ii) mutual pairwise interaction among vacancies,
(iii) their loss due to mechanisms like recombination with interstitials and absorption at dislocations,
grain boundaries, etc., and {iv) their production by incoming radiation. The recombination with in-

terstitiais is treated in two schemes. The resulting equations are analyzed for a domain, under the
boundary condition that the domain boundaries are perfect sinks. Such a domain should mimic
grains in materials. The equations exhibit two kinds of behaviors depending upon the magnitude of
the production rate I'. If P is below a certain value P,h, the equations have steady-state solutions
which are approached from the initial thermal state. When P & P,h, a coalescence instability occurs
in time, which can be thought of as resulting from a negative diffusion coefficient. %'e have made
theoretical estimates of P,h in both the schemes which are in very good agreement with numerical
calculations.

I. INTRODUCTION

Voids are observed to form in metals and alloys under
different physical conditions in which there is a genera-
tion of excess vacancies. The formation of voids especial-
ly under irradiation is a problem of great technological
importance, since voids influence the material properties
in a significant way. Much attention has been given to
the nucleation and evolution of voids and other extended
structures under irradiation conditions' and during
fracture of ductile materials.

Since the main motivation behind void studies is the
understanding of swelling in irradiated material, many of
the earlier studies dealt with the question of growth of
voids. " More recently the interest has also turned to-
wards the mechanisms of nucleation of voids. ' ' The
conventional picture of void nucleation is basically similar
to the usual nucleation mechanism occurring at any phase
transition, with the difference that with void nucleation
one is dealing with a nonequilibrium transition. The fluc-
tuations in the density of excess vacancies cause vacancies
to form small aggregates, and these aggregates have to
grow beyond a critical size by overcoming a free-energy
barrier before they can form voids. The vacancy aggre-
gates are stabilized in a significant way by the presence of
inert gases such as He and other impurities. '

The purpose of the present paper is to examine a situa-
tion which arises when the production rate of vacancies is
high. It is shown that beyond a critical production rate,
the vacancies can coalesce rather spontaneously due to a
diffusive instability. The relation of this mechanism to
the fluctuation mechanism discussed above is similar to
the relation between the formation of a new phase by spi-

nodal decomposition on one hand, and nucleation-growth
mechanism on the other. The transition here is a non-
equilibrium one, and the instability is caused by the pro-
duction rate. This approach is also useful as it also con-
tains a natural mechanism for formation of void lattice.
In this paper we have not investigated this aspect, but our
preliminary investigations in this direction show promise.
While our work was being done, the work of Martin' was
brought to our attention. Martin's formulation is quite
similar to ours, but there are many differences in analysis.

II EQUATION FOR VACANCY FIELD

A. Diffusion and interaction

In order to understand the conditions of void forma-
tion, it is important to analyze the dynamics of vacancies,
which are generated in excess, for example, as a primary
effect of irradiation. The following kinetic processes
occur to vacancies.

(i) Vacancies move due to random thermal processes.
Such processes can be described to a good approximation
as diffusion of vacancies.

(ii) The vacancies move due to mutual forces between
thetn. The pairwise forces between them at short ranges
is attractive. This short-ranged force causes the two near-
by vacancies to coalesce, as this process results in reduc-
tion of surface and elastic energies. There is also a weaker
long-ranged interaction which arises due to the overlap-
ping of the strain fields of the two vacancies. We ignore
this interaction as it setmns secondary to the problem of
vacancy coalescence.

(iii) Vacancies are lost with time due to recombination
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with defects like interstitials, dislocations, vacancy loops,
and grain boundaries.

J(r, t)= DVf+—pf (r, t)F(r, t), (2.1)

where D and p represent diffusion coefficient and mobili-

ty of vacancies, respectively, and F(r, t) is the force on the

Clearly the conditions under which voids form or do not
form depend upon the competition among these three pro-
cesses and the production rate. The actual situation in
materials is very complicated, as the processes occurring
are very inhomogeneous and depend upon the microstruc-
ture and geometrical details of macrodefects in the sys-
tern. Nevertheless, it is clearly interesting to understand
the nature of competition between diffusion, which has a
tendency to distribute vacancy concentration uniformly,
and the attractive forces which bring them together, in the
presence of distributed sources and sinks in the system.
For this purpose, we analyze the following simple model.
We introduce a continuous function f(r, t) denoting the
density of vacancies. When such a density is introduced,
the length scale of description is much greater than the
lattice or vacancy size. One may now write a vacancy
current J(r, t)

df (r, t) +V J(r, r) = l(r, r—)+P(r, t), (2.3)

where I(r, t) and P(r, t) are the rates at which vacancies
per unit volume are lost and produced, respectively,
around (r, t). The loss term /(r, t) requires a detailed dis-
cussion, which we defer to the next section, apart from
one point. One of the factors contributing to the loss
term is the grain boundaries. We assume that the grain
boundaries act as perfect sinks for the vacancies and in-
corporate their absorption through the boundary condi-
tion f(r, t)=0, when r lies on the surface of the grain.
The production rate P(r, t) is proportional to the intensity
I of the impinging radiation, and can be well assumed to
be uniform within a domain or grain. On substituting Eq.
(2. 1) into Eq. (2.3), the latter takes the form

vacancy at (r, t) .This force which arises due to mutual
interaction may be written as

F(r, t) = —fV V(r r—')f(r', t)d r', (2.2)

where V(r —r') is the mutual potential energy between va-
cancies at r and r'.

The dynamical equation for f(r, t) can now be written
as

8 (r, t) +l(r, t) =P +D„Vf +@V f(r, t) fV V(r r')f (r', t—)d r' (2.4)

We now consider the situation for a single grain. The last term of the equation can be simplified considerably by exploit-
ing the fact that V(r —r') is a short-ranged potential. For study of coalescence, we ignore the long-ranged part of the po-
tential. The integral in the last term of the Eq. (2.4) can be written as

fVV(r r')f(r', t)d—r'= —fV'V(r r')f(r', t—)d r'

=surface term+ f V(r r')V'f(r', t)d—r' . (2.5)

The surface term vanishes due to the boundary condition that f(r„t)=0 when r lies on the surface. Due to the short-
ranged property of the potential, we can carry out a Taylor-series expansion for V'f (r', t) about r in Eq. (2.5) to write

fVV(r —r ')f(r', t)d r'= fd r' V(r r')IVf(r, t)+[—(r' r) V]Vf (r)+——,
' [(r' —r) V] Vf(r, t)+

To consider coalescence, we shall just keep the first term
of the expansion which seems most essential. The second
term vanishes automatically if the potential is isotropic.
The role of the third term involving third-order deriva-
tives in the current is under investigation, which we do
not report here. Further, we write

+l(r, r)=P+DV' f— f'
Bt B

B. The loss terms

(2.8)

V&Q;= r' V r—r' (2.7)

where Vo is a measure of the strength of interaction and
0; is a measure of the volume over which the interaction
occurs. For a finite domain, the right-hand side (rhs) of
the Eq. (2.7) is not independent of r for points r close to
the surface. However, for a short-ranged potential this in-
troduces insignificant error, being of order 0 /R, where
R is the hnear size of the domain. Substituting these sim-
plifications in Eq. (2.4) and using the Einstein relation to
write p, =a/kBT, we get

Apart from absorption from grain boundaries, which
was considered in the preceding section, the vacancies are
lost by two more mechanisms: (a) absorption due to ma-
crodefects such as dislocations, vacancy loops, etc. , and
(b) recombination with interstitials. The loss rate arising
due to absorption by macrodefects is simply proportional
to the vacancy concentration and can be written as
kof(r, t). In principle, ko is also a function of position,
being dependent on the configuration of microdefect. But
in the spirit outlined above, we take it to be a constant,
given by""
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4~r„,D„C,
ko ——E„,C, = 0, (2.9}

where C, is the number of macrodefects per atomic
volume, r„, is the absorption 1ength characterizing the in-
teraction between vacancies and macrodefects, and 0, is
the volume of the unit cell in the solid. If one assumes
this absorption to be dominated by dislocations, then
4vrr„C, /II, =pd, where p~ is the number of dislocation
lines per unit area. In this case ko ——pdD„.

The loss rate corresponding to recombination with in-
terstitials can be written as k;„f(r, t)n (r, t), where n (r, t) is
the interstitial concentration and

ki„4nr;,—(D;+D„), (2.10)

where D; is the diffusion constant for interstitials, and r;,
is the absorption length characterizing the vacancy-
interstitial interaction. Since n (r, t) is a space- and time-
dependent quantity, also being driven by the irradiation,
one should in principle write down an equation for n (r, t),
incorporating the production, loss, and diffusion of inter-
stitials, in a manner similar to that of the vacancy field.
Then one would have to solve two coupled partial dif-
ferential equations simultaneously. In view of the com-
plexity of the problem and the computational labor in-
volved, we propose to handle the problem in a simpler
way, which we believe is reasonably justified under certain
circumstances.

The circumstance which we wish to exploit, and which
is obtained frequently in practical situations of interest, is
the following. In many materials of nuclear interest, the
interstitial diffusion is much faster than the vacancy dif-
fusion. ' For example, in iron the hopping activation
energy for vacancies is approximately 0.8 eV, whereas
that for interstitials it is of order 0.1 eV. This implies
that the interstitial diffusion constant D; is bigger than
the vacancy diffusion constant by 12 orders of magnitude
at 300 K. This rapid interstitial diffusion allows us to
make the following approximations. Firstly we assume
that the interstitial concentration reaches a value which is
in local equilibrium with the vacancy concentration, i.e.,
n(r, t) varies adiabatically with vacancy concentration.
Another similar consequence of this approximation is that
the vacancy-interstitial recombination process is also not
affected by vacancy diffusion —which again occurs in a
local way and on a time scale faster than the vacancy dif-
fusion. Thus the recombination process can be adequately
described in terms of simple rate equations, which also en-

able us to express n(r, t) in terms of f(r, t) The rate.
equations are' '

Since in the equation for n(r, t) the slowest time depen-
dence comes from variation of f(r, t), the adiabatic ap-
proximation means that f(r, t) can be regarded as time-
independent relative to other terms. Allowing this, the
solution for n (r, t) can be written down to be

n (r, t) =—+n (r, 0)e
P
y

(2.14)

D;
y=k, „f(r,t)+ k, . (2.15)

Further, the transient is ignored as y &~1, and

n(r, t) = P
k;„f(r, t)+D;ko/D„

P
D; f4mr;, f (r, t)+pD]

(2.16)

(2.17)

where (2.17) follows if absorption by only dislocation is
considered. We can now write the complete loss term,

I( r, t) =kof (r, t)+k;„f(r, t)n (r, t) (2.18)

(2.19)

where

koD; p

k;,D„4mr;„
(2.20)

8 C(r, t)+ k,—+ P
A+C(r t)

C(r, t)

=P+D„V C(r, t) — C (r, t)
2kB T

where P=A, P, a=0;/Q„and

g =Q, A =pd/(4n. r;„/II, ) .

(2.21)

(2.22)

Note that even after these simplifications, the loss term
due to recombination is nonlinear in f and depends upon
the production rate P.

Substitution of Eq. (2.19) into Eq. (2.8) completes the
derivation of the equation for the vacancy field. For nu-

merical work, and for comparison with other papers in

the field, it is convenient to work with the dimensionless
variable C(r, t) =0,f(r, t). We write our final equation in
terms of C(r, t) as

Bf(r, t) =P k;„f(r, t)n (r, t) —kof (r, t), —

Bn(r, t) =P k;„f(r, t)n (r, t) K—;,C,n (r, t), —
i3t

4m.r;,D; C, 4'„,D; C,
K;,C, = 0, Q,

(2.1 1)

(2.12)

(2.13)

The following sections are devoted to analytical and nu-
merical analyses of Eq. (2.21), for a domain of finite
linear size R with the boundary condition C(r, t)=0 at
the boundaries.

III. SOLUTION OF THE EQUATION

The basic equation (2.21) that we wish to solve has two
kinds of nonlinearities, one in the loss term and the other
in the interaction term. We find a lot of insight can be
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gained if we consider them separately, before we analyze
these nonlinearities together. In the following sections we
follow this approach.

A. Diffusive instabiIity due to the interaction term

For purposes of analyzing the diffusive instability due
to the interaction term, we ignore for the moment the
nonlinearity due to combination with interstitials and con-
sider the equation

C—(r, r)+ kC (r, i)
a

=P+D„V' C(r, r) — C'(r, r), (3.1)

where k is some average P-independent effective loss rate.
It can be easily seen that this equation has two very dif-
ferent kinds of behaviors, depending upon the value of P.
Physically P governs the magnitude of f and when f is
large, mutual attractive interactions amongst vacancies
dominate and at some stage these overcome the diffusive
tendencies to cause coalescence. Mathematically, we can
easily demonstrate it for an infinite grain. For an infinite
grain the steady-state solution of the equation is
C(r, t) =P/k. Thus we write

C(r, t)=P/k+e 'g(r, t) .

8. Diffusive loss at the boundaries

To do this part of the analysis it is convenient to define
new time and length scales

t~kt and r~r/L, (3.6)

We first consider the solution of the linear problem

coalescence can take place. The ratio kiiT/Vo is essen-
tially the ratio between diffusive mobility which opposes
coalescence and the attractive energy which favors coales-
cence. However, the above considerations are valid only
for infinite grain. For finite grains the diffusion causes an
additional loss of vacancies at the boundaries of the grain.
Qualitatively, one can see that for finite grains P,i,(R) will
be bigger than that given in (2.5) due to additional loss.
The diffusive loss at the boundaries must cause the k fac-
tor in Eq. (3.5) to be modified through a function of the
form S(L/R), where L is diffusive length given by
(D, /k)'~ and R is the linear size of the grain. This is so
because L, is roughly the distance a vacancy moves be-
tween its creation and extinction. Thus the diffusive loss
occurs only for those vacancies which are produced
within a distance L from the boundaries. This means that
the overall effective extinction rate is affected through a
function of the ratio L/R. A more detailed analysis of
this finite-size effect is carried out in the next section.

The resulting equation for g is

ag (3.3)

+C =P/k+V'C .

The solution can be written

(3.7)

Vo& P
k Tk8

becomes negative when

(3.4)

If we treat g as a perturbation over steady-state solution,
or consider times g «P/ke"', the second term of the rhs
of Eq. (3.3) can be ignored and we note that an effective
diffusion coefficient,

C =ET(r, t)+ —S(r),P
(3.8)

where S(r) is the steady-state solution reached in the
trop limit. Both F and S can be expanded in the nor-
malized eigenfunctions of the Vi operator with appropri-
ate boundary conditions. If 1(„(r) and e„denote such
eigenfunctions and eigenvalues,

kgT
P pPg, ——— k .

Vocx
(3.5) FT(r, t)= g A„— f„(r)e

k 1+@„
(3.9)

We see here that above a certain production rate the dif-
fusive tendency is reversed due to interaction. This leads
to flow of vacancies from lower concentration to higher
concentrations, and we identify this rate as the threshold
production rate for the spontaneous formation of voids.
Below this rate, the simple diffusion dominates and voids
can form only by a nucleation and growth mechanism.
These general features have been confirmed by numerical
calculations in one dimension, as will be discussed in Sec.
IV.

The production rate derived here has a simple physical
basis. It is directly proportional to loss rate k and the
temperature T, and inversely proportional to coalescence
energy Vo. This is so because k controls the average con-
centration in the system and the larger k is, the larger a
value of P is needed to reach the concentration when

—S(r)= g 1(„(r),
k 1+@„

(3.10)

where

A„= J f(r,O)f„(r)d r (3.11)

and

P„=P „rd r. (3.12)

To analyze the nonlinear equation, we make the substitu-
tion
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C(r, t) =Fr(r, t)g (r, t)+ —S(r)p
k

and find

(3.13) ag Voa P
1 — —S(r} V gBt ksT k

ag 2 2
voa 1 2 p

VF&.Vg —V g = — V (F&Sg)
"dt Fz. kBT IP k

2 T F
V'(F'g')

B T

(3.14)

Now if we make the approximation that
~
VFz

~

/Fzis.
small we arrive at the equation

V'l g'Fr+ g (S S—}],
B

(3.15}

P kBTkS(' VVpa
(3.16)

For a grain of simple geometry, S(r) can be easily calcu-
lated. For a cubic grain,

where S is the value of S(r) averaged over the domain.
Ignoring the nonlinear terms as before we expect the ef-
fective diffusion coefficient to go negative, when

s1rl( n i 7TX /R )

Sill�(

n 2 ltd /R )siil( n i 1TZ /R )

ninzni[1+(ir /R )(n i+nz+ni)]
(3.17)

The explicit analysis can also be made for a spherical
grain, for which one finds

3
8

772

1

nin2ni[1+(ir /R )(n i+n2+n))]
ktt T 1

Voa 1 —(3L/R)[coth(R/L) L/R)— (3.21)

kgT 1

Voa 1 —(2L/R)tanh(R/2L)
(3.19)

(3.18}

where a prime on the summation implies that n ~, nz, and
n 3 take only odd integral values. The summation in Eq.
(3.18) can be easily done for a one-dimensional domain
and we find the threshold rate P,h for a one-dimensional
domain to be

As expected, P,h is found to be a decreasing function of
R, because the larger the R is, the smaller is the loss to
domain boundaries and consequently the smaller is the
production rate required to cause coalescence.

Note that our estimates from Eq. (3.16} are upper
bounds for P,h. The reason is that the coalescence insta-
bility occurs at the center of domain, where the vacancy
concentration is maximum. This suggests that a better es-
timate of P,h can be obtained by using S(0) in place of S,
i.e., at the threshold

For large R, we have also made an approximate evalua-
tion of Eq. (3.18) and this yields I'a Voa S(0)=1 . (3.22)

kBT 1
P,h/k =

Voa 1 —(6L/R)tanh(R/2L)
(3.20)

This yields

kBT
Voo,'

I'g, /k = '
kB

Vpa

1
for one-dimensional grain

1 —sech R/2L

1 ~

l
~

for sphenca grain .

(3.23)

(3.24)

The R dependence of P,h is also studied numerically, and
it will be described in Sec. IV. The numerical results
broadly confirm the theoretical picture.

C. Role of interstitial-vacancy recombination

For the considerations of this section, we paraphrase
the results of the previous two sections in the following

kBT
Ca=

Vpa
(3.25)

In the presence of a linear loss term, the concentration

way. The coalesance instability occurs when the produc-
tion term is large enough to drive the steady concentration
in the middle of the grain, C, (0), to a value C,h, given by
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Cg (0)=—S(0) .
P
k

(3.26)

C, (0) is related to the production rate through the relation the middle of the grain. Since the concentration profile is
very fiat in the middle, we ignore diffusion and study this
build up using rate equations. By using the adiabatic ap-
proximation, the rate equation for C(O, t) is

Thus when P becomes large enough such that C,(0) & C,h,
the diffusive instability occurs T. he primary effect of the
loss term arising due to recombination with interstitials
[Eq. (2.19)] is to alter the relation given in Eq. (3.26). To
see this, we consider how local concentrations build up in

Bc(0 r} p k
P=P—ko+

A +C(O, t)

The solution for this equation is

C(O, r) . (3.27)

A
1

p —A/2 —C(Or)
1

A p+A/2+C(0 t)

p—A/2 —C(0,0) 2p . p+A/2+C(0, 0)
(3.28)

where
1/2

PA A

ko 4
(3.29)

This equation implies a monotonic build up of concentra-
tion to a steady-state value,

' 1/2

C, (0)= pg g2

0
(3.30)

provided that the initial concentration C(0,0) & C, (0).
The quantity A is typically very small. From Table I one
can see that for steel, A —10 ~—10, whereas in the vi-

cinity of the threshold, P =10 . Under these conditions,
we take C, (0)=(P A/ko)'~ and the solution (3.28) can be
written as

It might be mentioned at this stage, that when the
vacancy-interstitial recombination mechanism is the dorn-
inant loss mechanism, i.e., A is small, the production
threshold of Eq. (3.34) can also be arrived at, through oth-
er related approximation schemes. For example, one
might assume that due to fast diffusion, the interstitials
reach a quasi-steady-state, in which one finds (using rate
equations)

(3.35)

Now we allow for the slower variation of f and write the
loss term as

l(r, t)=ko f(r, t)+ f'(r, r)
D;

C(O, t) = —Be
ko

(3.31) =ko f+=f'
A

(3.36)

where B is a constant related to the initial concentration.
Note that the P dependence of C, (0) is now very different
from the earlier one [see Eq. (3.26)]. This gives rise to
rather drastic changes in the estimate of the production
threshold for coalescence. Setting C, (0) from Eq. (3.30)
equal to C,i„one finds P,h to be given by

1/2
phg g2

+ (3.32)
ko 4 2 Voa

To account for diffusive loss of vacancies for finite grains,
we note that this mainly occurs in the neighborhood of
the boundaries, where the vacancy concentration is small,
and presumably the nonlinear effects are also small.
Thus, the estimates of Sec. M 8 are approximately
correct, and we modify Eq. (3.32) in the following way:

' 1/2
~th~ A A kB T 1

ko 4 2 Voa S(0} '

Substituting this into the equation for C(r, t), one finds

ac(r, r) „, c(, )

=P+D„P' C — C' . (3.37)
2kB T

P,h is derived by setting C, (0)=C,h, which yields
'2

kBTI',h /ko ——C,h+ —C,h
——

A g Vox
(3.38)

%'e have not studied this equation numerically, but con-
siderations similar to the ones used above show that C, (0)
obeys the equation

—C, (0)+C,(0)=1 2 I'

which in the limit of small A yields
2

~th 1 kB T 1

ko A Voa S(0)
(3.34}

which, apart from a correction due to diffusive loss, is the
same as Eq. (3.34).

Comparing these results for P,h with those of Sec.
III A, in which the loss mechanism was taken to be linear,
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TABLE I. Numerical values of frequently used parameters.

Vacancy coalescence energy Vp

o.=Q;/Qp
Dislocation density pd
Activation energy for vacancy diffusion
Activation energy for interstitial diffusion
Diffusion constant prefactor
kp ——pgD„
Diffusion length I. ={D„/kp)'
Interstitial vacancy interaction parameter, 4mr;„/0,
A =pg/{4gr;„/Q, )

kgT
th-

v.-

0.15 eV
10
10' cm
0.8 eV
0.12 eV
0.2 cm /sec
7.27&10 ' sec ' {at 300 K)
10 cm
6X 10" cm-'
1.67 g 10-'

0.0172 {at 300 K)

we note that the nonlinearity of the vacancy-interstitial
loss mechanism affects the results rather strongly. The
estimate of Pth/ko ill tllis section differs from that of Sec.
IIIA by a factor k&T/VoaS(0)A, whose numerical value
for typical parameters given in Table I is 748.1 (for
R=4). This large increase in P,h is understandable, as
there is an additional loss mechanism now, which has to
be compensated.

IV. NUMERICAL RESULTS

This section reports our numerical studies. We have a
twofold aim. One is to study the actual temporal develop-
ment implied by Eqs. (2.21) and (3.1), and check whether
one has two kinds of behaviors as argued theoretically.
The other is to check the accuracy of our theoretical esti-
mates for the production threshold P,h. All our numeri-
cal calculations have been done in one dimension, as the
basic physical features can be well tested in one dimen-
sion. Since our model still lacks some realistic features,
and its purpose is to elucidate the role of various compet-
ing processes, the effort to perform three-dimensional cal-
culations does not seem justified at this stage. The nu-

merical parameters used in the calculation are listed in
Table I. Note that these parameters are just typical for
nuclear materials, and do not correspond to any single
material. In Table I we have also given values of some
frequently used derived parameters such as ko, A, C,h,
etc., for ready reference. For numerical calculations, the
time is measured in units of ko and distance in unit of
L,

For clarifying the role of various terms, the numerical
calculations have also been done in two stages. In the
first stage, we have studied Eq. (3.1), in which the recom-
bination loss with the interstitials is approximated by a
linear term. The temporal evolution of the concentration
field is studied by switching on P at t=0, and taking the
initial state to be one of thermal equilibrium. An
explicit-difference method is employed to solve the equa-
tion. From numerical integrations, the existence of two
types of solutions is clearly seen. For low values of P, the
solutions quickly approach steady states, which are of the
same qualitative form as those of the linear diffusion
equation of Eq. (3.7). A typical steady-state solution is
displayed in Fig. 1. Since the solution is symmetric
around the center, only half the solution is shown. The
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FIG. 1. Curves A and B show the concentration profiles of
vacancies at two power levels, in the steady state. Curve C
sho~s the concentration profile just before the instability set in.
These concentration profiles are obtained by numerically in-

tegrating Eq. (3.1).
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FIG. 2. The growth of vacancy concentration at the center of
the grain according to Eq. (3.1) is plotted with time in units of
kp '. The curves A and B correspond to steady-state, while C
corresponds to instability.
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FIG. 3. Plots of P,h/ko X 10 with grain size R/L according
to numerical calculations and theoretical estimates. Curve C
corresponds ta numerical calculations, while curves A and 8
correspond to estimates according to Eqs. (3.19) and (3.23),
respectively.

concentration throughout the grain grows monotonically
towards the steady state. As P is raised, a certain stage is
reached when the values of concentration at first ap-
proach seemingly the steady-state profile in a slow
manner and then suddenly shoot to extremely large values
at the grain center, signifying the instability. In Fig. 2, we
show a plot of midpoint concentration, C(O, t), for values
of P below P,h and above P,i, . We have also studied the
size dependence of P,i„with a view to verify Eqs. (3.19)
and (3.23). These results are shown in Fig. 3, in which the
numerical results for P,h/k are shown with the theoretical
prediction of Eqs. (3.19) and (3.23). Clearly our latter es-

FIG. 5. The growth of concentration at the grain center at
two production rates, one below P,h and the other above P,h.

timate of Eq. (3.23) is in closer agreement with the numer-
ical results. For values of 8=5, the theoretical estimates
are within a few percent of the numerical values. For
smaller values of R, the theoretical estimates are not so
good, as for small R the approximations of neglecting
S —S or

I
VFr

I
/Fr are poor. However, from a practical

point of view, this is not such a disadvantage, as the grain
sizes practically encountered correspond to 8~5 (i.e.,
grain size greater than 0.5 pm for our parameters).

We next report our numerical results on the complete
Eq. (2.21). The calculations were carried out in the same
way, except that one needs a greater precision. In this
case, the truncation errors cause spurious instabilities,
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FIG. 4. Vacancy concentration profiles at various times, cal-
culated according to Eq. (2.21).

FIG. 6. The temperature dependence of P,h according to Eq.
(3.38)
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which are to be avoided. Again for small production rates
P, one reaches a steady state. Some typical results are
shown in Fig. 4. However, the approach to steady state
has a new feature. Unlike the monotonic growth of the
concentration profile found in the earlier case, here there
is a faster increase in the concentration near the edges, ini-

tially, giving rise to a mild hump. This hump then travels
towards the center, leading to the final profile. This is
presumably due to the fact that the loss term due to inter
stitials is weaker near the edges initially. As before, as we
raise P, an instability sets in, in the vicinity of the mid-
point beyond a certain threshold. Figure 5 shows the
growth of vacancy concentration at the grain center for
two values of P, one below threshold and the other above
it. The numerical value of P,h for R=4 was determined,
by increasing P in steps of 10 and observing the break-
down of steady-state behavior. For T=300 K, P,h in this
case was found to be 0.0013, which is gratifyingly close to
the theoretical values of 0.00129 calculated from the for-
mula of Eq. (3.38). Note that Eq. (3.38) does not take into
account the boundary loss correction factor of S(0). Since
S(0)=1.83 for R=4 inclusion of this factor spoils the
comparison, which can still be regarded as satisfactory in
view of the approximate treatment of nonlinearities. This
points to the fact that the introduction of the boundary
loss factor in Eq. (3.33) is not very good. Finally, in Fig.
6 we show the temperature dependence of P,h according
to Eq. (3.38). One notes that this dependence is very ra-
pid, which is largely due to the variation of the diffusion
constant D„with temperature.

V. CONCLUMNG REMARKS

recombination in a linear way. This calculation mainly
serves the purpose of elucidating the competition between
diffusion and the attractive interaction between the vacan-
cies. The nature of diffusive instability giving rise to
coalescence is particularly transparent in this situation,
and this calculation also enables us to analyze the more
complex situation to follow. In the second calculation the
vacancy-interstitial recombination process is treated more
realistically, by adopting an adiabatic approximation for
the interstitial diffusion. The adiabatic approximation
has a good justification in the present context, as vacancy
diffusion is far slower than the interstitial diffusion. The
theoretical estimates for P,h in the two calculations are
quite different, but in both cases their agreement with the
corresponding numerical calculations is very satisfactory;
in fact, better than our expectation. Our theoretical for-
mulas for P,h show explicit dependences on temperature,
grain size, dislocation density, etc.

As far as void formation is concerned, our model can
describe only the precoalescence stage. The description
breaks down once the coalescence sets in, i.e., for P ~ P,„.
This is because the model contains no variables to describe
the voids themselves. To describe the situation once such
coalescence has occurred, one needs void variables and a
description involving their coupling to vacancy concentra-
tion field, as has been done in some earlier work.
There are a few other features mentioned earlier in this
paper which should be included to make the model more
realistic.

Our general analysis applies to any population of ob-
jects subject to diffusive motion with short-ranged pair-
wise attractive forces.

We have analyzed the conditions under which a gas of
vacancies becomes unstable towards coalescence, leading
to the formation of voids, causing their constant produc-
tion under irradiation. Our model studies the competition
between four kinetic processes, namely, the thermal dif-
fusion of vacancies, their mutual attraction, their loss to
various sinks in the material, and their production rate.
The result is that there is a threshold production rate P,h

only above which a spontaneous coalescence occurs. The
theoretical predictions about P,h are made under two con-
ditions. The first one, which is not too realistic in the
present situation, treats the process of vacancy-interstitial
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