
PHYSICAL REVIEW B VOLUME 34, NUMBER 7 1 OCTOBER 1986

Higher-order phase field models and detailed anisotropy
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An interface between two phases is considered. A set of differential equations of arbitrary or-
der is derived from a Landau-Ginzburg approach. The higher-order equations reveal more de-

tailed structure of the interface. In particular, any anisotropy of the interactions is exhibited in

the equations and the modified Gibbs-Thompson relation at the interface.

In this paper we derive a set of differential equations of
arbitrary order from a Landau-Ginzburg'2 approach and
show that this has various physical implications for phase
boundaries in both equilibrium and nonequilibrium prob-
lems. The ideas are a further development of those con-
sidered in previous work. ' '2

The physical situation of interest consists of a material
(occupying a region 0) which may be in either of two
phases, e.g., solid or liquid, which are separated by an in-
terface l. A small but finite correlation length Cg implies
that the thickness of I, the interfacial tension cr, across I,
and the deviation from the planar equilibrium melting
temperature on I are all nonzero quantities. ' A key as-
pect to understanding the behavior of the interface, partic-
ularly questions of shape, stability, and pattern formation,
is the relationship between the temperature at the inter-
face and other variables such as the interfacial tension,
curvatures, normal velocity, anisotropy, and orientation
angles. In particular, an important problem is the implica-
tion of the microscopic information, particularly anisotro-
py, for the macroscopic equations and the consequent
behavior of the interface. We find that for any even in-
teger m, the m-fold anisotropy is communicated through
the mth power of q, the wave number, which leads to the
appropriate mth-order differential of the order parameter.
The effect on the shape and motion of the interface is most
clearly manifested in Eq. (29), for sixfold anisotropy.

The model we consider is the continuum limit of a spin
system on a hyperrectangular lattice L in d-dimensional
space. Given spin variables p(x) for x in X, which may
assume all real values, a double-well potential w(p(x)),
which maintains a finite energy, and a set of interactions
J(x —x'), one may write a (reduced) Hamiltonian as

F=——,
' g J(x —x')y(x)y(x') —g w(y(x)) .

x,x eX

Using the discrete Fourier transforms

P(q)—= g e""P(x), J(q)= g e ""J(x), (2)

the interaction term of (1) may be written as

g J(x —x')p(x)p(x') =W 'g J(q)P-(q)P( —q),
x,x eX

where N is the number of spins in the lattice.
The Hamiltonian is then rewritten by (i) expressin~

J(q) in a power series in (q x)" by expanding e
(later to be truncated), (ii) defining the discrete deriva-
tives (in the jth direction)

f(x+a, ) —f(x)
D,f x 4

QJ

where aj is the lattice spacing, and (iii) using a discrete in-
tegration by parts in order to convert the q1e 'v " terms
into discrete derivatives of p(x). For convenience, we
make the assumption that J(x) is symmetric in reflection
about any axis (hence, about the origin). This assumption
means that odd powers of q, and thereby odd-order deriva-
tives, will vanish due to symmetry. The analysis proceeds
similarly without this assumption. A length scale
emerges (see Ref. 13, chapter 3) from the scaling of the
sums Q„J(x)x''. . . xd'. We pass to a formal continuum
limit, letting aj 0. Then the discrete derivatives become
the analogous continuum derivatives, which we also denote
by DJf(x). A free energy is obtained by adding —2up to
the Hamiltonian (u is the temperature, scaled so that
u 0 is the usual melting temperature). Combining the
double-well potential w with the p(x) terms which have
not been differentiated, one obtains the free energy

Sly)—=„Fdx, . . . dx, ,

( — )"1+'g'" (b2. n,p. . . p, )(D", ".. . Dg" q)'+G(q) 2uq-
n 1@1+. . +Pg 2n

(s)

where the primed sum is over all sets of positive, even numbers fp', . . . ,pd' whose sum is 2n The coefficient. s may be
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written as

b(2n;p1, . . . ,pd) —= 1 J(x)x~1'. . . xd~'

p&' pd'

liquid) and y satisfies

, (2n)! Bp'"
xdx1. . . dxd .

The function!j1 must satisfy zp, =bV/8p where z is a re-
laxation time. Truncating (5) to order M and applying the
Euler-Lagrange equations to it, one obtains the equation,
in the domain 0 C Rd,

~-Z Z'
n ~1@1+. . +Pd ~2n

g2"b (2n;p1, . . . ,pd )

x D ' Dd'y —6'(y) +2u . (7)

where I is the latent heat of fusion (per unit mass) and K is
the thermal diffusivity (the heat capacity per unit volume
has been set equal to unity). A prototype 6 (p) is
—,
'

(1t1
—1) so that —6'(p) p

—p3. For M 1, these
equations reduce to second-order equations previously
studied ' (see also the recent review article in Ref. 14).
A complete mathematical problem is specified by impos-
ing appropriate initial and boundary conditions (which de-
pend on the nature of the container material and physical
considerations extraneous to the present discussion), e.g. ,

u(0,x) uo(x), p(0,x) po(x)x e 0,
u (t,x) -us(t, x), y(t, x) -y+,

To avoid ill-posed mathematical problems, we must re-
strict M to be odd. This equation is coupled with the heat
diffusion equation

up+ f1 =Kobu
I

It must also approach appropriate distinct limits as

p ~ ~. An important identity needed to evaluate (11)
is obtained by multiplying (13) by By/Bp and computing
the integral from —~ to p. Using the notation

0 ~ OQ

v, =—,I Igl I'=—„g'(p)dp,
one may write this identity as

(i4)

M J
„~, (2n)! "--Yj Y& 6'(y) y1 =0 .

The interfacial tension a can now be evaluated to leading
order by noting that the 2u!t term vanishes in (11) and
that the integration in the tangential directions cancels
with the area in the denominator. One then has

The second integrand is clearly an exact differential. To
see that the first is also exact, one may apply the general
identity (subscripts again denoting derivatives),

n —
1 ( i)n —

1

42n'tP1 g ( 1) 42n —krak+dr k 1
2

which may be verified by induction. Combining (15) and
(16) results in the identity

I I[6(y)]'"I I'= g ( —»"" "
(n ——')

I I y I
I'

M J2„
(2n )!

(i7)

. P(t,x)-0 x c BQ,
pJ

(10) a= —'g ( —I)" " II' I
I'+II[6(1t)]'"I I'J2„

(2n )!

where p ~ are the roots of —6'(1!I)+2u 0 with + denot-
ing the liquid and —the solid, and v is the normal to the
boundary. The interface I between the two phases is then
the set of points in 0 on which the order parameter p van-
ishes.

The interfacial tension a across I can be calculated by
using (5) in a logical local interpretation of the usual defi-
nition

P[y] ——,' 9[y+] ——,
' 9[y-(

where A is the area of the interface. See Ref. 3 for details.
In the isotropic case, the calculations are simplified so

that a may be determined to all orders in n In this case, .
(7) may be written as

z4, - g g'" (D„+ . +Ddd)"y —6 (y)+2u,
. (2n)!

(i2)
J2n=~ J(x)(x1'+ . +xd')"dx .

The leading-order transition layer solution for [small g and
z-O()2)] must be yo(t, r) 1'(p), p=r/(, where r is de-
fined as the coordinate normal to I (positive toward the

B2n B2n —
1

g2"(D„+. +D„)"y=, +gn~, ,
+O(g') .

Thus, in the isotropic case, one may write (12) to 0 (g) as

ht J2 B2n B2n —
1

+nag —6'(y)+2u =—
(2n )1 B 2n Bp2n

—1

Uz Bp

4 Bp

(20)

where the second equality follows from (17).
Next, we consider the question of determining the tem-

perature at a developed interface. Suppose the surface is
moving with a (normal) velocity U at the point xo, and has
principal curvatures summing to x [e.g. , x =(d —1)/Ro
for a d-dimensional sphere of radius R11]. Asymptotic
analysis shows that the interfacial structure is (to dom-
inant order) independent of t With p de. fined as above,
but now also depending on t through the location of the in-
terface, and U defined as ~

I U
I (plus sign if motion is to-

ward the liquid), we may write
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6+12 d3
Cs (I+d~)436p+( PSp+ 4 ASp, 8r ' rM J2 2n

(2r3)t g 2n 4+ate a3
433p+4r r

xC4 (1+a,)y4p+g

Assuming a solution of the form p p0+gp' (where written in polar coordinates as
y) solves (13), we note that p' must solve (to leading

order)

Ur ay " J2. a2" 'y
(2~ ) t gp2n I—

(21)
+ C2 y„+~y, —6'(y)+2u+O(g'), (25)

But since tip/tip =X is a solution to the homogeneous equa-
tion Lz 0, a necessary and sufficient condition for the sol-
vability of (21) is the orthogonality of F and X, i.e.,
f FXdp 0. One has then the necessary solvability con-
dition

p OO M J2 n~ 82n-1 0
2uX(p)dp -& g '", nx 2„, Xdp

X dp (22)

It can be shown that the left-hand side of (22) is
4' I p-0+ 0 (g ) (details to appear in a subsequent paper).
Using the notation defined above, one has, upon integrat-
ing by parts (n —1) times and using the boundary condi-
tions (10), the result

-4. -c g (-»"-"
I I y. I I.—"Ilail I .

n 1

Using the identity (18) for the interfacial tension and the
fact that the change in entrapy hs between the to phases is
four for this free energy, one obtains the following exten-
sion of the Gibbs-Thompson relation:

where the C; positive constants are independent of 8 and

pspe denotes |I p/888 p, etc. The coefficients a;, d; (as
well as the C;) are calculated from (6) with the result

d~(8)=sin Hcos 8,
d~(8):-sin 8 —2sin Hcos 8+cos68,

d3(8)—:2sin8cos8(cos 8 —sin48)

a, (8)-=d, (8),
a2(8) =sin 8—4sin Hcos 8+cos 8,
a3(8) =—2sinHcosH(cos28 —sin'8) .

The O(l) equation with solution y(p, H) is given by

L y' —=C,(1+d, )esp+ C,(1+a, )434p+ C2y,'p —6"(yp0) y'

—2u C2 (4+a2) a3
Ypr ' r ' rY3p IICI3p, e

(6+d, )
0'5p

d3
(28)Psp, e=F

r

0 Cs(1+d()esp+ C4(i+a))y4p+C2y2p+G'(p ). (27)

Employing the reasoning which led to (23) we see that a
solution of the form p y+gp' is possible only if gp'
solves

wu - —~x —"'
I I y) I I .

This has the same form as the relation derived fram
second-order equation tM 1 in (7)] which has been
made rigorous in that context under various equilibrium
conditions. 3 s 9"'2 The main difference is that &0 is now a
solution to a more complicated equation comprising more
detailed information about the interface. Similar remarks
apply to the interfacial tension o.

An important manifestation of the inner structure of the
interface is in the question of anisotropy. Retaining the
2M and lower-order derivatives in Eq. (7) means that the
2M-form (and lower) anisotropy is incorporated into the
coefficients b(2n;p~, . . . ,pd) (n 1, . . . ,M). The thick-
ness of the interface and the interfacial tension are modi-
fied accordingly in these directions. Anisotropy which is
greater than 2M-form is averaged by these coefficients.
For example, a snowflake with sixfold symmetry would be
described best by a sixth-order equation (M 3) and par-
tially by a fourth-order equation (M 2). In the second-
order equation (M 1), the anisotropy would be "washed
out" entirely for the usual symmetric snowflake.

We illustrate these ideas exphcitly with the sixth-order
equation in two dimensions. In this case, Eq. (7) can be

C21 I yi I

+C4 —(4+a2) I I v 2I I
—2'

28 I I w2I I

+c6 (6+d2)l ly3l I+ '
I lv3l2 dH

Thus the question of evaluating the temperature at the in-
terface is reduced to solving the sixth-order ordinary dif-
ferential equation (27) for any orientation angle 8. Given
a particular set of principal curvatures and temperature of
a point on the interface, Eq. (29) then determines the nor-
rnal velocity of the interface. More detailed anisotropy
and higher dimensions may be considered using the same
methods.

A physical interpretation of the phenomenon exhibited
by (29) is that amsotropy in J(x) is inherited by the
correlation length, which is proportional to g in the isotro-
pic case. The anisotropy in the correlation length is mani-

(24) Once again, 8y/8p solves the homogeneous equation for
(23), and so the solvability condition f F8@/8pdp 0
implies the interfacial temperature condition
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fested in the interfacial tension and width. In an appropri-
ate limit in which these quantities vanish and the interface
becomes sharp (i.e., g 0) this anisotropy must also
disappear. This, of course, is the Stefan problem limit
which consists of the physics of heat diffusion in both
phases along with the latent heat of fusion at a sharp inter-
face on which u 0 by definition. The nature of the
double-well potential G(p) plays a part in this limit since
it is a measure of the extent to which the material prefers
to be in a distinct phase. In fact, the 8(p —1) limit of
G(p) is analogous to the Ising limit of the f4 model. "'s If
we write, for exatnple, G(p)-=aH(p), where a is a small
parameter, then one obtains a relation analogous to (23) in
which ( is replaced by patt" in the sum and u by au. As-
suming z to be ~roportional3 to g2, the coefficient of
[ ~ yt ) ) is ( —a't vz)/g. If g and a approach zero with
ga'l" ' 0 then the relation (23) approaches u 0
which is the Stefan limit. It is evident, formally, that in

this limit the interface approaches zero thickness and that
one attains the heat diffusion equation on both sides of the
interface. The latent heat, or Stefan condition, is also ob-
tained from (8). The situation is analogous for any of the
anisotropic cases, thus indicating that this type of anisotro-
py is a direct consequence of the orientation dependence of
the correlation length and interfacial thickness.

Finally, we note that a number of mathematical as-
sumptions have been made in the formal derivations which
lead to (23) and (29). Unlike the second-order equations
these derivations have not yet been made rigorous. In fact,
the existence of solutions to (13) for smail ( is itself a non-
trivial problem. The lack of a maximum principle for
equations greater than second order is a central difficulty.
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